
Correlation-based Algorithm for Multi-Dimensional

Single-Tone Frequency Estimation

Weize Sun, H.C. So and Lanxin Lin

Department of Electronic Engineering, City University of Hong Kong

Abstract

In this paper, parameter estimation for a R-dimensional (R-D) single cisoid

with R ≥ 2 in additive white Gaussian noise is addressed. By exploiting

the correlation of the data samples, we construct R single-tone sequences

which contain the R-D frequency parameters. Based on linear prediction

and weighted linear squares techniques, two proposals are developed for fast

and accurate frequency estimation from each constructed sequence. The

two devised estimators are proved to be asymptotically unbiased while their

variances achieve Cramér-Rao lower bound when the signal-to-noise ratio

and/or data length tend to infinity. Computer simulations are also included

to compare the proposed approach with conventional R-D harmonic retrieval

schemes in terms of mean square error performance and computational com-

plexity.

Keywords: frequency estimation, multi-dimensional spectral analysis, fast

algorithm, correlation

1. Introduction

Estimating the parameters of sinusoidal components from a finite number

of noisy discrete-time measurements has been an important research topic be-

Preprint submitted to Signal Processing September 25, 2012



cause it corresponds to many science and engineering problems [1]–[3]. Apart

from the standard one-dimensional signal model [4]–[6], multi-dimensional

spectral estimation [7] in fact has many applications such as array processing

[8]–[9], nuclear magnetic resonance (NMR) spectroscopy [10], wireless com-

munication channel estimation [11]–[12] as well as detection and localization

of multiple targets using multiple-input multiple-output (MIMO) radar [13].

The crucial step in R-dimensional (R-D) sinusoidal parameter estimation,

with R ≥ 2, is to find the frequency parameters which are nonlinear in the ob-

served data. For 2-D frequency estimation, maximum-likelihood (ML) [14]–

[15] and subspace [8]–[13], [16]–[17] approaches are commonly used choices.

For higher dimensional signals, the latter seems to be the only practical so-

lution although its computational requirement is very high. State-of-the-art

subspace methods include MUSIC [9], decoupled root-MUSIC [17], unitary

ESPRIT (UE) [8], rank reduction estimator (RARE) [12], multi-dimensional

folding (MDF) [11] and improved MDF (IMDF) [16], and they usually need

eigenvalue decomposition (EVD) or singular value decomposition (SVD) in

the algorithm implementation. By effectively utilizing the correlation of the

observed data, we contribute to devising an accurate frequency estimator for

a R-D single-tone with less computational load in this work.

The rest of the paper is organized as follows. To facilitate the understand-

ing of our underlying idea, we first develop the correlation-based approach

for a 2-D cisoid in the presence of white Gaussian noise in Section 2. By ex-

ploiting correlation on the 2-D raw data, a novel single-tone sequence whose

frequency corresponds to one of the two dimensions is constructed. The gen-

eralized weighted linear predictor (GWLP) [18], which can provide optimum
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performance for 1-D single-tone in white noise, is then applied for estimation

of the two frequency parameters in a separable manner. Note that linear pre-

diction (LP) and weighted least squares (WLS) are two key ingredients in the

GWLP. Two estimators are devised, and their mean and variance expressions

are produced. It is worthy to point out that the derivation of the weighting

matrix and performance analysis are different from those of [18]. Section 3

generalizes the proposed solutions to higher dimensional signals with the use

of tensor algebra [19]. Simulation results are included in Section 4 to cor-

roborate the theoretical development and to compare the correlation-based

approach with the approximate iterative quadratic ML (AIQML) [15], IMDF

[16] and UE [8] algorithms as well as Cramér-Rao lower bound (CRLB) [20].

It is demonstrated that the proposed methods are more computationally ef-

ficient and their performance is close to CRLB particularly when the signal-

to-noise ratio (SNR) is sufficiently high. Finally, conclusions are drawn in

Section 5.

2. Two-dimensional Frequency Estimation

We first define the notation as follows. Scalars, vectors, matrices and

tensors are denoted by italic, bold lower-case, bold upper-case and bold cal-

ligraphic symbols, respectively. The magnitude, angle, real and imaginary

parts of a complex scalar a are |a|, ∠(a), ℜ{a} and ℑ{a}, while the variable,

noise-free value and estimate of a vector a are represented by ã, ā and â,

respectively. The mean and variance of â are denoted by E{â} and var(â).

The Ii is the i × i identity matrix and 0i×j is the i × j zero matrix. The

operators for transpose, complex conjugate, conjugate transpose, inverse and
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Khatri-Rao product are T , ∗, H , −1, † and ⊙, respectively. The mth element

of a ∈ CM×1 and (m,n) entry of A ∈ CM×N are denoted by [a]m and [A]m,n,

respectively, while we use am1,m2,...,mR
to represent the (m1, m2, . . . , mR) entry

of a R-D tensor AAA ∈ CM1×M2×···×MR where R ≥ 3.

In matrix form, the 2-D signal model with size M1 ×M2 is expressed as:

Y = X+Q (1)

where

[X]m1,m2
= γej(m1ω1+m2ω2), mr = 1, 2, · · · ,Mr, r = 1, 2 (2)

is the noise-free tone sample, and [Q]m1,m2
is a zero-mean complex white

Gaussian process with unknown variance σ2
Q. Moreover, γ is the complex

amplitude while ω1 ∈ (−π, π) and ω2 ∈ (−π, π) are the frequencies, and they

are all unknown constants. Here, the task is to determine ω1 and ω2 from

the observed matrix Y with M = M1M2 samples.

The main idea of the algorithm development is to exploit correlation to

convert Y into a vector which contains the information of ω1 or ω2. That is,

ω1 and ω2 are estimated in a separable manner. We notice that X is of rank

1 and can be factorized as

X = γg1g
T
2 (3)

where gr =
[

ejωr ej2ωr · · · ejMrωr

]T

, r = 1, 2 (4)

Defining X =
[

x1 x2 · · · xM2

]

and writing Y and Q in the same way, we

easily obtain the LP property:

x1 = ejω2γg1 (5)

xm = ejω2xm−1 (6)
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As a result, pre-multiplying X by xH
1 gives |γ|2M1e

−jω2gT
2 , which is a single-

tone vector with frequency ω2. Since X is not available, we use its noisy

version which is given by the zero-lag correlation between all columns of Y

and its first column vector to achieve frequency estimation:

zT(2) = yH
1 Y (7)

with elements:

[z(2)]m2
= yH

1 ym2
= yH

1 (xm2
+ qm2

) (8)

Note that the subscript of (2) in z refers to ω2. According to the LP property,

we obtain yH
1 xm = ejω2yH

1 xm−1. Hence (8) satisfies:

[z(2)]m2
− ejω2[z(2)]m2−1 = yH

1

(

qm2
− ejω2qm2−1

)

, m2 = 2, 3, · · · ,M2 (9)

Denoting z(2)1 =
[

[z(2)]1 [z(2)]2 · · · [z(2)]M2−1

]T

and z(2)2 =
[

[z(2)]2 [z(2)]3 · · · [z(2)]M2

]T

and assigning ρ2 = ejω2, we construct the LP error vector based on (9):

e(2) = z(2)2 − ρ2z(2)1 (10)

The ω2 is then estimated by minimizing the following WLS cost function:

J(ρ̃2) =
(

z(2)2 − ρ̃2z(2)1
)H

WM2−1

(

z(2)2 − ρ̃2z(2)1
)

(11)

where WM2−1 ∈ C(M2−1)×(M2−1) is a weighting matrix. Differentiating J(ρ̃2)

with respect to ρ̃2 and then setting the resultant expression to zero, we get

the estimate of ρ2:

ρ̂2 =
zH(2)1WM2−1z(2)2

zH(2)1WM2−1z(2)1
(12)
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In Appendix A, we have derived the optimal weighting matrix, denoted by

WM2−1(ω2), which is a function of the unknown frequency ω2:

WM2−1(ω2) =
[

E{e(2)e
H
(2)}
]−1

= P−1(ω2) (13)

where

P(ω2) =























2 + (M/M2 − 1)/(SNR + 1) −ejω2 0 0 · · · 0

−e−jω2 2 −ejω2 0 · · · 0
...

...
...

...
...

...

0 · · · 0 −e−jω2 2 −ejω2

0 0 · · · 0 −e−jω2 2























(14)

with SNR = |γ|2/σ2
Q.

In the following, two iterative algorithms are proposed to approximate

the conceptual solution of (12). As SNR is unknown, our first proposal is to

set [P(ω2)]1,1 = 2 which is valid particularly when SNR is sufficiently large,

namely, SNR >> M/M2. Under this approximation, P(ω2) has a closed-form

inverse and the phase of zH(2)1WM2−1(ω2)z(2)1 in (12) is zero [18]. Employing

the substitution of ρ̂2 = ejω̂2, (12) is simplified to

ω̂2 = ∠(zH(2)1WM2−1(ω2)z(2)2) (15)

where the elements of WM2−1(ω2) are:

[WM2−1(ω2)]m,n =
M2 min(m,n)−mn

M2
ej(m−n)ω2 (16)

m = 1, 2, · · · ,M2 − 1, n = 1, 2, · · · ,M2 − 1
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In this study, we apply the GWLP [18] algorithm which updates ω̂2 and

WM2−1(ω2) in an iterative manner. We refer this estimator to as correlation-

1 (C-1) method. The steps of finding ω̂2 are summarized in Table 1. The

estimation of ω̂1 is performed using the same procedure on YT .

(i) Compute the z(2) using (7)

(ii) Obtain an initial value of ω̂2 using (15) with [WM2−1(ω2)]m,n = 0

for m 6= n in (16), which is in fact the weighted linear predictor

estimate [21]

(iii) Construct WM2−1(ω2) according to (16) with ω2 = ω̂2

(iv) Compute an updated ω̂2 using (15)

(v) Repeat Steps (iii)–(iv) until a stopping criterion is reached.

In this study, we stop for τ iterations.

Table 1: Estimation algorithm for ω2

In Appendix B, we have shown that when the frequency estimation error

is sufficiently small, the mean and variance of ω̂r, r = 1, 2, are:

E{ω̂r} ≈ ωr (17)

var(ω̂r) ≈
6
(

| γ |2 +σ2
Q

)

σ2
Q

(

M/Mr | γ |2 +σ2
Q

)

Mr(M2
r − 1) | γ |2

(18)

Equation (17) means that the algorithm is an asymptotically unbiased esti-

mator. The CRLB for ωr, denoted by CRLB(ωr), is [20]:

CRLB(ωr) =
6σ2

Q

M(M2
r − 1)|γ|2

(19)
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To study the limit of the C-1 estimator, we define the efficiency, which is the

ratio of CRLB to the variance, denoted by:

eff1(ωr) =
CRLB(ωr)

var(ω̂r)
≈

(

| γ |2 +Mr/Mσ2
Q

)

(

| γ |2 +σ2
Q

) =
(SNR +Mr/M)

(SNR + 1)
(20)

whose value is between 0 and 1. It is easy to see that the C-1 method achieves

optimum performance when SNR → ∞, with eff1(ωr) = 1.

On the other hand, the above development may not be appropriate when

M/Mr, r = 1, 2, is large particularly when SNR >> M/Mr does not hold.

To tackle this scenario, our second approximation on (12) is to discard [z(2)]1

of (7) in the computation. Let z(r)s be z(r) without the first element and

follow (9)–(16), we obtain

ω̂r = ∠(zH(r)s1WMr−2(ωr)z(r)s2) (21)

where z(r)s1 =
[

[z(r)s]1 [z(r)s]2 · · · [z(r)s]Mr−2

]T

(22)

z(r)s2 =
[

[z(r)s]2 [z(r)s]3 · · · [z(r)s]Mr−1

]T

(23)

We refer this estimator to as correlation-2 (C-2) method. As a result, the

estimate of (21) is obtained in a similar manner as in Table 1.

Following Appendix A and replacing Mr by Mr − 1, we see that the

frequency estimate is also asymptotically unbiased and its variance is:

var(ω̂r) ≈
6
(

| γ |2 +σ2
Q

)

σ2
Q

(

M/Mr | γ |2 +σ2
Q

)

(Mr − 1)[(Mr − 1)2 − 1] | γ |2
(24)

Analogous to (20), the efficiency of this estimator is

eff2(ωr) =
(Mr − 1)[(Mr − 1)2 − 1] (SNR +Mr/M)

Mr(M2
r − 1) (SNR + 1)

∈ (0, 1) (25)

and we see that eff2(ωr) = 1 when both SNR and Mr tend to infinity.
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3. Extension to Higher Dimension

In this section, we generalize our development to higher dimensional sig-

nals with R ≥ 3, where tensor representation is employed. The observed

R-D sinusoidal signal is modeled as:

YYY = XXX +QQQ (26)

where

xm1,m2,...,mR
= γ

R
∏

r=1

ejωrmr , mr = 1, 2, . . . ,Mr, r = 1, 2, . . . , R, (27)

The YYY ∈ CM1×M2×···×MR is the tensorial structured data set with length Mr

along the rth dimension. The tensor XXX is the signal component where γ and

ωr ∈ (−π, π) represent the unknown complex amplitude and frequency in the

rth dimension. On the other hand, the entries in QQQ are zero-mean complex

white Gaussian noises with unknown variances σ2
Q. Now the task is to find

{ωr} from the M =
∏R

r=1Mr samples of YYY .

By writing gr =
[

ejωr ejωr2 · · · ejωrMr

]T

, to align with the presenta-

tion in Section 2 we define the rth unfolding of XXX as the transpose version

of [19]:

[XXX ](r) = γ(gr+1 ⊙ · · · ⊙ gR ⊙ g1 ⊙ g2 ⊙ · · ·gr−1)g
T
r

=
[

x(r)1 x(r)2 · · · x(r)Mr

]

(28)

and multiplying [XXX ](r) by xH
(r)1:

c(r) = xH
(r)1[XXX ](r) =

M

Mr

| γ |2 e−jωrgT
r (29)
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Analogous to (7)–(9), we define [YYY ](r) =
[

y(r)1 y(r)2 · · · y(r)Mr

]

and [QQQ](r) =
[

q(r)1 q(r)2 · · · q(r)Mr

]

and construct

zT(r) = yH
(r)1[YYY ](r) (30)

where

[z(r)]mr
= ejω2[z(r)]mr−1 + yH

(r)1

(

q(r)mr
− ejω2q(r)mr−1

)

, mr = 2, 3, · · · ,Mr

(31)

Generalizing (11), the WLS cost function is:

J(ρ̃r) =
(

z(r)2 − ρ̃rz(r)1
)H

WMr−1

(

z(r)2 − ρ̃rz(r)1
)

(32)

where ρ̃r = e−jω̃r while z(r)1 =
[

[z(r)]1 [z(r)]2 · · · [z(r)]Mr−1

]T

and z(r)2 =
[

[z(r)]2 [z(r)]3 · · · [z(r)]Mr

]T

. Following (10)–(15) and Appendix A with

the assumption of SNR >> M/Mr, the C-1 estimate of ωr, r = 1, 2, · · · , R,

is:

ω̂r = ∠(zH(r)1WMr−1(ωr)z(r)2) (33)

Similarly, by discarding the first element in z(r), r = 1, 2, · · · , R, the C-2

frequency estimate has the same form as in (14). In Appendix B, we have

proved that the higher dimensional C-1 and C-2 estimates are asymptotically

unbiased and their variances equal (18) and (24), respectively. In summary,

according to the development, the C-1 estimator is more preferable when

SNR >> M/Mr while the C-2 method is a better choice if Mr >> 1, r =

1, 2, · · · , R.

Finally, the complexity orders of the proposed methods are investigated

as follows. In our study, the iterative procedure stops when the number of
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iterations reaches the value of τ . According to Table 1, the major computa-

tions in the rth dimension has a complexity of O(τMr), implying that the

orders of complexity for the C-1 and C-2 algorithms are O(
∑R

r=1 τMr) and

O(
∑R

r=1 τ(Mr − 1)), respectively. As a comparison, the complexity order of

the AIQML [15] method is O(
∏R

r=1 τMr) while the IMDF [16] and UE [8]

schemes have complexities of O(4kt(L
E −LE/L1)K

E) and O(2ktL
EKE), re-

spectively, where kt is a constant depends on the design of the SVD algorithm,

LE
r +KE

r − 1 = Mr, L
E
r > 1, KE

r > 1, LE =
∏R

r=1 L
E
r and KE =

∏R

r=1K
E
r .

It can be roughly seen that when τ is small, the correlation-based methods

are more computationally efficient.

4. Numerical Examples

Computer simulations have been conducted to evaluate the R-D singe-

tone frequency estimation performance of the correlation-based approach in

terms of mean square frequency error (MSFE) and complexity performance.

We also include comparisons with the AIQML [15], IMDF [16] and UE [8] al-

gorithms as well as CRLB [20]. Three iterations, that is, τ = 3, are employed

as the stopping criterion in the proposed and AIQML methods because no

significant improvement is observed for more iterations. The tone magnitude

is |γ| = 1 and its phase varies from −π to π in each independent trial. We

properly scale the zero-mean white Gaussian noise data to produce different

SNR conditions, where SNR = |γ|2/σ2
Q = 1/σ2, and all results provided are

averages of 1000 independent.

In the first test, we solely compare the performance of the C-1 and C-2

methods. Figures 1 and 2 show the MSFEs versus SNR for the 2-D and 3-D
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cases with
[

ω1 ω2

]

=
[

0.3 0.05
]

π and
[

ω1 ω2 ω3

]

=
[

0.3 0.05 0.9
]

π,

respectively. The derived variances and CRLB are also included to verify the

theoretical findings and investigate the algorithm optimality. Three choices

of N , namely, N = 5, N = 10 and N = 20, are studied where Mr = N

for all dimensions. We see from both figures that the performance of the

C-1 and C-2 estimators agrees with the analytic expressions of (18) and

(24), respectively, when SNR ≥ 4dB. Although the C-1 method is generally

superior to the C-2 algorithm, it is observed that the latter can give smaller

MSFE at SNR = −10dB when N = 20 at R = 3. Furthermore, comparing to

the situation when the data length is smaller, namely, N=5, the performance

of the C-2 method is close to the CRLB for a larger N, say N=20, which also

align with the development in Section 2.

In the second test, comparison is made with the AIQML and IMDF meth-

ods in 2-D estimation with M1 = M2 = 10. The frequency parameters are
[

ω1 ω2

]

=
[

0.3 0.05
]

π and the results are shown in Figure 3. We observe

that the IMDF method has the best threshold performance at SNR = −6dB,

while the AIQML and proposed methods have threshold SNRs at −2dB and

0dB, respectively. Moreover, the MSFEs of the AIQML and C-1 schemes

attain the CRLB at SNR ≥ 10dB. On the other hand, the average computa-

tional times of the AIQML, IMDF, C-1 and C-2 algorithms for a single run

are 7.85 × 10−2s, 3.07 × 10−3s, 2.18 × 10−4s and 1.88 × 10−4s, respectively,

indicating the attractiveness of the proposed approach in terms of complex-

ity. It is seen that the computational times also agree with the complexity

order analysis in Section 3.

In the third test, a comparative study in 3-D estimation is made with
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the UE and IMDF algorithms. The results for M1 = M2 = M3 = 10 and
[

ω1 ω2 ω3

]

=
[

0.3 0.05 0.9
]

π are plotted in Figure 4. At SNR ≤ −2dB,

the UE and IMDF methods outperform the proposed estimators. However,

when SNR > 5dB , the MSFE of the C-1 scheme achieves the CRLB. The

average computational times for the UE, IMDF, C-1 and C-2 algorithms for

a single run are 1.13 × 10−1s, 2.23 × 10−1s, 3.92 × 10−4s and 3.14 × 10−4s,

which also agree with the complexity study in Section 3.

Finally, we perform comparison for different R ∈ [3, 5] with Mr = 4,

r = 1, 2, · · · , R, and the results are shown in Figure 5. The SNR is set to

20dB and all the frequencies varies from −0.99π to 0.99π in each independent

run. It is seen that the C-1 algorithm performs the best and the theoreti-

cal calculations of (18) and (24) are again validated. Their average single

run computational times are tabulated in Table 2, which agree with Section

3 and indicate the computational advantage of the proposed methodology

particularly when the data dimension is large.

R UE IMDF C-1 C-2

3 1.74× 10−3 1.47× 10−3 3.59× 10−4 3.06× 10−4

4 4.68× 10−3 4.88× 10−3 4.46× 10−4 4.43× 10−4

5 4.38× 10−2 4.02× 10−2 6.85× 10−4 5.94× 10−4

Table 2: Average computational times versus R

5. Conclusion

A fast and accurate multi-dimensional single frequency estimation ap-

proach based on correlation has been devised. Two estimators, C-1 and C-2,
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which are ideal for high SNR and/or large sample conditions, are proposed.

The main idea in the algorithm development is to construct single-tone se-

quences which contain the frequency parameters by exploiting correlation of

the observed data. Frequency estimation for each dimension is performed

separately by using LP and WLS techniques. It is proved that the variances

of the C-1 and C-2 estimators attain CRLB in the presence of white Gaus-

sian noise, when the SNR and/or data length tend to infinity. Furthermore,

the proposed correlation approach is more computationally attractive than

the AIQML, UE and IMDF schemes, and provides superior estimation accu-

racy at higher SNRs. As a future work, we will extend the correlation-based

methodology to estimation of multiple tones.

Appendix A

We now derive the weighting matrix for the general signal model of (26).

According to (31), the LP residue error vector for the rth dimension is

e(r) = z(r)1 − ρrz(r)2 (A.1)

where [e(r)]nr
= yH

(r)1ξ(r)nr
, nr = 1, 2, · · · ,Mr−1, ξ(r)nr

=
(

q(r)(nr+1) − ρrq(r)nr

)

and ρr = ejωr . Applying the Gauss-Markov theorem [22], the optimal weight-

ing matrix which is a function of ρr, denoted by WMr−1(ρr), is:

WMr−1(ρr) =
[

E
{

e(r)e
H
(r)

}]−1
= B−1(ρr) (A.2)

where

[B(ρr)]m,n =E{[e(r)]m[e(r)]
∗
n} = E{y(r)1

Hξ(r)mξ(r)n
Hy(r)1}

=[K1]m,n + [K2]m,n + [K3]m,n + [K4]m,n, m, n = 1, 2, · · · ,Mr − 1

(A.3)
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with [K1]m,n =E{xH
(r)1ξ(r)mξ

H
(r)nx(r)1} (A.4)

[K2]m,n =E{qH
(r)1ξ(r)mξ

H
(r)nq(r)1} (A.5)

[K3]m,n =E{xH
(r)1ξ(r)mξ

H
(r)nq(r)1} (A.6)

[K4]m,n =E{qH
(r)1ξ(r)mξ

H
(r)nx(r)1} (A.7)

On the other hand, since QQQ contains zero-mean independent and identically

distributed Gaussian samples, we get:

E{xH
(r)1q(r)p} = E{qH

(r)pq(r)q} = 0 (A.8)

and
E{qH

(r)pq(r)p} =
M

Mr

σ2
Q (A.9)

for any p 6= q, p, q = 1, 2, · · · ,Mr, which result in K3 = K4 = 0(Mr−1)×(Mr−1)

and

E{ξ(r)mξ
H
(r)n} =































σ2
Q(1 + |ρr|

2)I M

Mr

, m = n

−σ2
Qρ

∗
rI M

Mr

, m = n+ 1

−σ2
QρrI M

Mr

, m = n− 1

0, otherwise

(A.10)

Therefore

K1 =
M

Mr

|γ|2σ2
Q























(1 + |ρr|
2) −ρr 0 0 · · · 0

−ρ∗r (1 + |ρr|
2) −ρr 0 · · · 0

...
...

...
...

...
...

0 · · · 0 −ρ∗r (1 + |ρr|
2) −ρ

0 0 · · · 0 −ρ∗r (1 + |ρr|
2)























(A.11)
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To calculateK2, we notice that when p 6= 1, q(r)1 and ξ(r)p are independent to

each other, meaning that E{qH
(r)1ξ(r)p} = 0. Hence [K2]m,n = [K1]m,nσ

2
Q/|γ|

2

for any m 6= 1 or n 6= 1, and [K2]1,1 = E{qH
(r)1ξ(r)1ξ

H
(r)1q(r)1} = M/Mr(1 +

M/Mr|ρr|
2)σ4

Q. Substituting K1, K2 and ρr = ejωr into (A.3) yields

B(ωr) =
M

Mr

(|γ|2 + σ2
Q)σ

2
QP(ωr) (A.12)

where

P(ωr) =























2 + (M/Mr − 1)σ2
Q/(|γ|

2 + σ2
Q) −ejωr 0 0 · · · 0

−e−jωr 2 −ejωr 0 · · · 0
...

...
...

...
...

...

0 · · · 0 −e−jωr 2 −ejωr

0 0 · · · 0 −e−jωr 2























(A.13)

As M/Mr(|γ|
2 + σ2

Q)σ
2
Q is just a scalar, we can simply write WMr−1(ρr) =

WMr−1(ωr) = P−1(ωr). Note that (7)–(8) correspond to the special case of

2-D estimation.

Appendix B

The bias and variance of ω̂r, r = 1, 2, · · · , R, for the general model of

(26) are now analyzed. Let the bias of ω̂r be ∆ωr = ω̂r − ωr. Following [18],

for sufficiently high SNR conditions, we have

∆ωr ≈
κr

z̄H(r)1WMr−1(ωr)z̄(r)1
(B.1)

var(ω̂r) ≈
E{κ2

r}

(E{z̄H(r)1WMr−1(ωr)z̄(r)1})2
(B.2)
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where

κr ≈ ℑ
{

e−jωr

(

z̄H(r)1WMr−1(ωr)∆z(r)2 +∆zH(r)1WMr−1(ωr)z̄(r)2
)}

(B.3)

with z(r)i = z̄(r)i +∆z(r)i, i = 1, 2. Notice that z̄T(r) = (x(r)1 + q(r)1)
H

[

x(r)1 x(r)2 · · · x(r)Mr

]

and∆zT(r) = (x(r)1+q(r)1)
H
[

q(r)1 q(r)2 · · · q(r)Mr

]

.

According to (A.8)–(A.9), we obtain

E{xH
(r)(m)(x(r)1 + q(r)1)(x(r)1 + q(r)1)

Hx(r)(n)}

=xH
(r)(m)x(r)1x

H
(r)1x(r)(n) + xH

(r)(m)E{q(r)1)(q(r)1)
H}x(r)(n)

=e−j(m−n) M

Mr

(
M

Mr

|γ|2 + σ2
Q)|γ|

2 (B.4)

and

E{∆z(r)} =
[

M/Mrσ
2
Q 0 0 · · · 0

]T

(B.5)

Therefore the expected value of the denominator of (B.1) is:

E{z̄H(r)1WMr−1(ωr)z̄(r)1}

≈
Mr−1
∑

m=1

Mr−1
∑

n=1

E{xH
(r)m(x(r)1 + q(r)1) (Mr min(m,n)−mn) ej(m−n)ω(x(r)1 + q(r)1)

Hx(r)n}

=
M

M2
r

(
M

Mr

|γ|2 + σ2
Q)|γ|

2

(

Mr−1
∑

m=1

(Mrm−m2) +

Mr−1
∑

m=1

m−1
∑

n=1

(Mrn−mn) +

Mr−1
∑

n=1

n−1
∑

m=1

(Mrm−mn)

)

=
M(M2

r − 1)

12
(
M

Mr

|γ|2 + σ2
Q)|γ|

2 (B.6)

On the other hand, κr can be written as:

κr =tr1 + tr2 (B.7)
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where
tr1 =

e−jωr z̄H(r)1WMr−1(ωr)∆z(r)2 − ejωr z̄H(r)2WMr−1(ωr)∆z(r)1

2j

=
z̄H(r)2WMr−1(ωr)(∆z(r)2 − ρr∆z(r)1)

2j
(B.8)

tr2 =
e−jωr z̄T(r)2W

∗
Mr−1(ωr)∆z∗(r)1 − ejωr z̄T(r)1W

∗
Mr−1(ωr)∆z∗(r)2

2j

=−
(∆z(r)2 − ρr∆z(r)1)

HWMr−1(ωr)z̄(r)2
2j

(B.9)

because z̄(r)2 = ρrz̄(r)1, ρr = ejωr and WMr−1(ωr) = WH
Mr−1(ωr). As

E{∆z(r)2} = 0(Mr−1)×1, we have:

E{tr1} =−
1

2j
E{ρrz̄

H
(r)2WMr−1(ωr)∆z(r)1}+ 0 = −

1

2j
E{z̄H(r)1WMr−1(ωr)∆z(r)1}

=−
1

2j

Mr−1
∑

m=1

Mr−1
∑

n=1

E{xH
(r)m(x(r)1 + q(r)1) (Mr min(m,n)−mn) ej(m−n)ω

(x(r)1 + q(r)1)
Hq(r)n}

=−
1

2j

Mr−1
∑

m=1

E{xH
(r)m(x(r)1 + q(r)1) (Mr −m) ej(1−m)ω(x(r)1 + q(r)1)

Hq(r)1}+ 0

=−
1

2j

Mr−1
∑

m=1

(Mr −m)E{xH
(r)1(x(r)1 + q(r)1)(x(r)1 + q(r)1)

Hq(r)1}

=−
1

2j

Mr−1
∑

n=1

(Mr − n)E{xH
(r)1x(r)1q

H
(r)1q(r)1}+ 0

=j
M2(Mr − 1)

4Mr

|γ|2σ2
Q (B.10)

and E{tr2} = −E{tr1}. This means that E{∆ωr} ≈ E{κr} = 0 when SNR

is sufficiently high, indicating the asymptotically unbiasedness of ω̂r.

To calculate (B.2), we notice that

E{κ2
r} =E{tr1t

∗
r2}+ E{tr2t

∗
r1}+ E{tr1t

∗
r1}+ E{tr2t

∗
r2}

=2E{tr1tr2}+ E{t2r1}+ E{t2r2} (B.11)
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where

E{t2r1} = E{t2r2} = −
M4(Mr − 1)2

16M2
r

|γ|4σ4
Q (B.12)

and

E{tr1tr2} =
1

4
E{z̄H(r)2WMr−1(ωr)(∆z(r)2 − ρr∆z(r)1)(∆z(r)2 − ρr∆z(r)1)

HWMr−1(ωr)z̄(r)2}

≈
1

4
E{z̄H(r)2WMr−1(ωr)B(ωr)WMr−1(ωr)z̄(r)2}

=
1

4
E{z̄H(r)2WMr−1(ωr)

M

Mr

(|γ|2 + σ2
Q)σ

2
QW

−1
Mr−1(ωr)WMr−1(ωr)z̄(r)2}

=
M

4Mr

(|γ|2 + σ2
Q)σ

2
QE{z̄

H
(r)1WMr−1(ωr)z̄(r)1} (B.13)

For sufficiently high SNRs, |E{t2r1}| ≪ E{tr1tr2}, and substituting (B.6) and

(B.11)–(B.13) into (B.2), we obtain (18).
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Figure 1: Average mean square frequency error versus SNR at M1 = M2 = N
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Figure 2: Average mean square frequency error versus SNR at M1 = M2 = M3 = N
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Figure 3: Average mean square frequency error versus SNR for 2-D case
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Figure 4: Average mean square frequency error versus SNR for 3-D case
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Figure 5: Average mean square frequency error versus R at Mr = 4 and SNR= 20dB
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