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Sum Capacity of One-Sided Parallel Gaussian
Interference Channels

Chi Wan Sung, Kenneth W. K. Lui, Kenneth W. Shum, and H. C. So

Abstract—The sum capacity of the one-sided parallel Gaussian interfer-
ence channel is shown to be a concave function of user powers. Exploiting
the inherent structure of the problem, we construct a numerical algorithm
to compute it. Two suboptimal schemes are compared with the capacity-
achieving scheme. One of the suboptimal schemes, namely iterative wa-
terfilling, yields close-to-capacity performance when the cross link gain is
small.

Index Terms—Gaussian interference channels, iterative waterfilling, sum
capacity.

I. INTRODUCTION

The capacity region of the interference channel (IC) has long been
an open problem. The largest achievable rate region known today was
given by Han and Kobayashi in 1981 [1]. Some special classes of IC
have been defined in the literature. One of them is called one-sided IC
in which one user interferes with the other but not vice versa. In terms
of capacity region, it was proven to be equivalent to the so-called de-
graded IC by Costa [2], and its sum capacity was derived by Sason [3].
Nevertheless, its capacity region is still unknown. Some recent results
can be found in [4]. In this correspondence, we focus on the parallel
one-sided Gaussian IC. It can be used to model a frequency-selective
environment, where each channel represents one frequency carrier.

Our contribution in this work is twofold. First, we devise an algo-
rithm to compute the sum capacity of this channel based on the idea of
alternating optimization. Second, we evaluate the performances of two
sub-optimal transmission schemes. One is a power allocation method
called iterative waterfilling (IW), together with the suboptimal coding
scheme by treating the signal of the other user as Gaussian noise [5].
The other one is simply allocating power uniformly across all parallel
channels, assuming that optimal coding is used.

II. CHANNEL MODEL AND PROBLEM FORMULATION

Consider L independent one-sided parallel Gaussian IC’s between
two users in standard form. For l = 1; 2; . . . ; L, the channel inputs and
outputs are related by the following linear relations:

Y (l)
1 = X(l)

1 + Z(l)
1 (1)

Y (l)
2 =

p
a(l)X(l)

1 +X(l)
2 + Z(l)

2 (2)

where Z(l)
1; Z

(l)
2 are Gaussian noises with zero mean and unit vari-

ance. The power constraints (i = 1; 2) are

L

l=1

w(l)
ip
(l)

i � Pi (3)
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where p(l)i is the average power constraint for X(l)
i. For i = 1; 2,

denote the feasible region of pppi (p
(1)
i ; . . . ; p

(L)
i ) by

Pi pppi :

L

l=1

w(l)
ip
(l)

i � Pi; p
(l)

i � 0 8l : (4)

The Cartesian product of P1 and P2 is denoted by P , and the system
power allocation (ppp1; ppp2) by ppp.

The sum capacity of a one-sided Gaussian IC was given in [3]. Based
on that result, we will show in the next section that the sum capacity of
a parallel one-sided Gaussian IC can be found by solving the following
optimization problem:

max
ppp2P

f(ppp1; ppp2) �

L

l=1

Ca p(l)1; p
(l)

2 : (5)

A normalization constant � 2 ln 2 is introduced for the sake of sim-
plifying notations. The function Ca(p1; p2) is the sum capacity of a
single one-sided Gaussian IC given by ([3, Th. 2]

(p1) +  p

1+ap
; if 0 � a � 1

(ap1 + p2); if 1 � a � 1 + p2
(p1) + (p2); if a � 1 + p2

(6)

where (x) is the function 1
2
log2(1 + x). Note that Ca is a smooth

function of p1 and p2 when a � 1. It is not differentiable at p2 = a�1
when a > 1.

We say that channel l is under weak interference if a(l) is less than
or equal to one. Otherwise, it is under strong interference. When under
strong interference, a channel may operate in two modes. We say that
channel l operates in interfering mode if p(l)1 > 0 and p(l)2 > a(l)�1,
or in noninterfering mode otherwise.

III. CHARACTERIZATION OF THE SUM CAPACITY

In this section, we verify that the sum capacity can be obtained by
solving a concave optimization problem, and present some properties
of the solution.

Lemma 1: The function Ca(p1; p2) is strictly concave on 2
+ for

any a � 0.
Proof: For 0 � a � 1, let Ha(p1; p2) be ��Ca(p1; p2). We are

going to prove that Ha is strictly convex for 0 � a � 1. Let HHH be its
Hessian matrix whose entries are given by hij @2Ha=@pi@pj . We
have

h11 =
1

(1 + p1)2
� a2

(1 + ap1)2
+

a2

(1 + ap1 + p2)2
(7)

h22 =
1

(1 + ap1 + p2)2
=

h12
a
: (8)

The strict convexity of Ha follows from h11; h22 > 0 and h11h22 >
h212, which can be verified as follows:

h11h22 � h212 = h22(h11 � ah12)

= h22
1

(1 + p1)2
� a2

(1 + ap1)2
(9)

Since 0 � a � 1 and the function �(x) = x

1+xp
is monotonic

increasing for p1 > 0, then h11h22 � h212 > 0. Finally, the positivity
of h11 follows again since the function � is positive and 0 � a � 1.
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Next we consider the second case where a � 1. It is easy to check
that Ca(p1; p2) is equal to the minimum of (ap1 + p2) and (p1) +
(p2). Since both functions within the minimum operator are strictly
concave, their pointwise minimum is also strictly concave.

Theorem 2: The function f in (5) is strictly concave on 2
+, and

there exists a unique ppp� 2 P that maximizes f .
Proof: Lemma 1 implies immediately that f is also strictly con-

cave. Since the domain P is compact, there exists a unique ppp� 2 P
that maximizes f .

Theorem 3: The sum capacity of a parallel one-sided IC is given by

Csum max
ppp2P

L

l=1

Ca p(l)1; p
(l)

2 : (10)

The maximum in (10) is well defined by Theorem 2. The proof of
Theorem 3 will be given in the Appendix. The theorem says that the
capacity of a parallel one-sided Gaussian IC can be achieved by al-
locating powers over the subchannels and coding independently over
each subchannel. In other words, coding jointly across the subchannels
is not needed and the sum capacity can be achieved by solving a power
allocation problem.

Consider the Lagrangian

(ppp1; ppp2; �1; �2) f(ppp1; ppp2) + �1 P1 �

L

l=1

w
(l)
1 p(l)1

+ �2 P2 �

L

l=1

w
(l)
2 p(l)2 : (11)

A point (ppp�1; ppp
�
2; �

�
1; �

�
2) is said to be its saddle point if

(ppp1; ppp2; �
�
1; �

�
2) � (ppp�1; ppp

�
2; �

�
1; �

�
2) � (ppp�1; ppp

�
2; �1; �2) (12)

for all �1 � 0 and �2 � 0, and for all ppp1 and ppp2 with nonnegative
components. The following proposition will be useful ([6, Th. 1.B.5].

Proposition 4 (Saddle-Point Condition): Provided that there exists
a power allocation (ppp1; ppp2) satisfying

L

l=1

w
(l)
i p(l)i < Pi (13)

for i = 1; 2; then (ppp�1; ppp
�
2) is the optimal solution to the maximiza-

tion problem in (10) if and only if we can find ��1 and ��2 such that
(ppp�1; ppp

�
2; �

�
1; �

�
2) is a saddle point of .

It is easy to see that the condition in (13), known as the Slater con-
dition, holds by picking p(l)i = Pi=(2w

(l)
iL) for i = 1; 2 and l =

1; . . . ; L.

Theorem 5: At the optimal solution to the maximization problem
in (10), at most one of the channels under strong interference operates
in interfering mode, provided that a(l)w(l)

2=w
(l)

1’s are distinct for all
those channels.

Proof: Let ppp� = (ppp�1; ppp
�
2) denote the optimal solution. Denote the

set of strong-interference channels operating in interfering mode at ppp�

by S . By definition, p(l)1 > 0 and p(l)2 > a(l) � 1 > 0 for all l 2
S . The partial derivatives of the Lagrangian with respect to p(l)1 and
p(l)2 exist. Suppose that ��1 and ��2 are the Lagrange multipliers that
satisfy the saddle point condition in Prop. 4. Since (ppp1; ppp2; �

�
1; �

�
2)

is maximized at (ppp�1; ppp
�
2), these two partial derivatives equal zero for

l 2 S . Thus

a(l)

a(l)p
(l)�
1 + p

(l)�
2 + 1

= w(l)
1�
�
1 (14)

1

a(l)p
(l)�
1 + p

(l)�
2 + 1

= w(l)
2�
�
2: (15)

Therefore, both ��1 and ��2 are nonzero, and �

�
=

a w

w
; for all

l 2 S . Hence, jSj must be strictly less than two if a(l)w(l)
2=w

(l)
1 are

distinct for all l = 1; 2; . . . ; L.

IV. COMPUTATION OF THE SUM CAPACITY

The idea of our proposed method is to solve two subproblems alter-
nately. We will prove that this method yields the optimal solution after
convergence.

A. First Subproblem

In the first subproblem, the power allocation of sender 2 is fixed
at p̂2, and we want to maximize f(ppp1; p̂2) over all feasible ppp1. The
Lagrangian (ppp1; p̂2; �1; �̂2) can be written as

L

l=1

�Ca p(l)1; p̂
(l)
2 � �1w

(l)
1p

(l)
1 +K1 (16)

where the constant K1 does not involve ppp1.
For fixed p̂2; �1 and �̂2, we can find the ppp1 that maximizes
(ppp1p̂2; �1; �̂2) by dual decomposition. Each summand in (16) is

a strictly concave function in p(l)1 with domain +. We set, for
l = 1; 2; . . . ; L

p
(l)
1 = argmax

p�0
�Ca p; p̂

(l)
2 � �1w1p : (17)

Let �(l)1(�1; p̂2) denote the zero to the equation @ 1=@p
(l)

1 = 0.
We can compute �(l)1(�1; p̂2) by solving for p(l)1 in

0 =
@

@p(l)1
=

1� a(l)

(1 + p(l)1) (1 + a(l)p(l)1)

+
a(l)

1 + a(l)p(l)1 + p̂
(l)
2

� �1w
(l)

1 (18)

when 0 � a(l) � 1, or

0 =
@

@p(l)1
=

a(l)

a(l)p(l)1 +maxfa(l); p̂
(l)
2 + 1g

� �1w
(l)

1 (19)

when a(l) � 1. Note the �(l)1(�1; p̂2) may be negative. Define x+

as max(x; 0). The power allocation p(l)1 = �(l)1(�1; p̂2)
+ for l =

1; 2; . . . ; L, satisfies the Karush-Kuhn-Tucker condition for the opti-
mality

@

@p(l)1

= 0; if p(l)1 > 0

� 0; if p(l)1 = 0:
(20)

It can be seen from (18) and (19) that �(l)1(�1; p̂2) is a monotonically
decreasing function of �1. We can adjust �1 such that the power con-
straint is met. The optimal �1 can be found by a simple binary search.

B. Second Subproblem

Given p̂1, we want to find the optimal ppp2. The Lagrangian
(p̂1; ppp2; �̂1; �2) becomes

L

l=1

�Ca (p̂1; ppp2)� �1w
(l)

2p
(l)

2 +K2 (21)
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where the constant K2 is independent of ppp2. Each summand in the
above summation is a strictly concave function of p(l)2. We can thus
find the optimal

p
(l)
2 = argmax

p�0
�Ca p̂

(l)
1 ; p � �2w2p (22)

for l = 1; 2; . . . ; L. The computation is slightly more complicated than
the first subproblem, because the function to be maximized now is not
differentiable at p(l)2 = a(l) � 1, when a(l) > 1. When 0 � a(l) �
1 + p(l)2,

@Ca

@p(l)2
=

1

1 + a(l)p(l)1 + p(l)2
(23)

and when a(l) > 1 + p(l)2

@Ca

@p(l)2
=

1

1 + p(l)2
: (24)

When p(l)2 = a(l) � 1; Ca is not differentiable with respect
to p(l)2. Let @Ca be the subdifferential of Ca at p(l)2. When
p(l)2 = a(l) � 1

@Ca =
1

1 + a(l)p(l)1 + p(l)2
;

1

1 + p(l)2
: (25)

In summary, when a(l) 6= 1 + p(l)2, the subdifferential @Ca is a
singleton consisting of the number in either (23) or (24); when a(l) =
1 + p(l)2; @Ca is the interval in (25).

Given �2, the optimal p(l)2 should satisfy �2w
(l)

2 2 @Ca for
p(l)2 > 0, and

�2w
(l)

2 �
1 + a(l)p(l)1 + p(l)2

�1

; if a(l) � 1

1 + p(l)2
�1

; if a(l) > 1
(26)

for p(l)2 = 0, and l = 1; 2; . . . ; L. (see ([7, Sec. 28])
Consider the case where a(l) � 1. The optimal p(l)2 is simply given

by

p(l)2 = �2w
(l)

2

�1

� 1� a(l)p(l)1

+

: (27)

Next consider the case where a(l) > 1. Define

� (�2w
(l)

2)
�1 � 1

+

(28)

and

� �2w
(l)

2

�1

� 1� a(l)p(l)1: (29)

Then the optimal p(l)2 is given by

p(l)2 =
�; if � � a(l) � 1

�; if � > a(l) � 1

a(l) � 1; otherwise:

(30)

Notice that given any a(l), the optimal p(l)2 is a continuous, de-
creasing function of �2. Hence, we can use binary search to find the
optimal �2 such that the power constraint is met.

C. Alternating Optimization

Solving the above two subproblems alternatively, we have the fol-
lowing algorithm.

1) Initially, let n be zero and ppp(0) be the zero vector.
2) Update the power allocation as follows:

ppp
(n+1)
1 arg max

ppp 2P
f ppp1; ppp

(n)
2 (31)

ppp
(n+1)
2 arg max

ppp 2P
f ppp

(n+1)
1 ; ppp2 : (32)

3) Increase n by one and repeat step 2).
Since f is a strictly concave function, given the power allocation of

a user, there is a unique power allocation for the other user to maximize
f . Hence, the algorithm is well defined. Note that f(ppp(n+1)) � f(ppp(n))
with equality holds only if ppp(n+1) = ppp(n).

We denote the iterative function in (31) and (32) by I1 and I2 re-
spectively. The overall iteration (I1(ppp2); I2(I1(ppp1)) is denoted by I .
A vector ppp is said to be a fixed point of I if ppp = I(ppp). The proof of the
following result is in the Appendix.

Theorem 6: Given the iterative function I and any initial point ppp(0),
the sequence fppp(n)g converges to the unique point that maximizes f
in P .

V. COMPARISON WITH SUBOPTIMAL SCHEMES

We consider two suboptimal schemes. In the first scheme, each user
employs optimal code for transmission. The sum rate is also given
by f(ppp1; ppp2). However, both users allocate equal power to each of
their L channels. In other words p(l)i = Pi=L for i = 1; 2 and
l = 1; 2; . . . ; L. In the second scheme, suboptimal code is used. Inter-
ference from the other user is treated as additive Gaussian noise, and
the codebook appropriate for the Gaussian channel is used. Under this
scheme, the sum rate is given by

�

L

l=1

(p1) + 
p2

1 + a(l)p1
: (33)

Note that the two terms in the above expression correspond to the rate of
user 1 and user 2, respectively. Under the iterative waterfilling method
with sequential update, each user takes turns to maximize his own rate,
treating the other user’s signal as Gaussian noise. This method, when
applied to the one-sided parallel Gaussian IC, will always stop after one
round, since user 2’s transmission does not induce any interference to
user 1. More precisely, user 1 first allocates his power by waterfilling
method. Then user 2 will waterfill his power, treating user 1’s signal as
noise. The waterfilling method can be found, for example, in [5].

Fig. 1 shows the performance of the optimal scheme and the two
suboptimal schemes. In this example, there are 32 channels in the
system. The cross link gains a(l)’s are equal to a value of g21, for all
l. The weights, w(l)

i’s, are independent random variables uniformly
distributed between zero and one. The maximum powers of both users
are equal to 100. We plot the sum rate against the cross link gain, g21.
Each data point is obtained by averaging over 1000 independent runs.
It can be seen that all curves decrease monotonically when g21 is less
than one. The reason is that in this regime, user 1’s signal is treated
as Gaussian noise even under optimal coding scheme. Therefore,
when g21 increases, more interference is experienced by receiver 2,
thus deteriorating system performance. When g21 is greater than one,
interference may be canceled if optimal code is used. Therefore, only
the curve for IW continues to decrease when g21 increases beyond
one. The curves for the other two schemes have exactly the same
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Fig. 1. Comparison of three different transmission schemes.

shape. From the figure, we can see that IWs performance is close to
capacity when g21 is small. On the other hand, when g21 is much
larger than one, IW performs poorly, since interference cancellation is
not employed.

VI. CONCLUSION

We have shown that the computation of sum capacity can be reduced
to allocating powers over subchannels. The power allocation problem
turns out to be convex. The solution can be efficiently found by alter-
nately optimizing the power allocation of each user. The convergence
of this method is guaranteed. Our result provides a fundamental limit
on the capacity of the channel, which is informative for evaluation of
practical, suboptimal schemes.

APPENDIX

PROOF OF THEOREM 3

It is clear that Csum can be achieved by allocating power according
to the solution to the optimization problem.

Conversely, suppose that there exists a sequence of codes
fCN : N = 1; 2; . . .g, which asymptotically achieves vanishing
block error probability as we let N tend to infinity. The block length
of CN is NL. The message of user i; Wi, is uniformly distributed
over the set f1; 2; . . . ; 2NR g, where Ri is the code rate of user i,
measured in number of bits per channel use. Note that L symbols
are transmitted in parallel for each channel use. An encoder maps
Wi into codeword XXXi, which is partitioned into L equal parts,
each for one subchannel: XXXi = (XXX

(1)
i
;XXX

(2)
i
; . . . ;XXX

(L)
i

), where
XXX

(l)
i

(X
(l)
i
(1);X

(l)
i
(2); . . . ; X

(l)
i
(N)). Any codeword must

satisfy the following power constraint:
L

l=1

w
(l)
i

1

N

N

t=1

X
(l)
i
(t) � Pi; for i = 1; 2: (34)

Let YYY (l)
i

andZZZ(l)
i

be the received vector and noise vector at receiver
i and channel l. DefineYYY i andZZZi as the concatenation of the respective
L vectors. The sum rate is bounded

N(R1 +R2) = H(W1;W2)

� I(XXX1;XXX2;YYY 1; YYY 2) +H(W1;W2 jYYY 1; YYY 2) (35)

where the inequality follows from the data processing theorem.

By Fano’s inequality, we have H(W1;W2jYYY 1; YYY 2) � N�N , where
�N ! 0 as P (N)

e ! 0.
As ZZZ1 and ZZZ2 are independent with XXX1 and XXX2, we obtain

I(XXX1;XXX2;YYY 1; YYY 2) = h(YYY 1; YYY 2)� h(ZZZ1; ZZZ2)

�
L

l=1

N

t=1

I(X
(l)
1 (t);X

(l)
2 (t);Y

(l)
1 (t); Y

(l)
2 (t)): (36)

Denote the second moment of X(l)
i
(t) and the average by

�
(l)
i
(t) W X

(l)
i
(t)

2

; ��
(l)
i

1

N

N

t=1

�
(l)
i
(t):

(37)

It follows that

1

N

L

l=1

N

t=1

I X
(l)
1 (t);X

(l)
2 (t);Y

(l)
1 (t); Y

(l)
2 (t)

�
1

N

L

l=1

N

t=1

C
a

�
(l)
1 (t); �

(l)
2 (t)

�
L

l=1

C
a

��
(l)
1 ; ��

(l)
2 (38)

where the last inequality follows from the concavity of C
a

.
Since each codeword satisfies (34), so does their average. Therefore,
L

l=1 Ca (��
(l)
1 ; ��

(l)
2 ) � Csum. Hence, R1 +R2 � Csum + �N . The

converse is completed by letting P (N)
e ! 0.

APPENDIX

PROOF OF THEOREM 6

Lemma 7: The iterative function I is a continuous mapping from P
to P .

Proof: The following “Maximum Theorem” ([8, p. 116]) implies
that both I1 and I2, and hence their composition I , are continuous
functions.

(Maximum Theorem) Let �(x; y) be a real-valued continuous func-
tion with domain X � Y , where X � m and Y � n are compact
sets. Suppose �(x; y) is strictly concave in x for each y. The functions
M(y) = maxf�(x; y) : x 2 Xg and �(y) = argmaxf�(x; y) :
x 2 Xg are well defined for all y 2 Y , and are both continuous.

Lemma 8: Given the iterative function I and any initial point ppp(0),
there exists a convergent subsequence of fppp(n)g, whose limit is the
unique point ppp� that maximizes f .

Proof: The proof is divided into three parts: 1) The sequence
fppp(n)g contains a convergent subsequence. It follows immediately
from the fact that the domain of ppp is compact.

2) The limit of any convergent subsequence is a fixed point of I .
Suppose that fppp(� )g is a subsequence of fppp(n)g that converges to the
limit point ~ppp. Suppose ~ppp is not a fixed point, that is, I(~ppp) 6= ~ppp. Then
f(~ppp) � f(I(~ppp)). By the continuity of f , we can find radii ~r and r0

such that the spherical neighborhoods, N (~ppp; ~r) and N (I(~ppp); r0), are
disjoint and f(xxx) � f(yyy), for any xxx 2 N (~ppp; ~r) and yyy 2 N (I(~ppp); r0).

Since I is continuous by Lemma 7, I(ppp(� )) converges to I(~ppp). So
we can find a sufficiently large N such that I(ppp(� )) 2 N (I(~ppp); r0)
for all n � N . However, the sequence ff(ppp(n))g is nondecreasing,
thereby f(I(ppp(� ))) � f(ppp(� )), for all m � 1. This yields a
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contradiction because I(ppp(� )) 2 N (I(~ppp); r0) but there exists a suf-
ficiently large m0 � 1 such that ppp(� ) 2 N (~ppp; ~r).

3) Any fixed point of I maximizes f over P . Let ~ppp = (~ppp1; ~ppp2) be
a fixed point of I . By this we mean that, f(~ppp1; ~ppp2) is the maximum of
f(ppp1; ~ppp2) over all feasible ppp1, and also the maximum of f(~ppp1; ppp2) over
all feasible ppp2. Here, we extend the Lagrangian so that nonnegativity
constraints are included. We denote the new Lagrangian also by .

(ppp1; ppp2; �1; �2; ���)

f(ppp1; ppp2) + �1 P1 �
L

l=1

w1p
(l)

1

+ �2 P2 �
L

l=1

w2p
(l)

2 +

2

i=1

L

l=1

�
(l)
i p

(l)
i : (39)

where ��� is the vector (�(1)1 ; . . .�
(L)
1 ; �

(1)
2 ; . . .�

(L)
2 ).

The condition of being a fixed point is rephrased as follows: we can
find nonnegative ~�1; ~�2 and ~��� such that

(~ppp1; ~ppp2;
~�1; ~�2; ~���) = max

ppp
(ppp1; ~ppp2;

~�1; ~�2; ~���)

= max
ppp

(~ppp1; ppp2;
~�1; ~�2; ~���) (40)

where both maximization problems are unconstrained, i.e., the powers
are not necessarily restricted to be nonnegative.

We fix the multipliers ~�1; ~�2 and ~���. The Lagrangian
is considered as a function of ppp = (ppp1; ppp2), and written as
(ppp) (ppp1; ppp2;

~�1; ~�2; ~���). We want to show that the zero
vector is included in the subdifferential, i.e., 0 2 @ (~ppp). Without loss
of generality, suppose that ~p(l)2 = a(l) � 1 for l = 1; 2; . . . ; L0.

The subdifferential has the following property ([7, p. 222–223]): for
convex function f1; . . . ; fn defined on the same domain, and constant
c1; . . . ; cn; @(c1f1 + . . . + cnfn) = c1@f1 + . . . + cn@fn where the
sum of two sets is defined as A + B fa+ b : a 2 A; b 2 Bg. We
have

@ (ppp1; ppp2) = �

L

l=1

@Ca p
(l)

1; p
(l)

2

�
L

l=1

~�1w1@p
(l)

1 +
~�2w2@p

(l)
2

+

2

i=1

L

l=1

~�
(l)
i @p

(l)
i : (41)

The subdifferential @p
(l)
i consists of a single element for all i

and l. The subdifferential @Ca (p(l)1; p
(l)

2) also consists of a
single element for l > L0, because it is a smooth function. For
l = 1; . . . ; L0, the subgradient in @Ca (p(l)1; p

(l)
2) has the form

(0; . . . ; 0; �l; 0; . . . ; 0; �l; 0; . . . ; 0) where �l, the lth component, is a
positive constant, and �l, the (L+ l)th component, is in some interval
[rl; sl] for the explicit form of rl and sl. After summation, @ (ppp1; ppp2)
is the Cartesian product

v
(1)
1 � � � � � v

(L)
1 � [�1; �1]� � � � � [�L ; �L ]

� v
(L +1)
2 � v

(L +2)
2 � � � � v

(L)
2

Since ~ppp is a fixed point, we have v(l)1 = 0 for all l; v(l)2 = 0 for l > L0

and 0 2 [�l; �l] for l � L0. Consequently, 0 2 @ (~ppp), which implies
the saddle-point condition in Proposition 4.

Lemma 9: For all open set A � P that contains the optimal point
ppp�, there exists c � f(ppp�) such that f�1([c; f(ppp�)]) is a subset of A.

Proof: For any c � f(ppp�), let Sc be the open set fppp 2 P :
f(p) � cg. Then P = A [ (

c�M Sc). Since P is compact, it has a
finite subcover, say, A [ ( K

k=1 Sc ). It follows that A [ Sc = P ,
where c0 = maxfc1; . . . ; cKg. Therefore, the complement of Sc in
P is contained in A, i.e., fppp 2 P : c0 � f(ppp) � f(ppp�)g must be a
subset of A.

Proof of Theorem 6: Consider an �-neighborhood of the optimal
point ppp�, denoted by N (ppp�; �). By Lemma 9, we can find c � f(ppp�)
such that ppp 2 N (ppp�; �) if f(ppp) > c. By Lemma 8, there exists a
subsequence fppp(� )g that converges to ppp�. The continuity of f implies
that ff(ppp(� ))g converges to f(ppp�), and thus we can find N such that
f(ppp(� )) > c. Since f(ppp(n)) is increasing in n; f(ppp(n)) > c for all
n � �N , and hence ppp(n) is in N (ppp�; �) for all n � �N . As � is an
arbitrarily small positive constant, fppp(n)g converges to ppp�.
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