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Correspondence

Subspace-Based Algorithm for Parameter Estimation of
Polynomial Phase Signals

Yuntao Wu, Hing Cheung So, and Hongqing Liu

Abstract—In this correspondence, parameter estimation of a polynomial
phase signal (PPS) in additive white Gaussian noise is addressed. Assuming
that the order of the PPS is at least 3, the basic idea is first to separate
its phase parameters into two sets by a novel signal transformation proce-
dure, and then the multiple signal classification (MUSIC) method is utilized
for joint estimating the phase parameters with second-order and above.
In doing so, the parameter search dimension is reduced by a half as com-
pared to the maximum likelihood and nonlinear least squares approaches.
In particular, the problem of cubic phase signal estimation is studied in de-
tail and its simplification for a chirp signal is given. The effectiveness of the
proposed approach is also demonstrated by comparing with several con-
ventional techniques via computer simulations.

Index Terms—Parameter estimation, polynomial phase signal, subspace
method.

I. INTRODUCTION

In many application areas such as radar, speech processing, wire-
less communications, seismology and neuroethology, the received sig-
nals have continuous instantaneous phase. According to Weierstrass’
theorem [1], the instantaneous phase can be well approximated by a
finite-order polynomial in time within a finite-duration interval. As
a result, polynomial phase signal (PPS) is a proper model for these
real-world signals and its parameter estimation has received consider-
able attention in the field of signal processing [2]–[12], [14]–[16].

For a mono-component complex-valued constant-amplitude PPS
with order P of the form A exp j P

p=0
apt

p , the maximum-like-
lihood (ML) [2], [3] and nonlinear instantaneous least squares (NILS)
[4] estimators can provide very high estimation accuracy. In fact,
the ML estimator and NILS method with maximum size windows
are equivalent and both are statistically efficient in the sense that
the estimator variances achieve Cramér–Rao lower bound (CRLB)
asymptotically under additive white Gaussian noise. However, their
computational requirements are extremely demanding because a
P -dimensional maximization/minimization is required and global
convergence is not guaranteed due to the non-convexity of their
corresponding cost functions, which make them not practically useful
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in most situations. As a computationally efficient alternative, the poly-
nomial-phase transform [5], which is also referred to as the high-order
ambiguity function (HAF) [6], can estimate the PPS parameters with
P one-dimensional searches via multiple nonlinear operations on
the received signal. Founding on [5] and [6], Barbarossa et al. [7]
have generalized the HAF to product high-order ambiguity function
(PHAF). Similar to HAF, polynomial Wigner–Ville distribution
(PWVD) [8], [9] is another high-order multiple transform technique
for dealing with PPSs. In addition, Benidir et al. [10] have developed
the generalized ambiguity function and generalized Wigner distribu-
tion which are similar to the HAF and PWVD, respectively. Although
the HAF and PWVD approaches require much less computation than
the ML and NILS techniques, they have a higher signal-to-noise ratio
(SNR) threshold and their estimation performance is suboptimal.
Note that all methods for nonlinear parameter estimation will suffer
from a threshold effect, meaning that their estimation performance
degrades considerably when the SNR falls below a certain threshold
value, which is referred to as the SNR threshold. Recently, a bilinear
transform technique known as cubic phase function (CPF) [11] for
third-order PPS parameter estimation is proposed which can provide
approximately optimum performance with smaller SNR threshold. Fol-
lowing [11], extensions to CPF for estimating the parameters of PPSs
of order greater than 3, which are referred to as higher-order phase
functions (HPFs), are developed in [12]. Nevertheless, high-order
multiple transform corresponds to sequential multiple one-dimen-
sional search computations and thus joint parameter estimation is not
allowed. A major problem for these computationally simpler methods
[5]–[12] is that the estimation accuracy of the lower-order phase
parameters is dependent on that of the higher-order phase parameters,
which leads to the so-called error propagation effect.

In this correspondence, a novel subspace-based method for PPS pa-
rameter estimation is devised. The observed PPS is first converted to an-
other sequence by a novel signal transformation procedure. Assuming
that P � 3, the multiple signal classification (MUSIC) algorithm [13]
is then utilized to jointly estimate the higher-order phase parameters,
namely, a2; a3; . . . ; aP . After obtaining these estimates, the problem is
then reduced to a single complex tone estimation problem, where A, a0
and a1, correspond to the sinusoidal amplitude, phase and frequency,
respectively, which can be easily solved. The main advantage of the
proposed methodology is that almost joint PPS parameter estimation is
achieved and thus the error propagation effect is greatly reduced. Note
that the subspace approach has already been suggested for joint PPS
parameter estimation in the literature [14]–[16]. PPS estimation with
time-varying amplitudes is addressed in [14] where the HAF is em-
ployed to transform the PPS prior to applying the subspace-based tech-
niques. In [15], a Capon’s form of Wigner distribution is developed for
estimating PPS parameters in the presence of interference, while [16]
presents a robust algorithm for operating in impulsive noise environ-
ments. Comparing with [14]–[16], which need P -dimensional search
computation, our method is more computationally attractive because
the corresponding parameter search dimension is reduced to d(P �
1)=2e where d e denotes the ceiling operator.

The rest of the correspondence is organized as follows. In Section II,
the proposed MUSIC estimator for a cubic phase signal is devised and
the theoretical performance of parameter estimates is also analyzed.
In Section III, generalization of the proposed methodology to higher-
order PPSs is presented. Simulation results are included in Section IV
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to evaluate the performance of the proposed method by comparing with
the HPF, PHAF and NILS methods as well as the CRLB. Finally, con-
clusions are drawn in Section V.

II. PARAMETER ESTIMATION OF CUBIC PHASE SIGNAL

In this section, we focus on estimating the parameters of a typical
PPS, namely, cubic phase signal [11], in additive white Gaussian noise.
The proposed method first converts the observed signal to another se-
quence which is suitable for parameter estimation with the MUSIC
approach.

A. Signal Conversion

The noisy cubic phase signal model is

x(t) =Aej(a +a t+a t +a t ) + n(t);

t =
�N

2
; . . . ; 0; . . . ;

N

2
(1)

where A > 0 is the signal amplitude and ai, i = 0; 1; 2; 3, are the
signal phases, and all of them are real and unknown. The n(t) is the
additive complex white Gaussian noise with zero-mean and unknown
variance �2n and the sample number (N+1) is assumed an odd integer.
The task is to estimate the unknown deterministic parameters, namely,
ai, i = 0, 1, 2, 3, and A, from the (N + 1) samples of fx(t)g.

Motivating by the symmetry of the sample interval, we first define
the following correlation sequences, x1(t) and x2(t):

x1(t) = x(t)x(�t); x2(t) = x(t)x�(�t); t = 1; . . . ;
N

2
(2)

where � denotes the conjugate operator and the sample x(0) is not used.
With the use of (1), (2) can be expressed as

x1(t) =A2e2j(a +a t ) + n1(t);

x2(t) =A2e2j(a t+a t ) + n2(t); t = 1; . . . ;
N

2
(3)

where

n1(t) =Ae
j(a +a t+a t +a t )n(�t)

+Aej(a �a t+a t �a t )n(t) + n(t)n(�t)

and

n2(t) =Ae
�j(a �a t+a t �a t )n(t)

+ Aej(a +a t+a t +a t )n�(�t) + n(t)n�(�t)

are the corresponding noise components. We see that the parameters to
be estimated are now separated into two independent groups, namely,
(a0; a2) and (a1; a3), through the correlation computation.

As x1(t) and x2(t) are quadratic phase and cubic phase signals, re-
spectively, our next step is to transform x2(t) to another signal x3(t)
such that the resultant order is identical to that of x1(t). The x3(t) has
the form of

x3(t) =x2(t+ 1)x�2(t� 1)

=A4ej(4(a +a )+12a t ) + n3(t);

t =2; . . . ;
N

2
� 1 (4)

where

n3(t) = A2e2j(a (t+1)+a (t+1) )n�2(t� 1)

+A2e�2j(a (t�1)+a (t�1) )n2(t+ 1) + n2(t+ 1)n�2(t� 1)

is the noise component in x3(t) and the value of t starts at t = 2. It
is worthy to mention that x1(t) and x3(t) are similar to the bilinear
kernels in the CPF [11] and PWVD [8], respectively.

Analogous to the signal model for parameter estimation of multiple
complex tones, we add x1(t) and x3(t) together to construct a noisy
two-component chirp signal with constant amplitudes, denoted by y(t)

y(t) =x1(t) + x3(t)

=A2e2j(a +a t ) + A4ej(4(a +a )+12a t ) + "(t);

t =2; . . . ;
N

2
� 1 (5)

where "(t) = n1(t) + n3(t). Grouping all fy(t)g together, we have
the following matrix representation:

Y = Vs+N (6)

where Y = [y(2); y(3); . . . y(N=2 � 1)]T , V = [v(�2) v(�3) ],

v(�i) = ej� 2 ; ej� 3 ; . . . ej� (N=2�1)
T

, i = 2, 3, N =

["(2); "(3); . . . "(N=2 � 1)]T , and s = [A2ej2a A4ej4(a +a ) ]T

with �2 = 2a2, �3 = 12a3 and T stands for the transpose operation.
In the following, the well-known MUSIC method [13], which is a high
resolution subspace-based algorithm, is utilized to jointly estimate a2
and a3 based on the data model of (6). The remaining parameters,
namely, A, a0 and a1, can then be straightforwardly determined.

B. Proposed Music Method

Under the assumption that n(t) a zero-mean white Gaussian process
and A2=�2n � 1, the covariance matrix for Y, denoted by RY , is
calculated as

RY =EfYYHg

=VssHVH +VEfsNH +NsHgVH

+ EfNNHg

=VssHVH +V[sEfNHg+EfNgsH]VH

+ EfNNHg

�VRsV
H + �2I (7)

whereRs = ss
H , �2 = [(4A6+2A2)�2n+(6A4+1)�4n +4A2�6n+

�8n] and I is the (N=2�2)� (N=2�2) identity matrix with E and H
denote the expectation operator and conjugate transpose, respectively.
Note that we have ignored the off-diagonal elements of EfNNHg
which is valid for sufficiently large SNR conditions.

As RY is of full rank and the rank of Rs is 1 while the dimension
of the signal subspace should be 2, we utilize the smoothing technique
in [17] to construct R from RY :

R = RY � JRY J (8)

whereJ is the exchange matrix with dimension (N=2�2)�(N=2�2).
Assuming thatV is full column rank and noting that JIJ = I, the rank
ofR is easily shown to be 2. That is, in doing so, the correct signal and
noise subspaces are attained.

We can then obtain the noise subspace of R, denoted by En, from
the (N=2�4) eigenvectors corresponding to the (N=2�4) zero eigen-
values of R. Applying the MUSIC methodology, the estimates of �2
and �3, denoted by �̂2 and �̂3, are found from the two peaks of the
following 1-D function:

f�̂2; �̂3g = argmax
�

1

vH(�)ÊnÊ
H
n v(�)

: (9)
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The Ên is the estimate of En based on the sample covariance matrix
forY which is computed from the finite-length x(t). The estimates of
a2 and a3, denoted by â2 and â3, are then determined as â2 = �̂2=2
and â3 = �̂3=12.

A simple matching procedure for associating the two estimated
parameters �̂2 and �̂3 is given as follows. Define three vectors
of length (N=2 � 1), namely, w0 and wi, i = 2, 3, where the
tth element of w0 is x1(t + 1)x�1(t), t = 2; 3; . . . ; N=2, and

wi = ej�̂ 5; ej�̂ 7; . . . ; ej�̂ (N+1) . The estimate of â2 is taken as

the �̂i=2 which corresponds to the smaller value of kw0 � ŵik.
After obtaining â2 and â3, the estimates of a0 and a1, namely, â0

and â1, can be determined with the use of (3) and (4)

â0 =
1

2
6

N=2

t=1

x1(t)e
�j2â t (10)

and

â1 =
1

4
6

N=2�1

t=2

x3(t)e
�j12â t � â3 (11)

where 6 denotes the phase angle operator. When all phase coefficients
are found, the estimate of A, denoted by Â, is computed as

Â =
1

N + 1

N=2

t=�N=2

x(t)e�j(â +â t+â t +â t ) : (12)

It is noteworthy that the estimation accuracy of â0, â1 and A is only
dependent on that of the higher-order phase coefficients, â2 and â3,
respectively. Furthermore, apart from (10) and (11), more accurate es-
timation approaches [18]–[20] are available by converting x(t) to a
noisy complex sinusoid with the use of â2 and â3.

C. Asymptotic Performance Analysis

The asymptotic mean square errors of the estimated parameters fâkg
are derived as follows. Expression (9) is equivalent to

f�̂2; �̂3g = argmin
�

f(�) (13)

where f(�) = v
H(�)ÊnÊ

H
n v(�).

For sufficiently large N and SNR, the function f(�) has two local
minima at � � �2 and � � �3. Using Taylor’s series to expand f(�̂k)
around �k , k = 2; 3, up to second-order term, we get

f 0(�k) + f 00(�k)(�̂k � �k) � 0: (14)

When f 00(�) is sufficiently smooth around � = �k , it can be substi-
tuted with its expected value. Define MSE(ak) = E (âk � ak)

2 ,
k = 0, 1, 2, 3. Exploiting the performance analysis result of MUSIC
algorithm in [21], MSE(ak), k = 2, 3, are evaluated as

MSE(ak) �
E <(v0H(�k)ÊnÊ

H
n v(�k))

2

(<(v0H(�k)EnEHn v0(�k)))
2 (15)

where < denotes the real part. According to (10) and (11), MSE(a0)
and MSE(a1) can be derived easily from MSE(a2) and MSE(a3) as

MSE(a0) �
1

144
(N + 1)2(N + 2)2MSE(a2) (16)

and

MSE(a1) �
(N2 � 5N + 9)2

9
MSE(a3): (17)

D. Simplification for a Chirp Signal

When P = 2, we construct y(t) using

y(t) =x2(t) + x1(t+ 1)x�1(t� 1)

=A2ej2a t +A4ej8a t + "(t);

t =2; . . . ;
N

2
� 1: (18)

The signal model is reduced to the frequency estimation problem of two
sinusoids. We can still employ the proposed MUSIC method to jointly
estimate a1 and a2 via �k , k = 1; 2, which are defined as �1 = 2a1
and �2 = 8a2 with the use of (9).

III. EXTENSION TO HIGHER-ORDER POLYNOMIAL PHASE SIGNAL

In the Section, we extend our proposed approach in Section II to
higher-order PPS parameter estimation. Let x(t) be the noisy PPS of
order P :

x(t) = Ae
j a t

+ n(t); t =
�N

2
; . . . ; 0; 1; . . . ;

N

2
(19)

where A and ap, p = 0; 1; . . . ; P , are all deterministic but unknown.
Without loss of generality, we assume that P is known [2], [3] and is
odd, that is, P = 2M + 1 where M is a positive integer.

Following Section II, we define the following correlation sequences
from x(t):

x1(t) = x(t)x(�t); x2(t) = x(t)x�(�t); t = 1; . . . ;
N

2
: (20)

With the use of (19), (20) can be expressed as

x1(t) = A2e
2j a t

+ n1(t) (21)

and

x2(t) = A2e
2j a t

+ n2(t) (22)

where n1(t) and n2(t) are the corresponding noise components.
From (21) and (22), it is seen that the unknown phase parame-
ters are separated into two sets, namely, fa0; a2; . . . ; a2Mg and
fa1; a3; . . . ; a2M+1g, respectively. Using the binomial formula, we
further construct x3(t):

x3(t) =x2(t+ 1)x�2(t� 1)

=A4e
2j a t

+ n3(t); t = 2; . . . ;
N

2
� 1 (23)

where

a02k = 2

M

l=k

a2l+1C
2l+1�2k
2l+1 ; k = 0; 1; . . . ;M (24)

withCK
N = N !=((N�K)!K!) andn3(t) represents the disturbance in

x3(t). Note that there is no odd order phase term in (23). The problem
of estimating a2k+1, k = 0; 1; . . . ;M in (22) is now transformed to
estimation of a02k , k = 0; 1; . . . ;M in (23).

Using (21) and (23), we form y(t)

y(t) =x1(t) + x3(t)

= e
2j a t

e
2j a t

�
A2ej2a

A4e
j4 a +�(t) (25)
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where y(t) can be regarded as a 2-component 2M th-order PPS with
constant amplitudes and �(t) = n1(t) + n3(t). Writing y(t) in matrix
form yields

Y = [v(a2; . . . ; a2M ) v(a02; . . . ; a
0
2M ) ] s+N (26)

where

v(�2; . . . ; �2M )= e
j 2 �

; . . . ; e
j (N=2�1) �

T

,

�2k = 2a2k , 2a02k , k = 1; 2; . . . ;M , and
s = [A2ej2a A4ej2a ]T while Y and N have the same forms as
in (6). Note that in (26), the noise covariance matrix, EfNNHg, is
also proportional to I. The MUSIC method is applied to (26) to
estimate the parameters a2k and a02k , k = 0; 1; . . . ;M , as
follows. We first obtain the noise subspace En of the modified
covariance matrix of Y

R = EfYYHg � JEfYYHgJ: (27)

Defining two parameter vectors, namely, ���e = 2[a2; a4; . . . ; a2M ]
and ���0o = 2 [a02; a

0
4; . . . ; a

0
2M ], their MUSIC estimates are found by

searching the following M -dimensional function:

�̂��e; �̂��
0
o = argmax

���

1

v(���)HÊnÊHn v(���)
(28)

where ��� = [�2; �4; . . . ; �2M ] and Ên is the noisy version of En
computed from the finite-length data. Using (24), the least squares
(LS) estimates of a3; a5; . . . ; a2M+1 are then determined from
a02; a

0
4; . . . ; a

0
2M :

â3
...

â2M+1

=

C1
3 � � � C2M�1

2M+1

... � � �
...

0 � � � C1
2M+1

#
â02
...

â02M

(29)

where # denotes the pseudo-inverse. After estimating a2; a3; . . . ; aP ,
the remaining parameters, namely, a0, a1 and A, can be obtained as
follows. Employing the estimates of ���e and ���0o, with the use of (21)
and (23), â0, â1 and Â are computed as

â0 =
1

2
6

N=2

t=1

x1(t)e
�2j â t (30)

â1 =
1

4
6

N=2�1

t=2

x3(t)e
�2j â t

� (â3 + � � �+ â2M+1)

(31)

and

Â =
1

N + 1

N=2

t=�N=2

x(t)e
�j â t

: (32)

It is noteworthy that when P = 3, (28) and (30)�(32) can be shown to
reduce to (9)–(12), respectively.

IV. RESULTS AND DISCUSSION

Computer simulations have been carried out to evaluate the PPS pa-
rameter estimation performance of the proposed algorithm in the pres-
ence of complex white Gaussian noise by comparing with the HPF [12],
PHAF [7] and NILS [4] methods as well as the CRLB. The signal am-
plitude is chosen asA = 1 and the noise sequence is scaled accordingly
to achieve different SNR conditions where SNR = A2=�2n.

In the first experiment, we compare the shapes of the one-dimen-
sional cost functions for parameter search in the MUSIC, HPF and
PHAF methods in cubic phase signal estimation. Note that NILS cost

Fig. 1. Proposed estimator for a third-order PPS at SNR = 10 dB and N =

301.

Fig. 2. HPF estimator for a third-order PPS at SNR = 10 dB andN = 301.

Fig. 3. PHAF estimator for a third-order PPS at SNR = 10 dB andN = 301.

function does not correspond to one-dimensional search and thus it is
not included in the comparison. The phase parameters are a0 = 0,
a1 = 0:3�, a2 = �0:001� and a3 = 0:00001�. Two different con-
ditions of SNR and N , namely, SNR = 10 dB and N = 301, and
SNR = 5 dB and N = 501, which correspond to a smaller data
length with higher SNR and larger data length with a smaller SNR,
respectively, are examined. The cost functions are plotted in Figs. 1–6
where each figure contains the results of ten independent runs. For the
proposed scheme, the two true peaks are located at 2a2 and 12a3 while
the true peaks are located at 2a2 and a3 in the HPF and PHAF methods,
respectively. Note that estimates of a0 and a1 in the MUSIC estimator
are not shown as they depend on the values of â2 and â3. For the same
reason, we only show the estimate of a3 in the PHAF method. While
the HPF cost function [12] is a function of 2(a2 + 3a3n) where n is
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Fig. 4. Proposed estimator for a third-order PPS at SNR = 5 dB and N =

501.

Fig. 5. HPF estimator for a third-order PPS at SNR = 5 dB andN = 501.

Fig. 6. PHAF estimator for a third-order PPS at SNR = 5 dB andN = 501.

the corresponding time index and we simply set n = 0 to display the
estimate of a2. From the six figures, we see that the searching functions
of the proposed scheme are less noisy than those of the HPF and PHAF
approaches and their peaks are more distinguishable, which implies an
easier peak search.

In the second experiment, we compare the root mean square error
(RMSE) performance of the MUSIC, HPF, PHAF and NILS methods
in parameter estimation of the above cubic phase signal. Their corre-
sponding RMSEs versus SNR are shown in Figs. 7–10, respectively.
The number of Monte Carlo simulations is 100 and there are 301 sam-
ples in the received data. From the figures, we see that the RMSEs of the

Fig. 7. RMSE versus SNR for a .

Fig. 8. RMSE versus SNR for a .

four parameter estimates in the proposed method are very close to the
theoretical calculations and also attain the CRLB when SNR > 8 dB.
Note that the RMSEs of all methods exhibit monotonic behavior from
a0 to a4 because the corresponding CRLBs for ai are inversely propor-
tional toN2i+1. Since the estimation accuracy of the lower-order phase
parameters is dependent on that of the higher-order phase parameters,
the error propagation effect of parameter estimation in both the HPF
and PHAF methods particularly for larger noise, cannot be avoided.
As a result, the performance of the proposed method is superior to that
of two computationally efficient estimators at lower SNR conditions.
Although the estimation performance of the NILS method is the best
among the four methods, it is the most computationally demanding be-
cause it requires O(N4 logN) operations [4]. While our method only
requires a one-dimensional search to find a2 and a3, corresponding to
an O(N logN) complexity, and both the HPF and PHAF estimators
need two one-dimensional search operations to estimate fa2; a3g.

In the last experiment, phase estimation of a fifth-order PPS using
the proposed estimator is investigated for two scenarios of SNR and
N , namely, SNR = 10 dB and N = 301, and SNR = 5 dB and
N = 501. The phase parameters are a0 = 0, a1 = 0:25�, a2 = 0:25,
a3 = 0:025, a4 = 0:02 and a5 = 0:015. According to (28), we need
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Fig. 9. RMSE versus SNR for a .

Fig. 10. RMSE versus SNR for a .

Fig. 11. Proposed estimator for a fifth-order PPS at SNR = 10 dB and N =

301.

to perform a two-dimensional (2-D) search for the parameter pairs,
namely, (a2; a4) and (a3; a5), which are obtained by the 2-D MUSIC

Fig. 12. Proposed estimator for a fifth-order PPS at SNR = 5 dB and N =

501.

method. The two true peaks are located at (2a2; 2a4) and (12a3; 40a5).
We see that the proposed MUSIC method can give accurate parameter
estimation results for different SNRs and sample numbers.

V. CONCLUSION

A subspace-based approach for joint parameter estimation of poly-
nomial phase signals (PPSs) in white Gaussian noise has been pro-
posed. Prior to employing the multiple signal classification method,
the observed signal is transformed to another sequence through a cor-
relation computation procedure. In particular, parameter estimation of
cubic phase signal is studied in detail and analyzed. It is shown that
the proposed algorithm can give accurate phase estimation of PPSs at
lower signal-to-noise ratio conditions. As a future work, we will extend
our subspace-based parameter estimation approach for PPSs in impul-
sive noise environments.
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Amendments to “Performance Analysis of Estimation
Algorithms of Nonstationary ARMA Processes”

Feng Ding, Yang Shi, and Tongwen Chen

Abstract—In this correspondence, we add a condition in Theorem 1 and
some explanations in the proof of Theorem 2 in IEEE TRANSACTIONS ON

SIGNAL PROCESSING, vol. 54, no. 3, pp. 1041–1053, March 2006.

I. AMENDMENTS TO THEOREM 1

The additional condition in Theorem 1 in [1] is stated in terms of the
notation in [1]:

A40) [ln r0(t)]
� = o(�min[P

�1

0 (t)]); for any � > 1 + ":

The additional steps in the proof briefly go as follows. Following [1,
eq. (43)], for any vector ! 2 n with k!k = 1, we have

t

i=1

k�T

0 (i)!k
2 =

t

i=1

k�T(i)!� ~�T(i)!k2

� 2

t

i=1

k�T(i)!k2 + 2

t

i=1

k~�(i)k2

=2

t

i=1

k�T(i)!k2 +O([ln r(t)]�)

= 2

t

i=1

k�T(i)!k2 +O([ln r0(t)]
�):

Thus,

�min[P
�1

0 (t)] � 2�min[P
�1(t)] +O([ln r0(t)]

�):

Using A4’), it follows that

�min[P
�1

0 (t)] � 2�min[P
�1(t)] + o(�min[P

�1

0 (t)]):

Referring to [2, Ch. 4], we have

�min[P
�1

0 (t)] = O(�min[P
�1(t)]); a.s. (44')

Combining relations [1, eq. (43) ] and (44’) above with the relation in
[1, eq. (41)], we get

k�̂(t)� �k2 = O
[ln r0(t)]

�

�min[P
�1

0
(t)]

; a.s.; � > 1 + "

as stated in Theorem 1 of [1].
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