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of cumulants, we obtain the following expression as a function of the
non-zero input cumulants and the unknown kernels
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The first term of the above expression is simplified using the i.i.d.
assumptions ��������� � ���� ��� � 
������� � �� � � � and
�������� ����� � ��

���
����� �����. The Leonov-Shiryaev theorem is

used to manipulate cumulants involving products of random variables
such as the second term of (36). Thus,
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If we substitute the above results in (36) we arrive at (31).
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MMSE-Based MDL Method for Robust Estimation of
Number of Sources Without Eigendecomposition

Lei Huang, Teng Long, Erke Mao, and H. C. So

Abstract—It is well known that the conventional eigenvalue-based min-
imum description length (MDL) approach for source number estimation
suffers from high computational load and performs optimally only in the
presence of spatially and temporally white noise. To improve the robustness
of the MDL methodology, we propose to utilize the minimum mean square
error (MMSE) of the multistage Wiener filter to calculate the required de-
scription length for encoding the observed data, instead of relying on the
eigenvalues of the data covariance matrix. As there is no need to calcu-
late the covariance matrix and its eigenvalue decomposition, our derived
MMSE-based MDL (mMDL) method is also more computationally effi-
cient than the traditional counterparts. Numerical examples are included
to demonstrate the robustness of the mMDL detector in nonuniform noise.

Index Terms—Eigenvalue decomposition (EVD), minimum description
length (MDL), multistage Wiener filter (MSWF), sensor array processing,
source number estimation.

I. INTRODUCTION

Development of computationally efficient and robust methods for
source number estimation is of significant interest in the field of array
processing [1]–[6]. One reason is that the involved computational load
of the classical source enumeration methods based on Akaike informa-
tion criterion and minimum description length (MDL) is quite heavy
particularly for a large array, making real-time processing infeasible.
Another reason is that the required assumption of spatially and tem-
porally white noise in the conventional schemes might not be valid in
practical situations due to changing noise environment, receiver non-
idealities and sensor nonuniformities [7], [8]. In the presence of un-
known nonuniform noise, the classical eigenvalue-based MDL detec-
tors, which exploit the multiplicity of the smallest eigenvalues of the
estimated data covariance matrix, will fail to achieve reliable source
enumeration.

Although many methods [1]–[3] have been proposed for robust
source enumeration, they need to be further improved in terms of
computational complexity. As eigenvectors of the data covariance
matrix also contains source number information but is less sensitive
to the noise models, eigenvector-based methods [1], [2] have been
developed to accurately estimate the number of sources in nonuniform
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noise environment. However, they need to calculate the observed
covariance matrix and its eigenvalue decomposition (EVD), which
corresponds to a computationally intensive task. The robust-MDL
(rMDL) method proposed by Fishler and Poor [3] is robust against
both spatial and statistical mismodeling but it involves � iterations,
where � is the sensor number, and each iteration needs EVD compu-
tation. As the complexity is of ����� flops, the rMDL detector is also
computationally burdensome especially for a large array. Recently,
we propose a Gerschgorin disk source enumerator [4] that does not
require EVD. Although it is more robust and computationally efficient
than the classical MDL methods, as in [1], its detection performance
relies on a nonincreasing function that needs to be carefully designed
for practical applications.

In this correspondence, source enumeration in a computationally ef-
ficient as well as robust manner is addressed. Unlike the eigenvalue-
based MDL methods, we propose an alternative MDL approach which
uses the minimum mean square error (MMSE) of the multistage Wiener
filter (MSWF) to calculate the minimum description length for en-
coding the observed data. As a result, the latter requires a lower com-
putational cost than the classical schemes because calculation of the
observed covariance matrix and its EVD is not required. Moreover, the
proposed MMSE-based MDL (mMDL) detector is superior in terms of
robustness to nonuniform noise as it does not rely on the eigenvalues of
the data covariance matrix. Note that the mMDL methodology is dif-
ferent from our previous work of [6] since it is based on the variances
of the desired signals of the MSWF and is designed for spatially and
temporally white noise environments.

II. DATA MODEL

Consider an array with � sensors receiving � narrowband far-field
sources from distinct directions ��� � � � � �� . For simplicity, we assume
that the array and sources are in the same plane. In the sequel, the �th
snapshot vector consisting of the sensor array outputs, excluding the
last sensor output, is written as

������� � �������� � � � � �� �����
� � 			 �����


���� � ������� (1)

where � � � � �, ���� denotes the transpose operation and
			 ����� � ������ � � � � �����, 


���� � �
������ � � � � 
������

� , and
������� � �������� � � � � �� �����

� are the � � � steering matrix, � � �
source waveform vector and � � � sensor noise vector, respectively.
Note that the last sensor output of the array is not included in (1)
because in the proposed method developed in Section III, the first
� sensor outputs and last sensor output of the array are used as the
observed data and reference signal of the MSWF, respectively.

For a uniform linear array (ULA) with inter-sensor
spacing �, the steering vector can be of the form ���� �

�� ����� ����	 �
�� � � � � ���������� ����	 �
�
�

�� � �� � � � � ��,

where � denotes the wavelength and ��� � �� denotes the unknown
number of sources. The source waveform 
����� �� � �� � � � � �� is
assumed to be a jointly stationary, statistically uncorrelated, zero-mean
complex Gaussian random process. The additive noise ������� is
assumed to be a spatially and temporally white complex Gaussian
process, uncorrelated with the sources, with mean zero and covariance
matrix ��

����� where ���� denotes the � � � identity matrix.
Under these assumptions, the observed data ������� is a complex

Gaussian random process with mean zero and covariance matrix given
by
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� ����� � ��
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where ���� is the expectation operator, ���� is the Hermitian transpose
and ���� � � 


����




����� is the signal covariance matrix. In the prac-
tical applications, however, only a finite number of snapshots, say, �,
is available. In the sequel, the sample covariance matrix based on �
snapshots is calculated as 	��� � ����� �

�	� ����������
�����.

III. PROPOSED MMSE-BASED MDL ESTIMATOR

A. Derivation

It is shown in [9] and [10] that, for a given data set and a family
of probabilistic models, the MDL principle is to select the model that
offers the shortest description length of the data. Specifically, given an
observed data set ��� � ���������

�
�	� and a probabilistic model ������


�,

where 


 denotes an unknown parameter vector of the model, the
shortest description length required to encode the data using the model
can be asymptotically written as
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where 	


 is the maximum likelihood (ML) estimate of


 and � denotes
the number of free parameters in 	


. Since the observed data ���������
are assumed to be statistically independent complex Gaussian random
vectors with zero means, their joint probability density is
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where ������ is the determinant operation. Taking natural logarithm on
(4) and omitting the terms independent of 


, we define the negative
log-likelihood function as

������ � � �� ��� ����� � �� ����� 	��� (5)

where �� represents the trace operator.
To proceed to the derivation of the mMDL method, we need to use

the following results of the MSWF. The MSWF with the reference
signal �
���� � �������� and observed data ���
���� � ������� is given
in Appendix A.

Lemma 1: The determinant of ��� is equal to that of ����, i.e.,

��� ���� � � ��� ������ �

�
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where ��� � ���
�������
�

 ���� , ���� ��� ���� � � � � �� �� , and

�� � ��������
� �� � �� � � � � �� which is the MMSE at the �th

stage of the MSWF. Note that explicit calculation of ���� � �� � � � � ��
is provided in Appendix A.

Proof: The proof of Lemma 1 is provided in Appendix B.
Lemma 2: The MMSEs of the MSWF satisfy

�� 	 � � � 	 �� � ���� � � � � � �� � ��
� (7)

Proof: The proof of Lemma 2 is provided in Appendix C.
In the sequel, updating ��� by ��� , substituting (6) and (7) into (5),

and assuming that ! is the supposed number of sources, we obtain
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It follows from (B5) that ��� can be reexpressed as

��� � """ ###�
��

����###
��"""� (9)
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where ��� � ������ � � � � ���� �, ���� is the �th matched filter of the WSWF,
and ��� is defined in (B4). Note that ��� is an unitary matrix due to the
orthogonality of ����. As a consequence, the parameter vector is

���� � ��� � � � � ��� �
�
�� 	�� � � � � 	�� ���

�
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�
� (10)

where 	� �� � �� � � � � 
� are the scalar Wiener filter coefficients in the
backward recursion of the MSWF. Actually, not all the parameters are
independent of each other. It follows from the MSWF in Appendix A
that both �� and	� rely on the desired signals ������which are obtained
by filtering the observed data with the matched filter ����, i.e., ������ �
����� �����. In the sequel, the parameter vector is finally reduced to be

���� � ���� ���
�
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�
� � (11)

Meanwhile, notice that the matched filters are the orthogonal and nor-
malized vectors, which lead to a reduction of ��
	������
�
���� in
the free parameter number. As a result, the number of free parameters
in ��� can be counted as

� ���
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In Appendix D, it is shown that the estimated MMSE yielded by the
backward recursion of the MSWF, i.e., 
�� � 
��� � �
�����

��
����, is
the ML estimate of ��. Consequently, it follows from (7) that the ML
estimate of ��� is
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Therefore, substituting the ML estimates of �� �� � �� � � � � 
�, ��� and
���	 into (8) and (3), omitting the constant terms and applying the same
argument used in [9] yields
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are the negative log-likelihood function and the penalty function, re-
spectively. Thus, the number of sources can be obtained by minimizing
our proposed mMDL criterion


� � �� ���
�������������

�����
� (17)

where �����
� � ��
� 	 ��
�.

B. Reduced-Rank MMDL Method

It is implied in (15)–(17) that the mMDL estimator can be con-
structed provided that the number of the smallest MMSEs is not less

than two. This thereby indicates that a reduced number of the MMSEs,
say ���	 � 	 � � ��, is sufficient to form a reduced-rank mMDL
method for source enumeration with an even lower computational cost.
The reduced-rank mMDL method is formulated as
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� with

�����
� �� �� � 
� ��

�
�����

�

�����


��

�
����� 
��

�
�����
(19)

�����
� �
�

�

 ���� 
 � �� ���� (20)

It is important to correctly determine the reduced rank � so that the
reduced-rank mMDL estimator can correctly enumerate the sources.
To this end, an adaptive detector of � can be defined, similar to [4]
and [6], by

� � ��� � � �
��� � � (21)

where � is a small positive constant.
In Appendix E, we have proven that the reduced-rank mMDL

method offers the property of strong consistency. That is, as the
number of snapshots tends to infinity, it correctly estimates the source
number with probability one.

C. Computational Requirement

It is well known that the EVD-based MDL methods [9] necessarily
involve the estimated covariance matrix and its EVD, requiring around
������ 	 ���	� flops. To correctly detect the sources, the rMDL
method [3] does not terminate the iterative procedure until a stationary
point is reached, generally requiring� iterations, and each iteration in-
cludes the EVD of an updated covariance matrix. As a result, the rMDL
needs around ���
� flops in EVD computation and ������ flops in
calculating the observed covariance matrix. However, in the mMDL
method, the MMSEs ���� � �� � � � � �� can be directly obtained from
the recursions of the MSWF, avoiding the calculation of the observed
covariance matrix and its EVD. Meanwhile, note that the forward re-
cursion only involves complex vector-vector products, and does not
include any complex matrix-vector products, thereby requiring around
���� flops for each snapshot and each stage. In the sequel, after per-
forming � �� 	 � 	 � � �� forward recursions, the required com-
putational cost is only about ������ flops. On the other hand, no-
tice that the backward recursion only involves complex scalar-scalar
products that are fiddling in computational complexity. Therefore, the
mMDL method eventually requires only around ������ flops that
is much less than that of the EVD-based MDL methods [9] and the
rMDL method [3], particularly when � 
 � .

IV. NUMERICAL RESULTS

We consider a ULA of ten sensors with � � ��� and assume two nar-
rowband and uncorrelated sources with equal power impinging upon
the array from the directions ���� ��� � ������ �����. To evaluate the
insensitiveness to the Gaussian and non-Gaussian assumptions, two
cases are considered as follows. The first case corresponds to com-
plex Gaussian sources with mean zero and variance �� and we ex-
amine complex Laplace sources [13] whose real and imaginary compo-
nents are independent random variables with mean zero and variance
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Fig. 1. Probability of correct detection versus number of snapshots in spatially
and temporally white noise. �� � � � � �2.5 � 7.8 �, SNR � �3 dB, � � ��
and � � ����.

�� in the second case. Accordingly, the univariate Laplace distribution
is given as ����� �

�
���� ���

�
�������.

We first consider the spatially and temporally white noise. In this
case, the signal-to-noise ratio (SNR) is defined as the ratio of the power
of signals to the power of noise at each sensor. Five hundred inde-
pendent trials have been run to obtain the empirical results of the pro-
posed reduced-rank mMDL, classical MDL (cMDL) [9] and rMDL [3]
methods. Fig. 1 shows the empirical probabilities of correct detection
versus the number of snapshots. When the number of snapshots tends
to infinity, it is observed that the mMDL, cMDL and rMDL methods
converge to one in probability of correct detection for both Gaussian
and Laplace sources, thereby indicating that all the MDL methods are
consistent and work well for the spatially and temporally white noise
model. Nevertheless, when the number of snapshots is � � ���, the
cMDL method has a higher detection probability than the mMDL and
rMDL schemes. As pointed out in [3], the rMDL method is less accu-
rate than the cMDL method because it ignores the a priori knowledge
that the sensor noise is spatially and temporally white. Note that the
mMDL method only employs 9 sensor outputs as the observed data
to calculate the MMSEs of the MSWF, reducing the aperture of the
array from 10 to 9, and is thereby less accurate than the cMDL and
rMDL methods as the number of snapshots varies from 60 to 200.
When � � ��, however, the proposed mMDL algorithm outperforms
the rMDL method and its detection performance is very close to that
of the cMDL scheme. The computational times versus number of sen-
sors for � � �� and � � �� are depicted in Fig. 2. Without the need
of calculating the observed covariance matrix and its EVD, the mMDL
method requires much less computational time than those of the cMDL
and rMDL approaches. As a result, we see that the mMDL method is
computationally simple at the expense of small degradation in detec-
tion performance for spatially and temporally white noise.

To examine the robustness against the deviations from the assump-
tion of spatially and temporally white noise, five hundred independent
trials have been run to calculate the probability of correct detection in
the presence of nonuniform noise. Similar to [3], we use the following
noise covariance matrix:

���			� �
���
�

	
�����
����
����
��

��
����
�� �
�� �
�� �
�� �
�� �
��� � (22)

Fig. 2. Computational time versus number of sensors. �� � � � � �2.5 � 7.8 �,
SNR � �3 dB, � � � and all sources are Gaussian.

to simulate the deviations of up to 3 dB from the normal noise power
level ���. In this case, SNR is defined as the ratio of the power of
signals to the averaged power of noises. Fig. 3 depicts the empirical
probabilities of correct detection versus the number of snapshots.
It is observed that the mMDL and rMDL methods can correctly
detect the sources as the number of snapshots increases and their
outstanding performance is independent of the source distribution.
The eigenvalue-based cMDL method, however, fails to correctly
enumerate the sources as the number of snapshots is greater than
100, and converges to zero in probability of correct detection when
� is sufficiently large. This phenomenon can be easily understood by
noticing that the cMDL method relies on the equality of the smallest
eigenvalues. The unequal noise powers make the smallest eigenvalues
to be different, as depicted in Fig. 4 where the MMSEs versus the rank
of the MSWF and the eigenvalues versus the number of sensors are
shown, resulting in more sources or the so-called “virtual” sources [3]
to be detected in the classical scheme. When the number of snapshots
is not large enough, the cMDL method cannot detect the differences
in the smallest eigenvalues, and thereby will not detect the “virtual”
sources. As the number of snapshots is large enough, however, the
“virtual” sources are detected by the cMDL method, thereby leading
to an error event. The enhanced robustness of the mMDL method can
be readily interpreted by examining Fig. 4. The deviations make the
smallest eigenvalues to be significantly unequal, as noted above, but
scarcely affect the smallest MMSEs. As a result, the mMDL method,
which is based on the multiplicity of the smallest MMSEs, is more
robust to the nonuniform noise than the eigenvalue-based cMDL
method. Fig. 5 depicts the empirical probability of correct detection
versus the angle separation. As an eigenvalue-based method, the
cMDL algorithm fails to correctly detect the sources no matter how
large the angle separation is. On the other hand, as the mMDL detector
only uses the MMSEs of the MSWF instead of the eigenvalues, it is
more robust against the deviations than the cMDL method for both
Gaussian and Laplace sources.

V. DISCUSSION AND CONCLUSION

We have devised the mMDL method for source enumeration in this
correspondence. Since the mMDL method only needs to calculate the
MMSEs by the recursions of the MSWF, and avoids to compute the ob-
served covariance matrix and its EVD, making it to be computationally
attractive. Meanwhile, the unequal noise power levels in nonuniform
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Fig. 3. Probability of correct detection versus number of snapshots in nonuni-
form noise. �� � � � � ���� � ��� �, SNR � � dB, � � 	� and � � ��	.

Fig. 4. Averaged MMSE of the MSWF, � , versus rank of MSWF and averaged
eigenvalue,� , versus number of sensors. �� � � � � �2.5 � 7.8 �, SNR � 0 dB,
� � 	� and � � 	���.

noise only make the smallest eigenvalues to be significantly different
but scarcely affect the smallest MMSEs, the mMDL method is there-
fore more robust against the deviations from the assumption of spatially
and temporally white noise than the eigenvalue-based MDL methods.
However, when the deviations become more severe, say, larger than
3 dB, the mMDL method might not provide reliable estimate of the
number of sources because such large deviations may lead to severe
fluctuations of the MMSEs. Developing an efficient strategy to further
enhance the robustness of the mMDL method will be our future work.

APPENDIX A
MSWF

The MSWF was first proposed by Goldstein et al. [11] to solve the
classical Wiener filtering problem with reduced computational com-
plexity. A full-rank MSWF algorithm is given as follows:

Fig. 5. Probability of correct detection versus angular separation in nonuniform
noise. �� � � � � �2.5 � 2.5 
 ���, SNR � 0 dB, � � 	�, � � ��� and
� � ��	.

Initialization:

������ � ��������,

�������� � �������� � � � � �� �����
� .

Forward Recursion: For � � �� � � � �� :

���� � � � ������������
�

��������;

	� � ����� � ��,




� � ���� � �	�;

������ � 


�� ����������� ��� � � ��������
� ;

�������� � ����������� 


�������.

Backward Recursion: For � � �� � � � � � with � � � ��������
�

and ������ � ������:

�� � 	���;

�������� � ��������� ��� ������;

��� � ��� � �	��
���.

Here, we use � � �� and � � � to denote the Euclidean norm of a
vector and the absolute value of a number, respectively. The desired
signal ������ is obtained by filtering the observed data ���������� with
the matched filters �


��, but annihilated in the calculation of the next
observed data ��������. To obtain the output of the MSWF, we only need
to linearly combine the outputs of the matched filters �


�� with the
scalar Wiener filters ����.

APPENDIX B
PROOF OF LEMMA 1

After performing � forward recursions, we obtain � desired sig-
nals of the MSWF, which are collected as

������� �������� � � � � �������
� � ������������ (B1)

Authorized licensed use limited to: CityU. Downloaded on September 15, 2009 at 23:55 from IEEE Xplore.  Restrictions apply. 



4140 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009

where ��� � ������ � � � � ���� �. It is shown in [4], [11], that the covariance
matrix of the desired signals, given by

���� ������������
������ � �������� ��� (B2)

is a tridiagonal matrix. Meanwhile, it is indicated in [11] that the back-
ward recursion is equivalent to a procedure of a Gram-Schmidt trans-
form that diagonalizes the tridiagonal matrix����, yielding the uncorre-
lated errors of the MSWF

������� �			�������� �			�����


������ (B3)

where 			 is the Gram–Schmidt operator which has the form of

			 �

� � � � � � �

��� � � � � � �

���� ��� � � � � �
...

...
. . .

...
...

����� ���

���
�� ������� ���

���
�� � � � � �

������� �

���
�� ����� �

���
�� � � � ��� �

�

(B4)

In the sequel, the covariance matrix of the uncorrelated errors is a di-
agonal matrix, given as

���� � ����������
�����

�	
�� ��� � � � � � �� �			��������� ���			 (B5)

where � � � ��������
�

� ����� can be recursively calculated by the
backward recursion of the MSWF. Therefore, using the multiplicative
property of determinants, i.e., 	� ���� � ��� � � 	� ������ 	� ���� � for
������� � ��� and noticing that ��� is a unitary matrix, we obtain

	� ������ � 	� 			� � 	� ����

� 	� ����� �� 	� ������ 	� �			 �

� 	� ����� � �

�

���

� (B6)

which completes the proof of Lemma 1.

APPENDIX C
PROOF OF LEMMA 2

It follows from the MSWF given in Appendix A that

��� � ����� � ��� � ����� � ���� �

�� 


���������������� ������ � � ���� ���������������� (C1)

In the sequel, we obtain

�� � � ���� ������������� � (C2)

Using the results in [6] that the last �� � �� desired signals of the
MSWF are uncorrelated whereas the first � desired signals are corre-
lated with the adjacent desired signals, we obtain �� �� � �� � �� � � � � ��
and �� � � �� � � � �� � � � ���. Meanwhile, it follows from [5]
and [6] that the first � matched filters span the signal subspace while

the last �� � �� matched filters span the noise subspace, yielding
����� ��� ����� � � �� � ���� � � � ���. In the sequel, for � � ���� � � � �� ,
we obtain the MMSE associated with the �th stage as

� ���� �
������

�

���
� � ��������

�

� �����

������ ��� ��������	��� ��������� � ��
���
�
� ���� � ��
� �� � � � �� � � � ����

(C3)

For � � �� � � � � �, however,����� ��� ����� �� � and �� �� �. In the sequel, the
variance associated with the �th error can be accordingly represented
as

� ���� �
������

�

���

� ����� ��� ��������	��� ��������� �
������

�

���
� ��
 �� � �� � � � � �� (C4)

which is greater than ��
 due to ����� ��� ��������	��� ��������� � ������
�����.

As a result, we obtain � � ��� � � � � � � � ��
 �� � �� � � � � ��.
Without loss of generality, we assume that the MMSEs of the MSWF
are arranged in a decreasing order:

� 	 � � � 	 � � ��� � � � � � � � ��
� (C5)

Additionally, we assume that ���� is the �th matched filter corresponding
to �. This proves Lemma 2.

APPENDIX D
ML ESTIMATE OF �

Following the results in [10] and [12], we can readily obtain

���� ���� ��
��� ����

�
(D1)

��� � �� ��
��� ����

�
(D2)

where ���� ����� �

��� �
�

� ���������� and ���
����� �

��� �
�

� ������������. In the sequel, considering that
�����
� � ��
�
��
�� � � � for �
� � � and �� � ���� yields

���� � ���� �
���� �

�

��

���� ��
��� ����

�
�

��� �� ��	 ��	�

�
��

��� �� ��	 ��	�

�

���� �
��� �

�

���

�

��� ��	 ��	�

�

��
��� ����

�

���� �
��� �

�

���
��

��� ����

�

� ��� ��
��� ����

�
� (D3)
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Consequently, employing the iteration ����� � ���� � �����
����� and

(D1)–(D2), we eventually have

��� � �� ��
��� ����

�
�� � �� 	 	 	 �	

 (D4)

Exploiting the same arguments used in [10], we obtain that ��� is the
ML estimate of ��.

APPENDIX E
PROOF OF CONSISTENCY OF REDUCED-RANK MMDL METHOD

It follows from (18) that

�

�
��������
���������


� ���
 �
�

�
�� � 
��� � � �  � �


����

�
(E1)

where

���

������
������


�

 (E2)

We first consider the case � � . Substituting (19) into (E2), with some
straightforward manipulations, yields (E3), shown at the bottom of the
page. Since ��� �� � � � �� 	 	 	 � �
 are not all equal with probability
one (w.p.1) as � tends to infinity, we obtain by the inequality between
the arithmetic and geometric means

���

�
���

�

�����

���

���

�
����� ���

� � �
�
 �� ���
 (E4)

Here we use the standard abbreviation “�
�
” for “almost sure”
to describe an event occurring w.p.1. Meanwhile, using the
generalized arithmetic-mean geometric-mean inequality, i.e.,
��� ��� � ���� � ����, where �� � �� � �, we have (E5),
shown at the bottom of the page. As a result, it follows from
(E3)–(E5) that ���
 � � �
�
 �� � � �. Meanwhile, noticing that
������ approaches to zero as � increases, we attain from (E1) that
for � � :

��������
 � �������
 �
�
 �� ���
 (E6)

Consider now the case � � . It follows from (C5) and (D4) that ��� �
��� � � ��� ������ �� � ��� 	 	 	 � �
. In the sequel, applying

the Taylor series around a small number �, i.e., ����� � �
 � � �
���� � � � �, we obtain (E7), shown at the top of the next page, and

�����


�

�
�

�

�

�����

��� � ���
���

�

�
�

� � 

�

�����

��� � ���
���

�

��
��� ����

�

�����


 (E8)

Substituting (E7) and (E8) into (E2) yields

���
 �
�

�

�

��

�

�����

��� � ���
���

�

�
�

���

�

�����

��� � ���
���

�

�

�

�����

��� � ���
���

�

��
��� ����

�

�����

��
��� ����

�
�� � � 	 	 	 � � � �

 (E9)

Consequently, substituting (E9) into (E1), we obtain for � � :

��������
 � �������
 �
�
 �� ���
 (E10)

Furthermore, considering that ����� ��� ���� � � as � � �, for
� � 

�

�
��������
��������


� �
��� ����

�
�
�

�
�� � 
���� � �  � �


����

�

� � �
�
 �� ���
 (E11)

Therefore, we eventually have for � � :

��������
 � �������
 �
�
 �� ���
 (E12)

This proves the consistency of the proposed mMDL estimator.

���
 � ���

� �
���

�

�����

���

���

�
����� ���

� �� � �
 ���

�
���

�

�����

���

� �
���

�

�����

���
��������� 	 � �
���

�

�����

���
���������

 (E3)

�� � �
 ���

�
���

�

�����

���

�
���

�

�����

���

���������

	 �
���

�

�����

���

���������

� � �
�
 �� ���
 (E5)
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�
������

�
� �� � �� ���
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��� �
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�����
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�
� � 	

�
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�� � �����
�

�

�����

��� �
�
� � 	
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�
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�
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�
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�
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�

�
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��� � ���
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�
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Joint Transmitter and Receiver Polarization Optimization
for Scattering Estimation in Clutter

Jin-Jun Xiao and Arye Nehorai, Fellow, IEEE

Abstract—Controlling the polarization information in transmitted wave-
forms enables improving the performance of radar systems. We consider
the design of optimal polarizations at both the radar transmitter and re-
ceiver for the estimation of target scattering embedded in clutter. The goal
is to minimize the mean squared error of the scattering estimation subject
to an average radar pulse power constraint. Under the condition that the
target and clutter scattering covariance matrices are known a priori, we
show that such a problem is equivalent to the optimal design of a radar
sensing matrix that contains the polarization information. We formulate
the optimal design as a nonlinear optimization problem and then recast it
in a convex form and is thus efficiently solvable by semi-definite program-
ming (SDP). We compare the sensing performance of the optimally selected
polarization over conventional approaches. Our numerical results demon-
strate that a significant amount of power gain is achieved in the target scat-
tering estimation through such an optimal design.

Index Terms—Adaptive estimation, optimization methods, radar po-
larimetry, scattering matrices.

I. INTRODUCTION

Advances in digital signal processing and computing technology
have resulted in the emergence of increasingly adaptive radar systems.
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