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Semi-Definite Programming Algorithms for Sensor
Network Node Localization With Uncertainties in

Anchor Positions and/or Propagation Speed
Kenneth Wing Kin Lui, Wing-Kin Ma, Member, IEEE, H. C. So, Senior Member, IEEE, and Frankie Kit Wing Chan

Abstract—Finding the positions of nodes in an ad hoc wireless
sensor network (WSN) with the use of the incomplete and noisy
distance measurements between nodes as well as anchor position
information is currently an important and challenging research
topic. However, most WSN localization studies have considered
that the anchor positions and the signal propagation speed are
perfectly known which is not a valid assumption in the underwater
and underground scenarios. In this paper, semi-definite program-
ming (SDP) algorithms are devised for node localization in the
presence of these uncertainties. The corresponding Cramér–Rao
lower bound (CRLB) is also produced. Computer simulations are
included to contrast the performance of the proposed algorithms
with the conventional SDP method and CRLB.

Index Terms—Node localization, range measurements, semi-def-
inite programming, sensor networks.

I. INTRODUCTION

A WIRELESS sensor network (WSN) consists of a number
of sensors spread across a geographical area. These

sensor nodes are small in size and inexpensive and have limited
processing, storage, sensing and communication capabilities.
WSNs are useful for a wide range of monitoring and con-
trol applications in the military, environmental, health and
commercial aspects [1]–[4]. Due to the mostly arbitrary node
deployment, the sensor locations are often unknown. As a
result, determining the physical positions of the sensor nodes is
an important problem in the WSNs.

The task of WSN localization is to determine the positions of
sensor nodes in a network given incomplete and noisy pairwise
time-of-arrival (TOA), time-difference-of-arrival, received
signal strength and/or angle-of-arrival measurements [4], [5],
which are acquired by the sensors during communications with
their neighbors. A standard assumption is that the positions
of some nodes, called anchors, are known exactly, so that it is
possible to find the absolute positions of the remaining nodes
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in the WSN. In this work, we focus on node localization with
the use of the pairwise distances obtained from multiplying the
signal propagation speed with the TOA measurements, which
has received significant attention in the literature [6]–[18]. In
the presence of Gaussian disturbance, the maximum-likelihood
estimator (MLE) for WSN location estimation is devised in
[6] which corresponds to a multivariable nonlinear optimiza-
tion problem and is hard to implement in practice. The MLE
can be realized by stochastic optimization methods such as
genetic algorithm and simulated annealing [7] but they in-
volve intensive computations with no guarantee of attaining
the global optimum point. Analogous to the MLE, Costa et
al. [8], [9] have proposed to minimize the stress function,
which is a metric multidimensional scaling (MDS) technique,
via an iterative and distributed procedure with proper initial
position estimates of unknown-location nodes. Alternatively,
it is possible to relax the MLE formulation to a semi-definite
programming (SDP) problem [10], [11] in order to provide a
high-fidelity approximate solution that can be obtained in a
globally optimum fashion with reduced computational efforts.
Apart from SDP, second-order cone programming (SOCP) [12],
[13] relaxation is another convex optimization [19] technique
for node localization. Although SOCP has a simpler structure
and the potential to be solved faster than SDP, its relaxation is
weaker than that of SDP which implies an inferior estimation
performance. On the other hand, the pairwise distance informa-
tion is transformed into the relative coordinates of nodes in the
classical MDS [14], [15] approach. Unlike metric MDS, clas-
sical MDS is much less computationally demanding because
only eigenvalue decomposition and simple matrix operations
are involved in the positioning procedure. A subspace-based
WSN localization approach has been devised in [16] which
generalizes our work in single source positioning [17], and this
methodology can be considered as an alternative to the classical
MDS technique. Inspired by [20], a linear least squares node
positioning algorithm which allows distributed processing has
been devised in [18].

However, most WSN localization studies [6]–[12], [14]–[18]
concentrate on the case where the anchor positions and/or the
propagation speed are perfectly known. In this paper, we devise
novel SDP algorithms for node localization using noisy pair-
wise TOA or distance measurements in the presence of these un-
certainties. A representative application scenario is node posi-
tioning for underwater WSNs [21]–[26]. In a typical underwater
sensor network [26], there are three types of nodes, namely, sur-
face buoys, anchors and ordinary or unknown-position nodes.
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Surface buoys drift on the water surface and they can get their
absolute locations from global positioning system (GPS) or by
other means. As radio frequency waves are heavily attenuated
under water, the anchors localize themselves through communi-
cations with the buoys instead of equipping with GPS receivers,
and this indicates that anchor positions are subject to errors.
Note that even GPS-based positioning cannot give error-free
location solutions as well. As in conventional WSNs, the or-
dinary nodes communicate with each other as well as the an-
chors to estimate their positions as they do not have wireless
connections with the buoys. On the other hand, the standard
choice for the underwater WSN communication is to utilize
acoustic waves but the speed of sound is a function of tempera-
ture, pressure, salinity and depth in the oceans [27], [28], which
implies that the signal propagation speed is also subject to un-
certainties. While in underground WSNs [29] and in-solid sce-
narios [30] where seismic/vibrational sensor data are processed,
the propagation speed is unknown and depends strongly on the
propagation medium [31], [32]. In fact, localization of single or
noncollaborative sources with anchor location errors have been
addressed in [33]–[37] which show that positioning accuracy
will be improved when the receiver location uncertainty is taken
into account. Recently, a pioneering work for the scenario of
WSNs has been presented in [13]. On the other hand, joint esti-
mation of single source position and propagation speed has been
studied in [38]–[40]. In [24], the propagation speed is treated as
one of the to-be-calibrated parameters in the application of un-
derwater ultrasound imaging.

The rest of the paper is organized as follows. Assuming that
both the distance errors and anchor position errors are Gaussian
distributed, the MLE for node localization with anchor location
uncertainty is first developed in Section II. A new SDP relaxation
algorithm for approximating the MLE is then derived. We also
present its simplified form when the anchor position errors are
independently and identically distributed and make a connection
to the standard SDP algorithm [10] which assumes perfect an-
chor position information. In addition, further approximation on
the developed algorithm based on the edge-based semi-definite
programming (ESDP) [41] which allows a more computation-
ally efficient realization is suggested. In Section III, we proceed
our SDP development to the case of unknown propagation speed
where estimation of both node positions and propagation speed is
performed. Section IV integrates the development in Sections II
and III to devise the SDP algorithm when there are uncertain-
ties in both anchor positions and signal propagation speed. As
Cramér–Rao lower bound (CRLB) for node localization with un-
certainties is not available in the literature, we have provided its
derivation in Section V. The proposed WSN positioning algo-
rithms are evaluated by comparing with the standard SDP ap-
proach as well as CRLB in Section VI. Finally, conclusions are
drawn in Section VII.

II. NODE LOCALIZATION WITH ANCHOR POSITION ERRORS

To start with, we would like to introduce the notations used in
this paper. Bold upper case symbols denote matrices and bold
lower case symbols denote vectors. We use to represent
the true value while its variable is and its estimate is .
The and are zero matrices and

is the identity matrix. For two symmetric matrices
and is equal to which indicates

that is positive semi-definite. Trace operator of matrix
is denoted by . The and denote matrix trans-

pose and inverse operators, respectively, and represents
the 2-norm of a vector . Consider a network of sensors in
a two-dimensional space. Let ,
be the true position of the th node. Without loss of generality,
we assume that the first of them, , are the an-
chor positions while , correspond to the un-
known-position sensors. In this section, we consider that there
is position uncertainty in the anchor information and our task
is to find better estimates of the anchor positions as well as
the unknown-sensor locations, or to estimate

. After the development of the
SDP algorithm for general Gaussian anchor position errors, we
will consider the special cases of uncorrelated errors and per-
fect knowledge of . By further relaxing the con-
straints in the proposed SDP algorithm, we have also provided
its computationally efficient approximation using the ESDP.

A. SDP Algorithm Development

Denote and , as the one-way prop-
agation time taken for the radiated signal to travel from the th
node to th node and their distance, respectively, and let be
the known signal propagation speed. In the absence of measure-
ment error, a simple relation between them is then

(1)

where

(2)

In the presence of distance errors and anchor position errors, our
observations are

(3)

and

(4)

Each represents an erroneous anchor position. The
disturbances and are assumed to be indepen-
dent zero-mean Gaussian processes with variances and covari-
ance matrices and , respectively. Note that we
only have an incomplete set of due to limited commu-
nication ranges between nodes. Without loss of generality, we
assume that all the distance measurements between anchors are
not available.

Let be the variable matrix for and
. Under Gaussian disturbance assumption,

the MLE for is achieved by maximization of the following
probability:

(5)

As and are independent, (5) can be expressed as

(6)
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Maximizing (6) is equivalent to the nonlinear least squares
(NLS) problem

(7)

where if the distance measurement is available and
0 otherwise. The first and second terms of (7) correspond to
the distances between the anchors and unknown-position sen-
sors, and distances among the unknown-position sensors, re-
spectively, while the last term addresses the anchor position un-
certainty. To simplify the expression, we define :

and
otherwise.

(8)

The objective function of (7) can now be written as

(9)

Expanding (9) and dropping the constant terms which have no
effects on the minimization, yields

(10)

In order to form a tight constraint in the later relaxation proce-
dure, we would like to introduce two dummy variables and

for the first term and second term of (10), respectively. Then
a constraint which relates and is

(11)

where is the entry of the matrix which is
defined as

(12)

Furthermore, we denote :

(13)

The second last term of (10) will become

(14)

For the sake of establishing a relationship between and ,
we utilize (13) to introduce

(15)

as a further constraint. With the use of all developed constraints,
the MLE of (7) is equivalent to the following formulation:

s.t.

(16)

We now relax (16) to a convex optimization problem as fol-
lows. The equality in (16) will be replaced by the
inequality to meet the convex specification. In fact,

and will increase and decrease in the minimization, re-
spectively, a tight constraint is automatically achieved, and thus
the inequality constraint will be forced to an equality. In addi-
tion, performing semi-definite relaxation on (12) and (13), the
MLE of (16) is approximated as a convex optimization problem:

(17)

s.t.

(18)

(19)

(20)

(21)
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(22)

(23)

(24)

where all the constraints are tight except (21) and (22) which
impose rank relaxation on the matrices. In the optimization lit-
erature, there are readily available solvers for finding the glob-
ally optimum SDP solution for (17)–(24), such as SEDUMI [42]
and SDPT3 [43], [44].

B. Simplified Algorithm for Uniformly Diagonal

In particular, when the disturbances in the and coordinates
are independently and identically distributed, that is, each is
a diagonal matrix of the form , the proposed SDP
algorithm can be simplified to

s.t.

(25)

where is replaced by directly. As a result, the constraints
of (20) and (21) will also be dropped.

C. Connection to Existing SDP Relaxation

We now show that the SDP relaxation algorithm of (17)–(24)
can be easily modified to the scenario of perfect anchor position
information. When , the matrix can be removed,
and hence the SDP algorithm in the absence of anchor position
uncertainty will become

s.t.

(26)

By direct substitution of the last two equalities into the other
constraints, (26) can be simplified to

s.t.

(27)

where is extracted from with
, and is a submatrix of in

(12):

(28)

with

It is worthy to note that the SDP algorithm of (27) is an alterna-
tive realization of the approximate MLE solution in [10].

D. Edge-Based SDP

As the arithmetic operation complexity of the SDP is at least
[41], it is desirable to have a more computationally ef-

ficient solution particularly when the network size is large. One
recent SDP development which can achieve efficient and accu-
rate estimation while retaining its key theoretical property is to
relax the single semi-definite matrix cone into a set of small-size
cones, and this is known as ESDP relaxation [41]. The ESDP
version of our proposed algorithm is simply achieved by re-
placing the single -dimensional matrix cone in (24)
with at most 4-dimensional matrix cones:

(29)

That is, (17)–(21) and (29) correspond to the ESDP relaxation
algorithm for node localization in the presence of anchor posi-
tion uncertainty.

III. NODE LOCALIZATION WITH UNKNOWN

PROPAGATION SPEED

In this section, we consider that the speed of signal propa-
gation, , is unknown, although its lower and upper
bounds, namely, and , may be available, while the anchor
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position information is perfect, that is, is free of noise.
Instead of distances between nodes, the TOA measurements are
employed here and they are modeled as

(30)

where are the disturbances in and they are assumed
independent zero-mean Gaussian processes with variances

. The MLE for and is achieved by maximizing

(31)

Following the development in Section II, particularly (10), the
optimum solution can be obtained from the following NLS cost
function by letting :

(32)

where

and
otherwise.

(33)

Denoting and , we expand
(32) to yield

(34)

A dummy matrix where its entry is
, is then introduced, which has

the form of

(35)

Let and . Similar to (11), we define
and . In doing so, the optimization

problem of (32) is equivalent to

s.t.

(36)

Note that is employed to strengthen the relationship between
and . The last three constraints are basically obtained from

the physical limitations, and they are optional and will be re-
moved if the bounds for are not available. Without loss of
information, these three constraints can be combined as

(37)

With the use of (37), we perform relaxation on (36) and note
that has the same effect of to obtain the
SDP relaxation algorithm for node localization with unknown
propagation speed:

s.t.

(38)

In principle, when noise is absent. But in practice, their
values will be different because of the inequalities in the SDP
formulation, that is, , tends to be larger
than . From the empirical point of view, is chosen as the
scaling factor to retrieve from because is proportional
to in (38). On the other hand, is a better choice than

for speed estimation. It is because , is
directly related with in the equality constraints of (38). The

is essentially the estimate of , while is the estimate
of . As the inequality between and is forced to be an
equality, they are adjusted in a tight manner to estimate be-
cause only the square and cross multiplication terms of , which
is represented by , in (36) are involved in
the optimization process. Nevertheless, instead of employing ,
after estimating , we substitute the node position estimates, ,
in (32) and minimize the resultant expression to produce a more
accurate estimate of :

(39)

For its ESDP version, the -dimensional matrix cone
relaxation in (35) will be further relaxed to

(40)
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IV. NODE LOCALIZATION WITH COMBINED UNCERTAINTIES

In this section, we will extend our study to the scenario when
there are uncertainties in the anchor positions and signal propa-
gation speed by utilizing the developments in Sections II and III.
The optimum estimates of and are now obtained from:

(41)

Recall that the main inspiration on dealing with uncertain an-
chor positions in (15), which is a redundant constraint to re-
late with , while in (35) is introduced to tackle the un-
known propagation speed. At first sight, it seems that we have
two choices. One is based on the anchor position uncertainty
framework with extension to unknown propagation speed and
is used to provide node position estimates. The second is based
on unknown propagation speed formulation with taking anchor
position errors into account and we estimate and multiply it
with . However, the latter approach is infeasible because we
only have the erroneous anchor positions. That is, constraints
between and as well as and as in (38) cannot be
applied. Furthermore, it is hard to implement the second term
of (41) with only as should be multiplied with an unknown
scale , which is a technical challenge for SDP technique, in
order to compare with . As a result, we base on the anchor
position uncertainty formulation to define

(42)

where the entries of , namely, , and are exactly the
same for . Then, (32) is now modified as

s.t.

(43)

where the constraint of (20) is removed as there is no direct in-
formation of and the last constraint is essentially the physical
boundary of propagation speed. Note that , which is subject to

errors, does not appear. Performing SDP relaxation on (43), the
algorithm for tackling the combined uncertainties is then

s.t.

(44)

Hence, the estimation of propagation speed is provided by ,
but the ambiguity causes it severely biased, so the refined esti-
mate of is calculated using (39), where replaced with ,
with being the estimated position of both anchors and sensors.
Similarly, for its ESDP version, the -dimensional matrix
cone relaxation in (44) will be further relaxed to

(45)

V. CRAMÉR–RAO LOWER BOUND

In this section, the CRLBs for WSN node localiza-
tion in the presence of anchor position uncertainty and/or
unknown propagation speed are derived. We first con-
sider the scenario of combined uncertainties. Let

be a vector which
contains all available observations of and . With the use
of (5) and (31), we see that is Gaussian distributed with mean

and covariance matrix :

(46)

where

and

with diag and blkdiag denoting the diagonal and block
diagonal matrices, respectively. The Fisher information ma-
trix (FIM) for , denoted by

, is then

(47)
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where

with [see the equations shown at the bottom of the page]. Taking
the inverse of , the CRLB for the parameters is then
obtained from its diagonal elements.

When there is only anchor position uncertainty, our observa-
tion vector is the same as (46) but now the speed is known.
The corresponding FIM for , de-
noted by , is modified from (44) as

(48)

On the other hand, the observation vector for the unknown speed
only scenario will become

(49)

where

and

The corresponding FIM for
, denoted by , will be

(50)

where

and is the same as but with the first rows removed.

VI. SIMULATION RESULTS

Computer simulation has been conducted to evaluate the
performance of the proposed SDP node positioning approach
in the uncertain scenarios. Comparison with the standard
SDP algorithm based on MLE [10] which assumes perfect
anchor position information and/or the corresponding CRLBs
is also made. We utilize the Matlab toolbox YALMIP [45]

Fig. 1. Geometry of sensor network.

to realize all SDP algorithms where the solver SDPT3 [43],
[44] is employed. Unless stated otherwise, we consider a
WSN of 18 sensors with 8 of them are anchors and its con-
figuration is depicted in Fig. 1. The anchor positions are
(20, 20) m, (20, 20) m, ( 20, 20) m, 20 20 m, (20,
0) m, (0, 20) m, 20, 0 m and (0, 20) m, while the un-
known-position sensors are located at 8.6237 1.2310 m,

10.4088 17.5334 m, 12.3117 13.0601 m, 10.6205
7.1419 m, 2.6837 10.9620 m, 3.1923, 10.4146

m, 1.1929,5.6211 m, 11.6372 10.8073 m, 11.3331
7.2338 m and 12.5562, 10.7131 m. In this WSN geometry,
nodes are partially connected and the maximum communica-
tion range between nodes is set to be 25 m which corresponds
to an average node degree [46] of 8.67. It is noteworthy that
we simply follow [47] and [48] to place the anchors on the
perimeter of the network because their experimental studies
show that this will yield more accurate estimation performance.
However, as pointed out by [49], the estimation performance
also depends on the connectivity and uniformity of the WSN.
That is, more accurate position estimates will be obtained
when the network is isotropic and/or the average node degree
is large whereas the estimated results will be poorer if it is
anisotropic and/or the average node degree is small. Further-

...
...

. . .
...

...
...

. . .
...

and
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Fig. 2. Single trial performance of the standard SDP algorithm [10] in the pres-
ence of anchor position uncertainty.

Fig. 3. Single trial performance of the proposed SDP algorithm in the presence
of anchor position uncertainty.

more, the study of [49] indicates that placing the anchors on
the boundary generally gives better node localization per-
formance than the randomly deployment scenarios. We have
performed empirical study on different network geometries and
the findings generally agree with [49]. For the mean-square
error (MSE) performance evaluation, only the estimates for the
unknown-position nodes are involved in the computation as
the standard algorithm cannot fine tune the anchor positions,
and all the results are based on averages of 500 independent
runs. The range errors in (3) and TOA errors in
(30) are zero-mean white Gaussian variables with standard
deviations and , respectively, which means
that a larger range or longer arrival time will correspond to a
larger variance, and we scale the values of and to obtain
different noisy conditions. Unless stated otherwise, all anchor
position covariance matrices are assigned as with

10 dBm for all .

Fig. 4. Single trial performance of the proposed ESDP algorithm in the pres-
ence of anchor position uncertainty.

Fig. 5. Mean-square position error versus � in the presence of anchor position
uncertainty.

In the first experiment, we investigate the performance of
the SDP algorithms in the presence of anchor position uncer-
tainty. Figs. 2 to 4 show the estimation results for a single trial
at 20 dBm using the standard as well as proposed SDP
and ESDP algorithms, respectively. We cannot see obvious dif-
ference between their performance except that our approach is
able to estimate the anchor positions as well. Fig. 5 shows the
MSEs of the position estimates versus where we can see the
superiority of the proposed SDP and ESDP methods over the
standard one particularly for smaller noise conditions, although
the two SDP algorithms give nearly the same performance when

30 dBm . It is also observed that the performance of our
SDP method is close to the CRLB while the ESDP version only
degrades the tighter SDP scheme by less than 0.5 dBm . The
MSE results versus at 50 dBm are plotted in Fig. 6.
Apart from higher estimation performance of the proposed SDP
and ESDP methods, we see that the improvement over the stan-
dard one increases with the anchor position error.
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Fig. 6. Mean-square position error versus � at � � ��� dB.

Fig. 7. Single trial performance of the standard SDP algorithm [10] for un-
known propagation speed.

In the second experiment, the performance of the standard
and proposed SDP algorithms for unknown signal propagation
speed situation is studied. The true propagation speed is set to
be 360 ms while its upper and lower bounds are 120
ms and 400 ms . As the former cannot perform speed
estimation, we use a random number uniformly distributed be-
tween and as its speed estimate. Single trial estimation
results at 20 dBm is shown in Figs. 7
and 8 which illustrates the superiority of the proposed method.
Figs. 9 and 10 plot the MSEs of the position and speed estimates
versus , respectively, at 20 dBm . Note that the
speed estimate of the standard algorithm is not included. We
see that accurate position and speed estimation is achieved by
the proposed SDP scheme as its performance is very close to
the corresponding CRLBs. We have also illustrated in Fig. 10
that the speed estimate derived from is of poorer accuracy. It

Fig. 8. Single trial performance of the proposed SDP algorithm for unknown
propagation speed.

Fig. 9. Mean-square position error versus � �� for unknown propagation
speed.

is worthy to point out that the ESDP variant cannot give satis-
factory performance in this scenario, which may be due to the
severer ambiguity effect for rank relaxed matrices with smaller
sizes and the scaling error. As a larger matrix limits the freedom
of its elements in stronger sense which leads to a better esti-
mation performance in the SDP algorithm while the numerous
smaller matrices in the ESDP scheme provide a higher degree of
freedom and can produce unsatisfactory result in the presence
of the scaler variable . As a result, the estimation performance
of the latter is not included.

In the third experiment, we investigate the performance of the
SDP algorithms in the presence of both uncertainties. Figs. 11
and 12 show the single trial results while Figs. 13 and 14 plot
the MSEs of the position and speed estimates versus . Al-
though Fig. 12 indicates that all nodes are localizable, the latter
figures illustrate the suboptimality of the proposed approach in
this very challenging scenario. Nevertheless, the superiority of
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TABLE I
COMPUTATIONAL TIME AND MEAN-SQUARE ERROR COMPARISON FOR PROPOSED SDP AND ESDP SCHEMES

Fig. 10. Mean-square speed error versus � �� for unknown propagation
speed.

Fig. 11. Single trial performance of the standard SDP algorithm [10] in the
presence of combined uncertainties.

our algorithm over the standard one is again demonstrated. Sim-
ilar to the second experiment, the results of the ESDP variant are
not included because of its poorer estimation performance.

Finally, the computation times and MSEs of the proposed
SDP and ESDP algorithms for the anchor position uncertainty
case are studied for different number of nodes, and the results
are tabulated in Table I. The number of anchors is fixed at
with the same positions as in the above tests. The unknown-po-
sition nodes are placed inside the 40 m 40 m area where the
communication range is governed by and

Fig. 12. Single trial performance of the proposed SDP algorithm in the pres-
ence of combined uncertainties.

Fig. 13. Mean-square position error versus� �� in the presence of combined
uncertainties.

20 dBm is assigned. It is observed that for a larger WSN, the
EDSP scheme is much more computationally efficient than the
SDP method at the expense of a higher MSEs.

VII. CONCLUSION

Assuming Gaussian distributed disturbances, the nonconvex
maximum likelihood estimation problems for sensor network
node localization in the presence of anchor position and/or
signal propagation speed uncertainties have been approximated
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Fig. 14. Mean-square speed error versus � �� in the presence of combined
uncertainties.

to convex optimization problems using the semi-definite pro-
gramming (SDP) relaxation technique. It is shown that when
only the anchor positions are of errors, the proposed SDP and
its edge-based variant algorithms can give very accurate node
localization performance. On the other hand, the performance
of the SDP scheme is nearly optimal and suboptimal, respec-
tively, when only the speed is unknown and in the presence of
both uncertainties.

Our future works include optimal anchor placement in sensor
networks and a good starting point is to analytically study the
Cramér–Rao lower bound [49]–[51]. We will investigate the
SDP methodology for node positioning with time-difference-of-
arrival, angle-of-arrival [4], [5] and/or signal energy [52] mea-
surements. Furthermore, it is interested to devise distributed
SDP algorithms for node position estimation and tracking. Node
localization in the presence of non-line-of-sight propagation is
also a challenging research topic.
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