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An Efficient Approach for Two-Dimensional
Parameter Estimation of a Single-Tone

H. C. So, Frankie K. W. Chan, W. H. Lau, and Cheung-Fat Chan

Abstract—In this paper, parameter estimation of a two-dimen-
sional (2-D) single damped real/complex tone in the presence
of additive white Gaussian noise is addressed. By utilizing the
rank-one property of the 2-D noise-free data matrix, the damping
factor and frequency for each dimension are estimated in a sep-
arable manner from the principal left and right singular vectors
according to an iterative weighted least squares procedure. The
remaining parameters are then obtained straightforwardly using
standard least squares. The biases as well as variances of the
damping factor and frequency estimates are also derived, which
show that they are approximately unbiased and their performance
achieves Cramér–Rao lower bound (CRLB) at sufficiently large
signal-to-noise ratio (SNR) and/or data size conditions. We refer
the proposed approach to as principal-singular-vector utilization
for modal analysis (PUMA) which performs estimation in a fast
and accurate manner. The development and analysis can easily be
adapted for a tone which is undamped in at least one dimension.
Furthermore, comparative simulation results with several con-
ventional 2-D estimators and CRLB are included to corroborate
the theoretical development of the PUMA approach as well as to
demonstrate its superiority.

Index Terms—Linear prediction, modal analysis, principal
singular vectors, two-dimensional frequency estimation, weighted
least squares.

I. INTRODUCTION

P ARAMETER estimation of two-dimensional (2-D)
damped/undamped sinusoidal signals in noise has been

an important research topic because of its numerous appli-
cations such as angle-of-arrival estimation with a 2-D sensor
array [1], synthetic aperture radar imaging [2], frequency and
wave-number estimation in array processing [3], nuclear mag-
netic resonance (NMR) spectroscopy [4], joint incidence angle
and path delay estimation in wireless communications [5], and
health assessment of living trees [6].

In the presence of white Gaussian noise, the maximum-like-
lihood (ML) estimator [7] can attain optimum performance
but its computational load is extremely heavy due to the
requirement of a multidimensional search. To avoid the de-
manding search, relaxation strategies for the ML approach
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such as iterative quadratic maximum-likelihood (IQML) [7]
and method of direction estimation (MODE) [1] schemes have
been proposed where proper parameter initialization is needed
for achieving near-optimum accuracy. Alternatively, sub-
space-based methodology is another popular choice for the 2-D
sinusoidal parameter estimation problem, which includes mul-
tiple signal classification (MUSIC) [2], [4], estimation of signal
parameters via rotational invariance techniques (ESPRIT) [5],
[6], [8], and matrix pencil (MP) [9], [10] algorithms. Com-
paring with the ML estimator and its approximations, these
methods are more computationally attractive at the expense
of suboptimality. In the MUSIC methods, the main compu-
tation is to perform a 2-D peak search while in the ESPRIT
and MP schemes, singular value decomposition (SVD) for a
Hankel block-Hankel matrix whose size is larger than that of
the original data matrix, corresponds to their most demanding
procedure. In this paper, we contribute to the 2-D parameter
estimation of a single damped/undamped real/complex tone.
In short, the proposed approach, which is referred to as prin-
cipal-singular-vector utilization for modal analysis (PUMA),
is more computationally attractive than the subspace methods
and its estimation performance achieves Cramér–Rao lower
bound (CRLB) at sufficiently high signal-to-noise ratio (SNR)
and/or large data size conditions. It is worthy to point out
that 2-D single-tone parameter estimation has also received
considerable attention but most of the related works [11], [12]
consider the undamped cisoid only.

The rest of the paper is organized as follows. In Section II,
we present the PUMA algorithm development for a damped
complex tone. The key ideas are to make use of the rank-one
property of the 2-D noise-free data matrix and find the damping
factor as well as frequency parameters for each dimension
from the principal left and right singular vectors in a sepa-
rable manner. Based on linear prediction (LP) and weighted
least squares (WLS), an iterative procedure that operates
on the principal singular vectors is devised for the damping
factor and frequency estimation, and this is analogous to the
one-dimensional IQML method [13]–[15]. After the nonlinear
parameters are determined, the remaining parameter, namely,
complex amplitude, is then estimated straightforwardly using
least squares (LS). Section III contributes to the estimation of a
damped real tone. Interestingly, the rank of the corresponding
noise-free data matrix is also equal to one, and we follow
Section II to develop a similar estimation procedure. Mean
and variance analysis of the proposed algorithms is provided
in Section IV. Modifications for tackling a real/complex tone
which is undamped in at least one dimension are discussed in
Section V. Simulation results are included in Section VI to
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TABLE I
LIST OF SYMBOLS

corroborate the analytical development and to evaluate the per-
formance of the PUMA approach by comparing with the IQML
[7] and ESPRIT algorithms [6], [8] as well as CRLB. Finally,
conclusions are drawn in Section VI. A list of mathematical
symbols that are used in the paper is given in Table I.

II. ESTIMATION FOR DAMPED COMPLEX TONE

In this section, parameter estimation of a single damped
cisoid is addressed. The observed 2-D data model is

(1)
where

(2)

is the noise-free signal. The is the complex amplitude,
and are the frequencies while

and are their associated damping factors, and they are
all unknown constants. The is a zero-mean complex white
Gaussian process, that is, its real and imaginary components are
real white processes with identical but unknown variances of

and uncorrelated with each other. Without loss of gener-
ality, it is assumed that . Given the samples of

, our task is to find the cisoidal parameters, namely, ,
, , , and .
To facilitate the algorithm development, we express (1) in

matrix form as

(3)

where , , and with
, , and .

From the regular structure of , it is straightforward to see
that the noise-free data matrix can be represented as

(4)

where

(5)

and

(6)

are complex vectors which are characterized by and , and
and , respectively. It is also observed that the elements in

and satisfy the LP property:

(7)

and

(8)

where

(9)

and

(10)

On the other hand, can be decomposed using SVD as

(11)

where is the diagonal matrix of sin-
gular values of with while

and
are orthonormal matrices whose columns are the corresponding
left and right singular vectors, respectively. From the decompo-
sition in (4)–(6), it is obvious that and thus (11)
can be simplified to

(12)

That is, , , and , correspond to , , and , up to an un-
known multiplying constant, respectively. Mathematically, we
can write

(13)

and

(14)

where and are unknown complex constants. As
, we easily get and

, implying that and
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where and are unknowns. Hence,
(13) and (14) can be expressed as

(15)

and

(16)

Substituting (15) and (16) into (4) and equating the resultant
expression with (12), we have

(17)

Nevertheless, and possess the same LP property as in
(7)–(10). Based on these findings, our strategy is first to estimate

and , and and from and , in a separable manner,
and their estimates are then employed for finding . As only
the principal singular vectors are utilized for the modal signal
parameter estimation, we refer this technique to as PUMA.

By decomposing as , the best rank-one ap-
proximation or LS estimate of is

(18)

where , , and are the noisy versions of , , and ,
respectively. Define

(19)

and

(20)

From (7), we have

(21)

Following [15], the WLS estimate of is computed as

(22)

where the optimum weighting matrix is constructed from
the residual error of and hence a function of , which
is commonly known as the Markov estimate [16], [17]. With the
use of (19), (20), the inverse of is

(23)

where

Let where is the perturbation of . At
the ideal value of , or and thus
(23) is equivalent to

(24)

To compute (24), we first utilize [18] to obtain:

(25)

where is the noise-free version of
, which corresponds to the noise subspace. With

the use of (25), is derived as

(26)

Note that the values of and are not required as they will
be canceled out in (22), that is, we only need to know
up to a multiplying scalar. Employing and

, the weighting matrix of (24) is simpli-
fied as

(27)

As is characterized by the unknown parameter , we
follow [15] to estimate and in an iterative manner and the
estimation procedure is summarized as follows.

i) Set .
ii) Calculate using (22).

iii) Compute an updated version of using (27) with
.

iv) Repeat Steps ii)–iii) until a stopping criterion is reached.
v) The damping factor and frequency estimates are estimated

from the magnitude and phase of according to

(28)

and

(29)

Applying the same idea in , we have

(30)

where and
. Following the development in

(22)–(27), the conceptual solution for is

(31)

where

(32)

with

In practice, and are obtained using the iterative procedure
which is analogous to estimating and .
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Employing the damping factor and frequency estimates, we
construct

and to esti-
mate as follows. From (4), we have

(33)

Vectorizing both sides of (33) yields

(34)

The LS estimate of is straightforwardly obtained as

(35)

III. ESTIMATION FOR DAMPED REAL TONE

For parameter estimation of a damped real tone, the signal
model is

(36)
where

(37)

is the noise-free sinusoid. Now is the real-valued am-
plitude, , and are the frequency,
damping factor and phase for one dimension while ,

and are the corresponding parameters for
another dimension. The is assumed to be a real zero-mean
white Gaussian process with unknown variance . Expressing
(37) in matrix form, we find that it can be decomposed as in (4)
but and are modified to

(38)

and

(39)

The LP property in and can easily be observed as

(40)

and

(41)

where

(42)

(43)

(44)

and

(45)

Similar to (12)–(17), we can also express according to SVD
as

(46)

where , and . By decomposing as
and utilizing the LP property of (40) in matrix

form, we have

(47)

where

(48)

(49)

and

(50)

Following the development in (22)–(27), the WLS estimate of
is

(51)

where

(52)

with

As is a function of , we first set and
iterate between (51) and (52) as in Section II to calculate . Once

is available, the damping factor and frequency are estimated
using (42) and (43):

(53)

and

(54)

To estimate , we consider

(55)

where

(56)
and

(57)
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The former is constructed from and while the latter is a
function of . Pre-multiplying both sides of (55) by yields

(58)

It follows from (58) that

(59)

where

(60)

and

(61)

Based on (59), the LS estimate of is

(62)

Likewise, the conceptual solution for is

(63)

where

(64)

(65)

(66)

and

(67)

After finding and using the same iterative procedure, we
follow the development in (55)–(62) to obtain the LS estimate
of :

(68)

where

(69)

(70)

and

(71)

Analogous to Section II, the LS estimate of is

(72)

where

and

IV. PERFORMANCE ANALYSIS

In this section, the biases and variances of the damping factor
and frequency estimates are analyzed. The complex and real
data models are investigated one by one as follows.

A. Complex Tone

The basic idea for our analysis is to utilize (22). Upon conver-
gence of the iterative procedure, the estimate of should satisfy

(73)

Based on (73), we construct a function :

(74)

such that . For sufficiently large SNR and/or data size,
will be located at a reasonable proximity of . Using Taylor’s

series to expand around up to the first-order term, we get

(75)

where is the first derivative of evaluated at .
Expressing and as well as
using , can be linearized as

(76)

On the other hand, is approximated as

(77)

Combining (75)–(77), we have

(78)
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As is deterministic and , it is
clear that and hence is approximately unbiased for
sufficiently large SNR and data size conditions. Employing (24)
and (78), the mean-square error or variance of is derived as

(79)

Based on (79) and [19], the variances of and are computed
as

(80)

and

(81)

From (80) and (81), we see that the expressions of and
are similar except that the former is inversely propor-

tional to . Apart from this, both increase with the noise power
and decrease with and which relates to the signal
power and .

Likewise, the variances of and are determined as

(82)

and

(83)

B. Real Tone

Following the development in (73)–(79), it is shown that
and the covariance of in (51) is

(84)

Let . With the use of (42) and (43) and expanding
around with Taylor series up to the first-order term yields

(85)

where

(86)

Employing (84)–(86), the covariance of is

(87)

As a result, the variances of and are

(88)

and

(89)

Let . In a similar manner, the variances of and
are determined as

(90)

and

(91)

where

(92)

and

(93)

Though there are no closed-form expressions for (80)–(83)
and (88)–(91), Section VI shows that their numerical values are
equal to the corresponding CRLBs.

V. MODIFICATIONS FOR PARTIALLY

DAMPED/UNDAMPED TONE

For some applications, the tone is undamped in one [6] or
even two dimensions [10]–[12]. In this section, we will show
the required modifications for the PUMA approach when the
cisoid/sinusoid is undamped in one dimension. The results for a
purely undamped tone can be obtained in a similar manner.

A. Complex Tone

Assuming that of (2) is undamped in the second dimen-
sion, we have and . As a
result, of (6) becomes

(94)

Substituting , has a
closed-form expression with elements [15]

(95)

and (31) can be simplified to

(96)
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as the denominator is real and positive [15]. That is, estimation
of is achieved by iterating between (95) and (96) while , ,
and are determined as in (22) and (35) with . The cor-
responding variance expressions also follow (80)–(83), except
now in (82), that is

(97)

It is interesting to note that when is purely undamped,
, and . Recall

(16) and let ,
we have

(98)

Employing (95) and (98) yields [15]

(99)

As a result, has a closed-form of

which is the CRLB for frequency of a purely undamped cisoid
[12].

B. Real Tone

Here, we consider
which corresponds to a real X-texture mode [6]. The vector
in (39) is modified as

(100)

The LP relationship in (41) is simplified to

(101)

where

(102)

as . The vector equation for (101) to estimate
becomes

(103)

where and
. Hence, (63) is now

modified to

(104)

with and is computed as

(105)

Fig. 1. Mean-square error of �� versus SNR for damped cisoid.

Fig. 2. Mean-square error of �� versus SNR for damped cisoid.

The estimates of , , , and are calculated using (53),
(54), (62), (68), and (72), respectively, with . Based on
Section IV, the variance of in (104) is evaluated as

(106)

Employing (105) and (106) yields [20]

(107)

VI. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the
parameter estimation performance of the PUMA approach in the
presence of white Gaussian noise. The stopping criterion of the
PUMA algorithm is a fixed number of iterations. We use three
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Fig. 3. Mean-square error of �� versus SNR for damped cisoid.

Fig. 4. Mean-square error of �� versus SNR for damped cisoid.

iterations as no significant improvement is observed for more
iterations. The mean-square error (MSE) is employed for the
performance measure. For comparison, MSEs of the ESPRIT
[8] and IQML [7] algorithms as well as CRLB are included
for the complex model. While for the real signal case, [8] is re-
placed by [6], where partial forward–backward averaging is ex-
ploited. In the ESPRIT schemes [6], [8], a Hankel block-Hankel
matrix of size around is con-
structed from the data matrix for parameter estimation.
The signal power is defined as , and
we scale the noise sequence to produce different SNR condi-
tions. All results provided are averages of 200 independent runs
using a computer with Pentium Dual Core 2-GHz processors
and 1-GB RAM.

In the first test, we study the case of a damped complex tone,
and the signal parameters are , , ,

, and with . The estimation
results for , , , , and versus SNR are plotted in Figs. 1–5,
respectively. It is seen that the MSEs of the proposed scheme
attain the corresponding CRLBs at 2 dB in all five

Fig. 5. Mean-square error of �� versus SNR for damped cisoid.

Fig. 6. Mean-square error of �� versus � for damped cisoid at ��� � 0 dB.

figures. The theoretical variance expressions of (80)–(83) are
also validated and they align with the optimum benchmark. As

and , the MSE of the damping factor is less than
that of the frequency, although the difference is not significant
as both and are close to unity. On the other hand, the IQML
estimator can also provide optimum accuracy but it has larger
threshold SNR than that of the PUMA approach, while the ES-
PRIT method is suboptimal in the whole SNR range. The av-
erage computation times of the ESPRIT, IQML and proposed
algorithms for a single trial are measured as s,
6.53 s, and s, respectively. Thus, the PUMA ap-
proach is more efficient than the ESPRIT and IQML estimators
in terms of computational complexity and accuracy. In fact, its
computationally attractiveness can be analytically deduced from
the involved matrix size, which is . That is, the com-
plexity of the proposed method is of due to the SVD
and WLS operations. The involved matrix sizes in the ESPRIT
and IQML algorithms are and

, respec-
tively, indicating their complexities are both equal to . It
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Fig. 7. Mean-square error of �� versus SNR for damped cisoid at small data
size.

Fig. 8. Mean-square error of �� versus SNR for X-texture mode.

is worth noting that the operations of the PUMA scheme can be
further reduced by utilizing the power method to compute the
principal singular vectors instead of performing the full SVD
and by employing a fast algorithm for the sparse Toeplitz matrix
inverse which may appear in the scientific computing literature.

Fig. 6 examines the estimation performance of for
at 0 dB, while the remaining parameters are

identical to the previous experiment. The findings are similar to
those of Fig. 1 although all estimators fail to achieve optimality
when approaches . As the results of , , , and are sim-
ilar and indicate the uniform estimation performance, they are
not provided here. Fig. 7 studies the performance for a smaller
data size, namely, , while the remaining parameters
are identical to the first test. We observe that the estimation per-
formance is similar to that of Fig. 1 except the threshold SNR
is increased. The remaining parameters of interests give similar
observations and their results are not included in this paper. As

Fig. 9. Mean-square error of �� versus SNR for X-texture mode.

Fig. 10. Mean-square error of �� versus SNR for X-texture mode.

a result, we can conclude that the PUMA algorithm can achieve
CRLB at sufficiently large SNR and/or data size conditions.

Finally, we investigate the real tone and the signal parameters
are , , , , , and
with . That is, the real tone is undamped in one
dimension which corresponds to the X-texture mode [6]. The
MSEs of , , , , , and are shown in Figs. 8–13, respec-
tively. Again, we see that the PUMA algorithm is superior to the
ESPRIT and IQML methods as in Figs. 1–5 and its performance
is able to achieve the CRLB for sufficiently high SNRs. In ad-
dition, the average computation times of the ESPRIT, IQML
and proposed estimators for a single trial are measured as are

, 2.85 s and , respectively.

VII. CONCLUSION

We have devised an efficient parameter estimation approach
for a two-dimensional (2-D) single damped real/complex tone
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Fig. 11. Mean-square error of �� versus SNR for X-texture mode.

Fig. 12. Mean-square error of �� versus SNR for X-texture mode.

Fig. 13. Mean-square error of �� versus SNR for X-texture mode.

in additive white Gaussian noise and we refer it to as prin-
cipal-singular-vector utilization for modal analysis (PUMA).
The key ideas are to make use of the rank-one property of the
2-D noise-free data matrix and find the damping factor as well as
frequency parameters for each dimension from the principal left
and right singular vectors in a separable manner according to an
iterative weighted least squares procedure. Modifications for a
tone which is undamped in at least one dimension are included.
Mean and variance expressions for the damping factor and fre-
quency parameters are also produced and verified via computer
simulations, which illustrate that they are approximately unbi-
ased and their performance achieves Cramér-Rao lower bound
at sufficiently large signal-to-noise ratio and/or data size condi-
tions. Furthermore, it is shown that the PUMA approach out-
performs the iterative quadratic maximum likelihood [7] and
subspace based algorithms [6], [8] in terms of computational
complexity and accuracy. Considering 2-D single-tone param-
eter estimation as a starting point, we will extend our study to
the multidimensional [21], [22] and multiple-tone scenarios as
our future works.
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