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work will involve analysis of retransmission strategies where more than
one packet can be sent at a time.
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Modified Pisarenko Harmonic Decomposition for
Single-Tone Frequency Estimation

Kenneth Wing Kin Lui and Hing Cheung So

Abstract—In this correspondence, based on an alternative derivation of
the Pisarenko harmonic decomposition (PHD) method, a new asymptoti-
cally unbiased estimator for the frequency of a single real tone in white noise
is devised with the use of novel sample covariance expressions. Further-
more, extension to sample covariances with higher lags for performance en-
hancement is investigated while a simple and effective scheme is suggested
to resolve the corresponding frequency ambiguity problem. The variance
of the modified Pisarenko’s method is also derived, which is then utilized
to find the best estimate among all admissible solutions from various sets of
sample covariances. Computer simulations are included to corroborate the
theoretical development and to demonstrate that the proposed approach
outperforms several existing low-complexity frequency estimators in terms
of nearly uniform performance and estimation accuracy.

Index Terms—Frequency estimation, Pisarenko’s method, sample
covariance, single real sinusoid.

I. INTRODUCTION

Frequency estimation of sinusoidal signals in noise is a frequently
addressed problem in the signal processing literature [1]–[5] because
of its wide applicability in control theory, digital communications,
biomedical engineering, instrumentation and measurement, and so on.
In this work, we address the fundamental problem of single sinusoidal
frequency estimation, and its discrete-time signal model is

x(n) = s(n) + q(n); n = 1; 2; . . .N (1)

where
s(n) = � cos(!n+ �): (2)

The �, ! 2 (0; �), and � 2 [0; 2�) are unknown but deterministic
constants that represent the tone amplitude, frequency, and phase, re-
spectively, while the noise q(n) is assumed to be a zero-mean white
process with unknown variance �2. The task is to find ! given the N
samples of fx(n)g.

Under Gaussian noise assumption, the maximum-likelihood (ML)
estimate of frequency [6], with estimation accuracy of order N�3=2

in standard error, is obtained by maximizing a highly nonlinear
and multimodal cost function, and thus extensive computations are
involved. Apart from the ML method, some relatively fast algorithms
such as the discrete Fourier spectrum (DFS) interpolator [7], con-
traction mapping [8], [9], and weighted subspace fitting [10] can
achieve this accuracy. It is worthy to note that the efficient methods
for complex tone frequency estimation [11]–[14] generally cannot
be employed to real-valued data. For applications where real-time
estimation is required, more computationally efficient but suboptimal
frequency estimators such as notch filtering, Capon methods, linear
prediction [15]–[17], Yule-Walker methods [18] and subspace-based
approaches [19] are widely used choices. In this correspondence, we
focus on fast frequency estimation of a single real tone. Our main
contributions are summarized as follows: 1) proposal of novel sample
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covariance expressions for single real-tone frequency estimation; 2)
development and analysis of a set of new frequency estimators based
on Pisarenko harmonic decomposition (PHD) [19]; and 3) design of
a simple scheme to find the most accurate frequency estimate among
all admissible solutions.

The rest of this correspondence is organized as follows. In Section II,
we first review that the PHD method [19] for single-tone frequency es-
timation, which exploits the eigenstructure of the sample covariance
matrix, can be derived in an alternative and simpler manner using the
sample covariances of x(n)with lags 1 and 2 [20]. Inspired by the mod-
ified covariance (MC) frequency estimator [15], [16] and reformed Pis-
arenko harmonic decomposer (RPHD) [17], novel sample covariance
expressions are proposed in Pisarenko’s frequency estimator. We then
extend the idea using sample covariances with higher lags and an effec-
tive scheme is suggested to resolve the corresponding frequency ambi-
guity problem. In addition, the theoretical variance of the proposed ap-
proach is produced, which is utilized to find the best estimate among all
admissible solutions based on various sample covariances. Numerical
examples are presented in Section III to corroborate the analytical de-
velopment and to evaluate the performance of the modified Pisarenko’s
estimator by comparing with the ML, MC, PHD, RPHD, and DFS in-
terpolator algorithms as well as Cramér–Rao lower bound (CRLB). Fi-
nally, conclusions are drawn in Section IV.

II. MODIFIED PISARENKO’S METHOD

Denote the standard sample covariance of x(n) with lag k by rk ,
which is expressed as

rk =
1

N � k

N�k

n=1

x(n)x(n+ k): (3)

For sufficiently largeN , it can be easily shown that the expected values
of r1 and r2 are approximated as

Efr1g �
�2 cos(!)

2
(4)

and

Efr2g �
�2 cos(2!)

2
= �2 cos2(!) +

1

2
(5)

where E denotes the expectation operator. Cross multiplying (4) and
(5) and dropping the expectation operator, we obtain a quadratic equa-
tion for frequency that relates r1 and r2

2r1 cos
2(!̂)� r2 cos(!̂)� r1 = 0 (6)

where !̂ denotes an estimate of !. Only one root of (6) corresponds to
the actual frequency and it can be verified that !̂ has the form of

!̂ = cos�1
r2 + r2

2
+ 8r2

1

4r1
: (7)

The solution of (7) is in fact identical to the PHD estimate [19], which is
found from the eigenvector corresponding to the smallest eigenvalue of
covariance matrix of x(n). In fact, this alternative derivation has been
presented in [20]. Due to the approximate relationships in (4) and (5),
the PHD method is a biased frequency estimator and its bias generally
decreases with N as illustrated in [17].

The key idea of this work is based on (4)–(6) and our major novel-
ties include utilization of an alternative sample covariance function, as
well as sample covariances with higher lags for improving frequency
estimation performance. First, we propose to use the following scaled
sample covariance expressions of r1 and r2:

r1 =

N�1

n=4

x(n� 1)[x(n) + x(n� 2)] (8)

and

r2 =

N

n=5

x(n� 2)[x(n) + x(n� 4)]: (9)

In fact, the choice of r1 is not new and is found in the MC frequency
estimator [15], [16] and reformed RPHD [17], while the proposed ex-
pression for r2 straightforwardly follows that of r1. Similar to [15], (8)
can also be written as

r1 = x(2)x(3) + 2x(3)x(4) + � � � 2x(N � 3)x(N � 2)

+x(N � 2)x(N � 1)

which is a covariance taper of the endpoints. It is noteworthy that not
all available samples are used in (8), so that the numbers of terms in
both r1 and r2 are identical. In doing so, the expected values of (8) and
(9) then become

Efr1g = 2 cos(!)

N

n=5

s2(n� 2) (10)

and

Efr2g = 2cos(2!)

N

n=5

s2(n� 2): (11)

From (6), (10), and (11), we expect that unbiased frequency estima-
tion can be achieved and the proposed frequency estimate is given by
(7) with the use of (8) and (9). In fact, a detailed proof regarding the
asymptotically unbiasedness of our frequency estimator is provided in
the Appendix. Since (4) and (5) are approximations while (10) and (11)
are the exact counterparts, the proposed scheme will provide a higher
estimation accuracy than the original PHD algorithm.

Our second direction for performance improvement [21] is to em-
ploy sample covariances with higher lags frkg in estimating the fre-
quency. This approach is analogous to employing a decimation in time
domain [22]. Note that the idea of employing higher lags is also found
in the high-order Yule–Walker method [18]. Extending (8) and (9), the
general expressions for rk and r2k are

rk =

N�k

n=4k

x(n� k)[x(n) + x(n� 2k)] (12)

and

r2k =

N

n=5k

x(n� 2k)[x(n) + x(n� 4k)] (13)

where we can observe that the maximum allowable value of k is
kmax = b(N � 1)=5c. The expected values of rk and r2k are easily
shown to be

Efrkg = 2 cos(k!)

N

n=5k

s2(n� 2k) (14)

and

Efr2kg = 2 cos(2k!)

N

n=5k

s2(n� 2k): (15)

Following (4)–(6), the estimate of �k = cos(k!), denoted by �̂k , is

�̂k =
r2k + r2

2k
+ 8r2

k

4rk
: (16)
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TABLE I
COMPUTATIONAL COMPLEXITY OF FREQUENCY ESTIMATORS

However, �̂k corresponds to k possible estimates of!, denoted by !̂k;i,
i = 1; 2; . . . ; k

!̂k;i =
1

k
(�1)(i�1) cos�1 (�̂k) +

i

2
2� : (17)

A simple way of finding ! from f!̂k;ig is to compare each of them
with !1;1, that is, the frequency estimate computed from (8) and (9).
The frequency estimate based on rk and r2k is then given by !̂k;i ,
where i� is determined as

i� = arg min
i2f1;2;...;kg

j!̂k;i � !̂1;1j: (18)

To derive the variance of the modified PHD estimator, we follow the
work of [23]. Based on (6), we construct a quadratic function, namely,
f(�̂k)

f(�̂k) = 2rk�̂
2
k � r2k�̂k � rk: (19)

For sufficiently large signal-to-noise ratio (SNR), one root of f(�̂k) =
0 will be located in the proximity of cos(k!). The variance of �̂k ,
denoted by var(�̂k), is given by [23]

var(�̂k) = Ef(�̂k � �k)
2g �

E f2(�̂k)

(E ff 0(�̂k)g)
2

�̂ =cos(k!)

(20)

where f 0(�̂k) is the derivative of f(�̂k) with respect to �̂k . Assuming
that q(n) is Gaussian distributed and N is sufficiently large, we have
shown that (see the Appendix)

var(�̂k) �
k

SNR(N � 5k + 1)2(cos(2k!)+ 2)2

+
cos2(k!)(N � 6k + 1) + cos2(2k!)(N � 5k + 1)

SNR2(N � 5k + 1)2(cos(2k!)+ 2)2
(21)

where SNR = �2=(2�2). The variance of the frequency estimate,
namely, !̂k;i , denoted by var(!̂k;i ), is related to var(�̂k) as [23]

var(!̂k;i ) = Ef(!̂k;i � !)2g �
var(�̂k)

k2 sin2(k!)
: (22)

For SNR� 1, the second term of (21) can be ignored and a simplified
expression for !̂k;i is then

var(!̂k;i )�
1

SNRk(N � 5k + 1)2(cos(2k!)+ 2)2 sin2(k!)
:

(23)

It is observed that for k = 1, the standard error is of orderN�1 whereas
that of the ML approach is of order N�3=2, which indicates the sub-
optimality of the proposed estimator. Nevertheless, the error is also a
function of k for k > 1, and Section III illustrates that (23) can ap-
proach the CRLB. Furthermore, the variance of the our approach is fre-
quency dependant and we believe that the nonuniform performance re-
sults from the use of only two sample covariances, namely, rk and r2k ,
instead of all appropriate terms in the estimation process. Ignoring the
trigonometric terms in (23), we see that the frequency variance gener-
ally decreases when sample covariances with higher lags are employed,
which agrees with the intuitive observation in [21].

Expression (23) also indicates that there exists an optimal value of
k for a particular frequency. The best choice from f!̂k;i g can be de-
termined by minimizing (23). Using (23), the ideal k, denoted by k�,
is then sought as

k� = arg max (k(N
k2f1;2;...;k g

�5k + 1)2(cos(2k!)+ 2)2 sin2(k!) :

(24)

Since ! is not available in (24), we will substitute cos(k!) with �̂k in
practice. After simple manipulations, the practical k is finally evaluated
as

k� = arg max(k(N
k2f1;2;...;k g

�5k + 1)2(2�̂2k + 1)2(1� �̂2k)): (25)

In summary, the procedure of finding the best frequency estimate based
on the proposed approach consists of the following three steps, namely:
1) compute all �̂k , k = 1; 2; . . ., kmax using (12), (13), and (16);
2) determine k� using (25); and 3) determine i� using (17) and (18)
and the optimal estimate is then given by !̂k ;i . It is noteworthy to
point out the our work is similar to [13], where a phase unwrapping
rule analogous to (18) is suggested for single complex-tone frequency
estimation with optimum k, namely, k� = 2N=3, which is frequency
independent.

Finally, the computational complexity of the proposed approach with
k = 1 and k = k�, together with that of the ML, MC, PHD, RPHD,
and DFS five-term linear interpolator algorithms, is listed in Table I. It
is seen that the modified Pisarenko’s method with k = 1, MC, PHD,
and RPHD estimators involves similar operation requirements. When
k = k� is employed, there is an increase in complexity of approxi-
mately kmax times compared with that of k = 1, while the compu-
tational requirement of the DFS interpolator is of order N log2N . As
kmax is generally greater than log2N , the DFS scheme is computa-
tionally simpler than the proposed method with k = k�. Note that the
ML implementation is the most computationally expensive because the
operations in Table I only correspond to a single frequency point cal-
culation in the ML cost function.
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Fig. 1. Mean square frequency error versus ! at SNR = 20 dB and N = 256

with k = 1.

III. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the proposed
approach for frequency estimation of a single real sinusoid in white
Gaussian noise. We compared its performance with that of the ML [6],
MC [15], [16], PHD [20], RPHD [17], and DFS interpolator [7] al-
gorithms as well as CRLB for frequency estimation [24]. Note that the
DFS interpolator can be employed for frequency estimation of multiple
real or complex tones while the other estimators are specially designed
for the signal model of (1) and (2) and thus they are only useful for
real signals having a single frequency component. The tone amplitude
was

p
2 and � = 1 was used, while different SNRs were obtained by

proper scaling the noise variance �2. All simulation results provided
were based on average of 1000 independent runs.

Fig. 1 shows the mean square frequency errors (MSFEs) of the six
estimators as well as CRLB versus ! at SNR = 20 dB and N = 256.
The proposed algorithm employed r1 and r2 of (8) and (9), which cor-
responded to the simple version of k = 1, so that the comparative per-
formance with different forms of sample covariances can be observed.
The variance expressions of the frequency estimate based on (21)–(23)
are also plotted to check the validity of theoretical performance of the
modified Pisarenko’s method. We observe that the former predicted
the performance of the proposed method very well while there was
small discrepancy for the latter. Note that the calculated values of using
(A.11) are not shown because the differences between (21) and (22)
were negligible for N = 256. From Fig. 1, it is seen that the proposed
scheme is superior to other three low-complexity algorithms particu-
larly when ! was around 0:3� or 0:7�, although all four of them were
suboptimal estimators because of their degradation from the CRLB.
On the other hand, the most computationally expensive ML estimator
could provide the best estimation performance while the accuracy of
the DFS interpolator was nearly optimum except when ! was close to
0 or �, which resulted from the DFS frequency resolution limitation.
The mean absolute frequency errors of the six methods, which were
the absolute differences between ! and the corresponding mean fre-
quency estimates, are shown in Fig. 2. It is observed that the biases
of the modified Pisarenko’s estimator with k = 1, DFS interpolator,
ML, and RPHD methods were much smaller than those of the PHD
and MC methods for the whole frequency range, which demonstrates
the asymptotically unbiasedness of the proposed algorithm.

Fig. 3 illustrates the performance improvement of the proposed ap-
proach with the use of the optimal set of rk and r2k . The simulation

Fig. 2. Mean frequency error versus ! at SNR = 20 dB and N = 256 with
k = 1.

Fig. 3. Mean square frequency error versus ! at SNR = 20 dB and N = 256

with optimum k.

settings were the same as in Fig. 1. It is observed that the modified
Pisarenko’s estimator with the practical k determined from (25) sig-
nificantly outperformed that of k = 1, and it gave nearly uniform fre-
quency estimation performance. Its MSFEs deviated from the CRLB
only within 2 dB, and the validity of the theoretical calculations was
again confirmed. We also see that there was no difference in perfor-
mance when the ideal k of (24) was employed.

Fig. 4 shows the MSFEs of the six estimators versus SNR at N =

256 while Fig. 5 plots the mean square errors versus N at SNR =

20 dB. In both cases, the frequency was fixed at ! = 0:3�. It is seen
that the proposed approach outperformed the other three computation-
ally simple frequency estimation methods, even with k = 1, although
the performance with k� was much closer to the CRLB or that of the
DFS interpolator and ML estimator. We also observe from Fig. 4 that
the DFS interpolator was a biased estimator at SNR � 30 dB. In addi-
tion, the proposed algorithm outperformed the DFS method for SNR
> 30 dB because of the bias resulted from presence of the second neg-
ative-frequency sinusoid, which had a prominent effect at high SNR
conditions, while the latter provided better estimates for SNR� 20 dB
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Fig. 4. Mean square frequency error versus SNR at ! = 0:3� and N = 256.

Fig. 5. Mean square frequency error versusN at! = 0:3� and SNR= 20 dB.

as the bias was now negligible. That is, the DFS interpolator is supe-
rior to the proposed scheme in terms of smaller computational load and
higher accuracy in low SNR conditions.

IV. CONCLUSION

Novel sample covariance expressions are proposed for the PHD
method to achieve asymptotically unbiased frequency estimation for
a single real tone in white noise. Extension to sample covariances
with higher lags is investigated and the procedure of finding the best
estimate among all admissible solutions from various sets of sample
covariances is presented. The performance of the proposed approach
is theoretically analyzed and confirmed via computer simulations. The
simple version of the new method has higher estimation accuracy than
that of the modified covariance, PHD, and reformed PHD algorithms
although their computational requirements are comparable, while
the optimum version of our proposal can provide more accurate and
nearly uniform estimation performance but with higher computational
complexity. As a research work, we will derive the limiting distribution
[9], [18] of the proposed approach.

APPENDIX

In this appendix, we first prove the asymptotically unbiasedness of
the frequency estimator and then the derivation of (21) will be given.
Using Taylor’s series to expand f(�̂k) around �k = cos(k!) up to the
first-order term yields

�̂k � cos(k!)�
f(�̂k)

f 0(�̂k) �̂ =cos(k!)

: (A.1)

The expression of f 0(�k) is simply

f
0(�k) = 4rk�k � r2k (A.2)

From (12) and (13), rk and r2k can be expanded as

rk=(N�5k+1)�2 cos(k!)+�
2 cos(k!)

N�2k

n=3k

cos(2n!+2�)

+

N�k

n=4k

s(n�k) [q(n)+q(n�2k)]+2 cos(k!)s(n�k)q(n�k)

+ q(n� k) [q(n) + q(n� 2k)] (A.3)

r2k=(N�5k+1)�2 cos(2k!)+�
2 cos(2k!)

N�2k

n=3k

cos(2n!+2�)

+

N

n=5k

s(n� 2k) [q(n) + q(n� 4k)]

+2 cos(2k!)s(n�2k)q(n�2k)+q(n�2k)[q(n)+q(n�4k)]:

(A.4)

Using (19) and (A.2)–(A.4) and considering N !1, the second term
of (A.1) is calculated as

lim
N!1

f(�̂k)

f 0(�̂k) �̂ =cos(k!)

= lim
N!1

1
N
f(�k)

1
N
f 0(�k)

=
2�2 cos(k!)�2k � �2 cos(2k!)�k � �2 cos(k!)

4�2 cos(k!)�k � �2 cos(2k!)

=
0

2 cos2(k!) + 1
= 0 (A.5)

which shows that the proposed estimator is asymptotically unbiased.
We now derive (21) as follows. From (19), it is easy to show that

Eff2(�̂k)g j� =cos(k!)= cos2(2k!)Efr2kg

�2 cos(k!) cos(2k!)Efrkr2kg+ cos2(!)Efr22kg: (A.6)

The required terms, namely, Efr2kg,Efrkr2kg, andEfr22kg, are com-
puted as

Efr2kg

=�
4 cos2(k!)[(N � 5k + 1) + g(!; �;N � 2k; 0; 3k)]2

+ �
2
�
2[4N � 22k + 4 + (4N � 24k + 4) cos(2k!)]

+ �
2
�
2[(1 + 2 cos2(k!))g(!;�;N � 2k; 0; 3k)

+ g(!; �;N � 2k;�2k; 5k)

+ 4 cos(k!)g(!;�;N � 2k;�k; 4k)]

+ 2(2N � 10k + 2)�4 (A.7)

Efrkr2kg

=�4cos(k!) cos(2k!)[(N�5k+1)+g(!;�;N�2k; 0; 3k)]2

+�
2
�
2[(4N�24k+4)cos(k!)+(4N�26k+4) cos(3k!)]

+�
2
�
2[(2 cos(2k!) + 1)g(!;�;N � 2k;�k; 4k)

+ 2 cos(k!) cos(2k!)g(!;�;N � 2k; 0; 3k)

+2 cos(k!)g(!;�;N � 2k;�2k; 5k)

+ g(!; �;N�2k;�3k; 6k)] (A.8)
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var(�̂k)

�
2k + F(!; �;N; k) + G(!;�;N; k) +H(!;�;N; k)

2SNR(N � 5k + 1 + g(!; �;N � 2k; 0; 3k))2(cos(2k!) + 2)2
+

cos2(k!)(N � 6k + 1) + cos2(2k!)(N�5k+1)

SNR2(N�5k+1+g(!;�;N � 2k; 0; 3k))2(cos(2k!)+2)2
:

(A.11)

and

Efr22kg

=�4 cos2(2k!)[(N � 5k + 1) + g(!; �;N � 2k; 0; 3k)]2

+ �2�2[4N � 24k + 4 + (4N � 28k + 4) cos(4k!)]

+ �2�2[4 cos(2k!)g(!;�;N � 2k;�2k; 5k)

+ (2 cos2(2k!) + 1)g(!;�;N � 2k; 0; 3k)

+g(!; �;N� 2k;�4k; 7k)] + 2(2N � 12k + 2)�4 (A.9)

where

F(!;�;N; k)

= cos2(2k!)[(1 + 2 cos2(k!))g(!;�;N � 2k; 0; 3k)

+ g(!; �;N � 2k;�2k; 5k)

+ 4 cos(k!)g(!;�;N � 2k;�k; 4k)]

G(!;�;N; k)

= � 2 cos(k!) cos(2k!)

� [(2 cos(2k!)+1)g(!;�;N � 2k;�k; 4k)

+ 2 cos(k!) cos(2k!)g(!;�;N � 2k; 0; 3k)

+ 2 cos(k!)g(!;�;N � 2k;�2k; 5k)

+ g(!; �;N � 2k;�3k; 6k)]

H(!;�;N; k)

= cos2(k!)[4 cos(2k!)g(!;�;N � 2k;�2k; 5k)

+ (2 cos2(2k!) + 1)g(!;�;N � 2k; 0; 3k)

+ g(!; �;N � 2k;�4k; 7k)]

and

g(!;�;N; k; b)

=

N

n=b

cos((2n+ k)! + 2�)

=
sin((2N + k + 1)!+2�)�sin((2b� 1) + k)! + 2�)

2 sin(!)
:

In a similar manner, we get

Eff 0(�̂k)g

= �2(cos(2k!) + 2)(N � 5k + 1 + g(!; �;N � 2k; 0; 3k)):

(A.10)

Substituting (A.6)–(A.10) into (20) with SNR = �2=(2�2) and after
simplifications, we obtain (A.11), shown at the top of the page. For
sufficiently large N , the terms F(!;�;N; k), G(!;�;N; k), and
H(!;�;N; k) can be ignored since they will approach to zero with a
convergence rate of N�1. In doing so, the asymptotic expression of
(21) is obtained.
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