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Abstract—Multiple-Input Multiple-Output (MIMO) systems can 
provide two kinds of gain: diversity gain and multiplexing gain. 
Most existing MIMO schemes, including space-time coding and 
layered space-time, aim at maximizing either of them. Therefore, 
it is desirable to design a scheme to get a better tradeoff between 
the multiplexing gain and diversity gain.  In this paper, a novel 
Quasi-Orthogonal Group Space-Time (QoGST) architecture is 
proposed. In QoGST, the transmit stream is divided into several 
groups and all the groups are encoded via an inter-group space-
time block encoder. Group interference suppression is adopted at 
the receiver.  Performance is evaluated in terms of symmetric 
energy and it will be shown that compared to the Group Layered 
Space-Time (GLST) architecture, the proposed QoGST can 
achieve a higher symmetric energy and a better diversity-
multiplexing tradeoff. Simulation results will validate our 
analysis and show that QoGST can achieve at least 3 dB gain 
over GLST at a FER of 10-3, for instance. 

Keywords- Group detection, MIMO systems, Space-time block 
coding, Layered space-time, Quasi-orthogonal group space-time, 
Symmetric energy. 

I.  INTRODUCTION 
MIMO (Multiple-Input Multiple-Output) systems have 

shown their ability in providing great performance 
improvements over the SISO (Single-Input Single-Output) 
system thanks to their higher spectral efficiency [1-3]. It has 
been well understood that a MIMO system can provide both 
diversity gain and multiplexing gain [4]. However, most 
existing MIMO techniques aim at achieving either maximum 
diversity gain or maximum multiplexing gain. For example, 
space-time codes (STC) [5-6] are carefully designed to achieve 
the full diversity order, but no multiplexing gain can be 
obtained. Layered space-time (LST) [7] can achieve maximum 
multiplexing gain but with a very low diversity gain.  

In order to achieve a better tradeoff between multiplexing 
gain and diversity gain, [8] presented a combined array 
processing and space-time coding architecture, in which the 
transmit stream is partitioned into different groups and in each 
group STC is applied. At the receiver, group interference 
suppression is adopted, where each individual STC is decoded 
by suppressing the signals transmitted from other groups. This 
combination of STC and LST provides much better 
multiplexing gain than STC with lower decoding complexity, 
while at the same time achieving a much higher diversity gain 
than LST. [8] presents a good example on how to get a tradeoff 

between multiplexing gain and diversity gain. However, in this 
architecture, the substreams of each group are encoded 
independently. No special transmit design is adopted to 
suppress the interference among the groups. Besides, the 
mapping from the substreams to the antennas is constant over 
the whole time interval. As a result, no interleaving gain can be 
achieved. At the receiver, space-time decoding is performed for 
each group by assuming that the interference has been 
suppressed by virtue of a group detector. Therefore, the overall 
performance is limited by the group detection step.  

In order to improve the performance of [8], this paper 
presents a novel group space-time architecture: Quasi-
Orthogonal Group Space-time (QoGST). In this new 
architecture, all the groups are encoded together via an inter-
group STBC. To keep the same spectral efficiency as [8], we 
assume that in each group no space-time coding is adopted. 
Particularly, at each time slot t, we regard the transmit vector of 
each group as one symbol and apply STBC on all the transmit 
vectors. It can be seen that with this inter-group STBC, the 
interference among groups can be effectively suppressed 
because of the orthogonal nature of STBC. Therefore, QoGST 
should have a better interference suppressing capability. 
Besides, interleaving gain can be achieved due to the use of the 
inter-group encoder.  At the receiver, and in contrast to the 
detector used in [8], space-time block decoding is performed 
before group detection is applied. Specifically, for the case of 
m transmit and n receive antennas during T time slots, the 
linear nature of STBC can be exploited to obtain an equivalent 
Tn m×  channel [9]. Group detection is then applied based on 
this equivalent channel. It can be seen that after decoding, the 
receive dimensions increase from n to Tn and thus much better 
performance can be achieved by group detection. In this paper, 
we shall always assume that this novel detector is adopted 
instead of the one used in [8]. For the sake of comparison, the 
combination of the transmission structure proposed in [8] with 
STBC in each group and the proposed detector is considered in 
this paper. This architecture, which we refer to as Group 
Layered Space-time (GLST), should be distinguished from the 
one proposed in [10] as we adopt a different detection 
methodology. 

The performance of QoGST and GLST is evaluated in 
terms of symmetric energy (SE) which is an indicator of the 
overall performance of a multiuser detector in terms of the joint 
error rate defined as the probability that at least one user is 
detected erroneously [11]. SE was first proposed for CDMA 
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systems, while in this paper we apply it to MIMO systems and 
analyze the SE of QoGST and GLST. It will be shown that 
QoGST has a higher SE than GLST, which indicates a better 
interference suppressing capability. Simulation results will 
validate our analysis and show that for m =4 and n =2, QoGST 
can achieve at least 3 dB gain over GLST at a FER of 10-3, for 
example. When m =6 and n =3, this gain even increases to 7 
dB! It will be also demonstrated that QoGST can obtain a 
higher diversity gain while keeping the same spectral 
efficiency as GLST. This implies that with QoGST a better 
diversity-multiplexing tradeoff can be achieved. 

This paper is organized as follows. In Section II, we 
provide our channel model and briefly present the group 
detection scheme. In Section III, we introduce the transmitter 
and receiver design of GLST and QoGST. Section IV presents 
the performance analysis which is evaluated in terms of SE. 
Simulation results are given in Section V. Finally, Section VI 
summarizes and concludes this paper. 

II. CHANNEL MODEL AND GROUP DETECTION 
We consider in this paper a wireless link with m transmit 

and n receive antennas, which we refer to as (m, n). At each 
time slot t, the encoded and modulated signal i

tx  is transmitted 
through transmit antenna i, 1 i m≤ ≤ . We assume that the 
channel remains constant within a block of L symbols. Let ijh  
denote the complex path gain from transmit antenna j to 
receive antenna i, which is modeled as samples of independent 
complex Gaussian random variables with mean zero and 
variance 0.5 per dimension. We also assume a perfect channel 
knowledge at the receiver side only, through the use of training 
sequences. 

Let ( ) '⋅  denote the transpose operator. The discrete 
received complex signal vector can now be written as 

SNR
m

= +t t ty Hx z    (1) 

where ( )'1 2, ,..., m
t t tx x x=tx  and ( )'1 2, ,..., n

t t ty y y=ty . The 

additive noise tz  has i.i.d. entries i
tz , 1,...,i n= , which are all 

Gaussian random variables with mean zero and unit variance. 
Also SNR  is the average signal-noise ratio at each receive 
antenna. 

Assume that the transmit signals are divided into G groups, 
1 2, ,..., GG G G , with group size | |iG , i=1,…,G. Then, (1) can be 

written as 

1 2
, ,...,

G

SNR
m

 
 
  = ⋅ +   
 
  

1
t
2
t

t t

G
t

s
s

y H H H z

s

G G G
        (2) 

where i
ts  is the transmit vector of group iG  at time slot t, 

t=1,…,L and i=1,…,G. 
i

HG  is the | |in× G  channel matrix of 
group iG , i=1,…,G. 

Throughout this paper, we assume that a Group Zero-
Forcing (GZF) receiver is adopted. In particular, at time slot t, 

group iG  is assumed to be detected. Then, the interference 
from the other groups 1 1 1,,..., , ...,i i G− +G G G G  should be nulled 
out using an orthogonal projection. To obtain the projection 
matrix, we partition H into ,

i i
 =  H H HG G

, where 
i

HG
 

includes the columns of H corresponding to the groups except 
iG . The projection matrix 

i
PG  is then defined as [12]: 

1( )
i i i i i

+ − += −nP I H H H HG G G G G
, where ( )+⋅  denote the complex 

conjugate transpose. Therefore, using the transformation 

i i

+=iW H PG G  on ty , we have 

1
i i i i

iSNR SNR
m m

+ −= = + = +i i
t i t t t t ty W y H P H s z Q s zG G G G

 (3) 

where 1
i i i i

− +=Q H P HG G G G . Actually we know that 
i

QG is the 

| | | |i i×G G  diagonal submatrix of ( ) 1−+H H  and the noise tz  

has covariance 1
i

−QG . 
The transmit symbols of group iG  at time slot t can then be 

decoded using MLD based on i
ty : 

( )ˆ arg min
i

+
=

i
t

i i i
t t t

s
s r Q rG         (4) 

where 
1
i

SNR
m

−= −i i i
t t tr y Q sG          (5) 

Throughout this paper, we denote by *( )⋅  and det( )⋅  the 
conjugate and the determinant operators, respectively. mI  
represents an m m×  identity matrix. S  represents the 
complement of a set S with the length | |S . 

III. COMBINED STBC AND LST 
We begin by presenting GLST, and then present the details 

of our proposed QoGST architecture. 

A. GLST 
A.1 Transmitter 

As shown in Fig. 1, all the m transmit antennas are 
partitioned into G groups, respectively, comprising 

1 2, ,..., Gm m m  antennas. A block of input bits 1...{ }i i mb =  is 
divided into G groups, 1 2, ,..., GG G G , and in each group, 

'
,1 ,2 ,| |[ , ,..., ]

ii i ib b b=ib G , i=1,…,G, is then encoded by a 
component space-time block code iSTBC  associated with im  
transmit antennas. Assume that all the component codes 

iSTBC , i=1,…,G, have the same code length T and we have 
| |i im g= =G , i=1,…,G. Then, the output m T×  codeword 

matrix X  over a block of T symbol intervals can be written as 
1 1
1

1

T

m m
T

x x

x x

     
     = = =     
         

1 1
1 T 1

G G
1 T G

s s S
X

s s S

 (6) 
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Fig. 1:  Block diagram of GLST 

where [ , , ]= i i
i 1 TS s s  is the g T×  codeword matrix of group 

iG , i=1,…,G. 
As we know, an m-antenna-T-time-slot-k-symbol STBC xO  

can be represented as * * *, ,...,x  = + 1 1 2 2 T TA x B x A x+B x A x+B xO , 

where x  is an 1k ×  complex variable vector and ,i iA B  are 
constant coefficient matrices in m k×R . The matrix xO  is called 
[m, T, k] STBC for short in the following. Therefore, 

iS  can 
be written as  

[ ],..., , ..., = +  
* *

i i1 i iT i i1 i iT iS A b A b B b B b ,    (7) 

for i=1,…,G, where ,ij ijA B  are constant coefficient matrices in 
g g×R , j=1,…,T.  

   It can be seen that in this transmit architecture, the bit streams 
of each group are space-time coded. Therefore, a higher 
diversity gain can be achieved compared to the conventional 
LST. Besides, the multiplexing gain is higher than the 
conventional STBC due to the use of multiple group 
transmission. We can thus conclude that this transmit scheme 
offers a good tradeoff between the diversity gain and 
multiplexing gain. 

A.2 Receiver 
The detector presented in [8] is to suppress signals 

transmitted from other groups of antennas by virtue of a group 
detector first, and then perform space-time decoding for the 
desired group. In this paper, we adopt a new detector, in which 
space-time decoding is performed first and then do group 
detection. To do so, an equivalent channel is obtained by virtue 
of the linear nature of STBC. GZF is then performed. 
Particularly, by combining (6) and (7), the received signal 
vector can be written as 

[ ] [ ]

[ ] [ ]

1 1

1 11 1 1 1

* *
1 1

1 11 1 1 1
* *

,..., , , ,...,

,..., , , ,..., .

G G T G GT

G G

G G T G GT

G G

SNR
m

SNR
m

    
    = ⋅ ⋅ +    
        

    
    ⋅ ⋅ +    
        

b b
Y H A H A H A H A

b b

b b
H B H B H B H B Z

b b

 (8) 

After a series of linear transformation, finally we can get 

1

1

,...,
G

G

SNR
m

 
  = ⋅ +   
  

b
r H H z

b
G G

   (9) 

where ' ' '
1[ ,..., ]T=r y y  and 

*

,
,

j ij g g
j

j ij g g

×

×

=
=  =

y B 0
y

y A 0
, 

jy  represents 

t he  j - t h  co l u mn  vec to r  o f  Y ,  j=1 ,…, T .  Fo r  a n y  
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 Fig. 2:  Block diagram of QoGST 

group 
iG , i=1,…,G, the corresponding sub-channel matrix is 

given by 
* *

1 1

* *
i

i i i i

i iT i iT

 +
 =  
 + 

H A H B
H

H A H B
G

.    (10) 

From (9) and (10) it is clear that after obtaining this Tn m×  
equivalent channel of GLST, the decoding process is done. 
Group detection can then be applied so as to get the original 
transmit symbols.  

B. QoGST 
B.1 Transmitter 

In GLST, the bit streams of each group are encoded 
separately so that the output streams S1, S2, …, SG are 
independent of each other. No special transmit design is 
adopted to suppress the interference among the groups. 
Besides, the mapping from different groups to the transmit 
antennas is always fixed over all the time slots. Therefore, no 
interleaving gain can be achieved. In this section, we present a 
new space-time architecture, in which all the groups are 
encoded together via an “inter-group STBC” encoder. As Fig. 
2 shows, instead of being encoded separately, all the groups are 
encoded together. The design of the inter-group STBC is given 
by 

* *
1 1,..., ,...,T T   = +   X A b A b B b B b              (11) 

where 
1 ,...,j j Gj =  A A A , 

1 ,...,j j Gj =  B B B ,    (12) 
and  

i
ij j g= ⊗A A I , i

ij j g= ⊗B B I ,       (13) 
for  i=1,…,G and j=1,…,T. i

jA and i
jB  are the ith column vector 

of 
jA  and 

jB , respectively. 
jA  and 

jB , j =1,…T, are the 
coefficient matrices of a [G,T,G] STBC.  

To further illustrate this encoding process, we consider the 
following example. Assume that the bit streams are divided 
into G=2 groups and transmitted by m=4 transmit antennas 
over T=2 time slots. For a 2-symbol-2-time-slot STBC, the 
coefficients 

1 2 1 2, , ,A A B B  are given by 

1

1 0
0 1
 =  
 

A , 
2

0 1
1 0

− =  
 

B , 
2 1 2 2×= =A B 0 .      (14) 

Then, 
1 2 1 2, , ,A A B B  can be computed via (12-14) and the 

output codeword matrix of QoGST is given by 
'

1,1 1,2 2,1 2,2
* * * *
2,1 2,2 1,1 1,2

QoGST

b b b b
b b b b

 
=  − − 

X     (15) 
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Compared to the codeword matrix of GLST: 
'

1,1 1,2 2,1 2,2
* * * *
1,2 1,1 2,2 2,1

GLST

b b b b
b b b b

 
=  − − 

X    (16) 

it is obvious that in QoGST the mapping from the bit streams 
of different groups to the transmit antennas is not constant any 
more. Therefore, a higher diversity gain can be achieved thanks 
to the interleaving gain. Besides, here STBC is applied to the 
transmit vectors. The interference among the groups is not 
independent any more and thus can be better suppressed.  

B.2 Receiver 
From (11), the received signal vector can be written as 

1 1

11 1 1

* *
1 1

11 1 1
* *

,..., , , ,...,

,..., , , ,..., .

G T GT

G G

G T GT

G G

SNR
m

SNR
m

    
       = ⋅ ⋅ +       
        

    
       ⋅ ⋅ +       
        

b b
Y HA HA HA HA

b b

b b
HB HB HB HB Z

b b

 (17) 

Similarly, we can get 

1

1

,...,
G

G

SNR
m

 
  = ⋅ +   
  

b
r H H z

b
G G

   (18) 

where for i=1,…,G, 

 
* *

1 1

* *
i

i i

iT iT

 +
 =  
 + 

HA H B
H

HA H B
G

.                    (19) 

Given r  , group detection can then be applied.  

IV. PERFORMANCE  EVALUATION 

In this section, we evaluate the performance of QoGST and 
GLST in terms of Symmetric Energy (SE). Since the full rate 
design exists only when the transmit antennas are two, we 
consider Alamouti’s scheme in the following analysis. Besides, 
QPSK is assumed to be adopted.  

SE is proposed in [11] as an indicator of the overall 
performance of a multiuser detector in terms of the joint error 
rate defined as the probability that at least one user is detected 
erroneously. It reflects the interference suppressing capability 
of a multiuser detector. SE is defined by: 

( ) ( )2 2
1min ,..., GE D Dφ =             (20) 

where iD  is the minimum distance of the matrix 1
i

−QG . That 

is, ( )2 1

ˆ / 2
min

i
i i

iD −

=
= '

e b -b
e Q e

G G
G

, where 
i

QG  is the | | | |i i×G G  

diagonal submatrix of ( ) 1−+H H  as shown in Section II. 
Obviously, a higher SE indicates better interference 
suppressing capability. 

According to (10) and (19), we can get 
i

GLSTQG  and 
i

QoGSTQG , 
respectively. Then, from (20) the SE of GLST and QoGST can 
be computed. Figs. 3 and 4 present the SE averaged over 1000 
frames. Since the equivalent channel matrice of QoGST and 

GLST with the element given by (10) and (19), respectively, 
both have Tn m×  dimensions, for comparison, we also draw the 
SE curve of an (m, 2n) system over Rayleigh quasi-static 
channels with GZF (we refer it to as (m, 2n) GZF in the 
following text). As Fig. 3 shows, when m =4, QoGST always 
has the highest SE, which indicates that QoGST has the best 
interference suppressing capability. GLST has a lower SE than 
QoGST, but a higher SE than (m, 2n) GZF. Both QoGST and 
GLST have better SE than (m, 2n) GZF thanks to the coding 
gain. QoGST can achieve even better performance than GLST 
since it further suppresses the interference with STBC among 
groups. Moreover, it can be also seen that the slopes of these 3 
curves are equal. This is because they have the same group size 
gQ =gL=g=2. 
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Fig. 3:  Symmetric Energy vs. n for QoGST and GLST when m =4. 

Fig. 4 shows the SE comparison when m =6. In this case, 
QoGST and GLST have different group sizes. In GLST, STBC 
is adopted inside each group. Therefore, the group size gL has 
to be 2 and there are totally GL=3 groups. However, for 
QoGST, STBC is applied among the groups. Therefore, 
GQ=gL=2 and gQ=3. From Fig. 4, it can be seen that QoGST not 
only has a much higher SE than GLST but also the gain will 
increase as n increases. This is because QoGST has a larger 
group size (gQ=3) than GLST (gL =2). The comparison of 
GLST and (m, 2n) GZF shows that, when they have an equal 
group size (gL=g=2), GLST always has a higher SE than (m, 
2n) GZF but with the same slope. The same conclusion can be 
also obtained for QoGST and (m, 2n) GZF with gQ =g=3. 
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Fig. 4:  Symmetric Energy vs. n for QoGST and GLST when m =6. 
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V. FER RESULTS AND DISCUSSIONS 
We have shown that our new scheme QoGST has a better 

SE than GLST. In this section, we further compare their FER 
performance. QPSK is assumed to be adopted and the FER is 
averaged over 10,000 frames. As Fig. 5 shows, when m =4 and 
n =2, QoGST can achieve a gain of 3 dB over GLST at a FER 
of 10-3. This observation validates our analysis: QoGST has a 
higher SE than GLST. Besides, in high-SNR regime, the FER 
curve of QoGST has a larger slope than that of GLST, which 
implies that QoGST has a better diversity gain. Notice that 
these two schemes have the same spectral efficiency. As a 
result, we can conclude that QoGST achieves a better 
diversity-multiplexing tradeoff. 

5 10 15 20 25
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F
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R

GLST, GL=2, gL=2  

QoGST, GQ=2, gQ=2 

(m,2n) GZF, G=2, g=2

 
Fig. 5:  FER vs. SNR curves of QoGST and GLST when m =4 and n =2. 

When m =6 and n =3, the performance gap between QoGST 
and GLST becomes even larger. From Fig. 6 it can be seen 
that in this case QoGST can achieve at least 7 dB gain at a 
FER of 10-3, and the FER curve of QoGST is much steeper 
than that of GLST, which implies a much better diversity gain. 
As shown in Section IV, in this case QoGST has a larger 
group size, i.e., gQ=3> gL=2. Therefore, the performance gain 
is even more significant. Besides, both QoGST and GLST can 
achieve better FER performance over the corresponding (m, 
2n) GZF with g=gQ or g= gL, thanks to their coding gain. 
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Fig. 6:  FER vs. SNR curves of QoGST and GLST when m =6 and n =3 

VI. CONCLUSIONS 
In this paper, we proposed a novel space-time architecture, 

Quasi-Orthogonal Group Space-time (QoGST), in which the 
transmit stream is partitioned into several groups and all the 
groups are encoded together via a Quasi-orthogonal inter-group 
STBC coder. This inter-group encoder effectively suppresses 
the interference among the groups and the interleaving gain can 
be also achieved. We analyzed its SE and found that compared 
with GLST, QoGST has a higher SE and a better diversity-
multiplexing tradeoff. The simulation results validate our 
analysis and demonstrated that QoGST can achieve at least 3 
dB gain over GLST at a FER of 10-3. 
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