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Abstract— MIMO systems have been shown to provide 
significant performance gains over traditional single antennas 
systems that fall in two categories: diversity and multiplexing 
rate.  A tradeoff between these gains was recently put in evidence 
and has been quantified with the optimal detection. In this paper, 
we consider the evaluation of such tradeoff when group detection 
is applied and particularly when the Group Zero Forcing (GZF) 
receiver structure is considered. To do so, we will define and 
evaluate the outage probability per group and derive the tradeoff 
obtained by each of the groups. The overall system tradeoff will 
be then given by the minimum group tradeoff performance. 
Optimal rate allocation will also be proposed so as to maximize 
GZF tradeoff performance. Comparison for a given group 
partition, with equal rate allocation will show that optimal rate 
allocation allows us to both maximize the diversity and the 
multiplexing rate of GZF. Furthermore, considering a fixed 
number of antennas, we will find the minimum required number 
of groups for a given tradeoff level, as well as, the optimal group 
partition that maximizes the system tradeoff.  Numerical results 
will demonstrate the optimality of this scheme. Significant 
diversity gains will be put in evidence demonstrating that GZF 
can efficiently bridge the gap between BLAST and the optimal 
receiver while offering lower levels of complexity. 
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I.  INTRODUCTION 
Multiple Input Multiple Output systems (MIMO) have 

been shown to provide significant performance gains over 
traditional single antennas systems [1]. These gains fall into 
two categories: Diversity and Spatial Multiplexing [2]. Most of 
previously designed MIMO systems have focused on the 
maximization of either types of gains. Examples include 
Space-Time Codes (STC) [3] and orthogonal designs [4] that 
achieve full diversity gains. V-BLAST [5] is another example 
that achieves unprecedented data rates. However, these 
examples have been shown to present high capacity [2, 5, 6] 
and diversity loss [2], respectively. 

Recently, it was found that both gains can be achieved 
simultaneously with a single system, but a fundamental 
tradeoff would relate how much gain of each type could be 
obtained [2]. Several attempts have been made to design 
systems that achieve a better tradeoff than the previously 
mentioned schemes. We cite for example the work in [7] and 
[8]. These systems consist in combining STC [7], or STBC [8] 

with V-BLAST to achieve higher data rates than STC/STBC 
schemes and higher diversities then BLAST type schemes. 
Group detection [9-10] has played an important role in the 
design of these schemes. In this case, signals are arranged in 
groups and assigned one space-time component code. Group 
detection is then applied at the receiver to separate the 
differently coded groups. Decoding is next processed inside 
each group independently of others. Diversity type schemes 
and capacity type schemes have been hence enabled to co-
operate together through the use of group detection. 

In this paper, we consider a MIMO system where group 
detection is deployed. Signals are arranged into different 
groups and retrieved in groups, simultaneously and in parallel. 
Such receiver is denoted here by GZF such as in [11]. We will 
evaluate here the diversity-multiplexing tradeoff of GZF. The 
obtained tradeoff performance will be used as a comparison 
benchmark for any scheme using GZF receiver. To do so, we 
first define and evaluate the outage probability per group. We 
will show such probability both lower and upper bound the 
group frame error rate and obtain a diversity-multiplexing 
tradeoff for each group. Next, we will demonstrate that the 
overall system tradeoff is given by the worst group tradeoff 
performance.  

Assuming a given group partition, we will propose in this 
paper the optimal rate allocation algorithm that maximizes the 
system tradeoff performance. Comparison with the widely 
used rate allocation scheme, which allocates rates equally 
among groups, will demonstrate significant gains in both 
diversity and data rates.  Further, we will consider a fixed 
number of antennas and we will find the optimal number of 
groups as well as the optimal group partition associated to that 
number which maximizes the system tradeoff assuming 
optimal rate allocation scheme among groups. Such a process 
will enable the optimization of the system configuration for a 
maximum performance. Results will confirm the optimality of 
this scheme by demonstrating unprecedented diversity gains.  

This paper is organized as follows. Section II describes the 
adopted system model, as well as, the different notations used 
throughout the paper. In Section III, we derive and evaluate the 
outage probability per group along with its corresponding 
tradeoff. In Section IV, the GZF tradeoff performance is 
provided. In Section V, the optimal rate allocation scheme is 
proposed to maximize the system performance. Simulations 
results are provided in Section VI and conclusions are given in 
Section VII. 
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II. SYSTEM MODEL 
We consider throughout this paper the transmission of K 

encoded signals, drawn from the same constellation, over  
time symbols through K antennas with an overall data rate R . 
These signals are divided into G groups and are assigned 
different data rates for transmission. Let the notation “ | |g ” 
represent the size of the gth group and Rg its corresponding 
data rate. Then, 

1

| |
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g

K g
=

= ∑  and 
1
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g

g

R R
=

= ∑ . 

Let the | g | ×  matrix gX  denote the gth group 

transmitted matrix and
1 2, , ,

TT T T

GX X X X=   … . Each of these 
signals undergo a slowly Rayleigh fading channel, denoted by 
H, to reach a receiver with N antennas, such that N K≥ . We 
assume that the channel is constant within a frame of  
symbols and denote by H the N K≥  channel realization 
matrix. We shall also assume perfect channel knowledge at the 
receiver side only, perfect symbol synchronization and equal 
transmission power. The discrete model of the N × received 
complex signal vector can then be written as 

SNR
H

K
= +Y X V                          (1) 

where V  is a noise 2(0, )σ ×N NIN  distributed and SNR is the 
average received signal to noise ratio per receive antenna. 
When GZF is used at the receiver, groups are retrieved in 
parallel and simultaneously. Only one stage of detection is 
applied where data from each group are detected 
independently from each other. By doing so, a per-group 
sufficient statistic vector is obtained and is denoted by 

GZF

gY for the gth group and is given by [9,10] 

GZF
g g g

SNR
K

= +Y X V                             (2)     

where 
gV  is 2(0, )gQσN  distributed such that gQ is the gth 

diagonal submatrix of 1†H H
−

    of size | g | . 

Throughout this paper, for an arbitrary matrix A , we write 
0≥A  when it is hermitian positive and denote by det( )A  its 

determinant. 

III. GROUP OUTAGE PROBABILITY AND TRADEOFF 
When optimal detection is applied at the receiver, [2] has 

derived the system diversity-multiplexing tradeoff, defined in 
[2] as the SNR exponent of the minimum achievable frame 
error rate (FER).  

Consider the system model in (1) and let Pe(SNR) denote 
its minimum FER, achieved when the best outer codes that 
generate the transmitted symbols are deployed. Also, let 
Pout(R) denote its outage probability. Throughout this paper, 
the following notation will be used  

( )f SNR b�  when 
log ( )

lim
logSNR

f SNR
b

SNR→∞
= .        (3) 

In [2], it was found that when 1N K≥ + − , Pout(R) both 
lower and upper bounds Pe(SNR) to obtain  

( )( ) d r

eP SNR SNR−�                           (4) 
where d(r) denotes the SNR exponent in Pout(SNR) and  

/ log( )r R SNR= . ( )d r  provides thus the tradeoff of the 
considered scheme. When optimal detection is applied, ( )d r is 
a linear piece-wise function that connects ( , ( ))k d k such that  

( ) ( )( ); 1, ...,d k N k K k k K= − − =             (5) 
Similar to the approach in [2], we derive in what follows 

the outage probability of the gth group, as well as, its 
corresponding tradeoff. 

 
Definition 1: Let 

,out HgΩ denote the gth group outage event, 

associated with an input Xg, an output Yg, a channel 
realization H=H and a data rate gR . It is defined as the event 

where the gth group does not meet its required data rate gR and 
is written as  

{ }
, ,:

out Hg g H gH I RΩ = <  

where ,g HI  denotes the gth group mutual information given by 

( | )g gI H=X ;Y H . Its corresponding probability will be 

denoted by , ( )g out gP R .  
According to the system model in (2), we have   
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1
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where { }1 2 |g|µ ,µ , ,µ… are the ordered eigenvalues of 1
gQ− . 

We note here that since 0gQ ≥  and is of full rank |g|, then so 

is 1
gQ− . It can be shown that 1

gQ− is Wishart distributed [12] 
and that the joint probability density function (pdf) of its 
eigenvalues satisfies 

| |

1

| |
1 | | | | || 2

1 2 | | | |, | |
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−

− − −
−

= <

∑
= −∏ ∏"   (6)                

where | |g  denotes the number of interferers to the gth group, 
and is given by | | | |g K g= − . Due to space limitations, we 

do not provide details about 1
gQ−  distribution in this paper. 

Let log( )g gR r SNR= and ( )GZF

g gd r denote the SNR 

exponents in , ( )g out gP R . A similar approach as the one in [2] 
permits to obtain  

, ,( ) ( )e g g out gP SNR P R�                      (7) 
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where , ( )e gP SNR  denotes the gth group FER. ( )GZF

g gd r is hence 

its tradeoff function. Let 2 | | 1g N K g= − + − . According 

to [2], when g≥ , ( )GZF

g gd r  is a linear piece-wise function 

that connects ( , ( ))GZF

gk d k  such that  
 

, ( ) ( | | )(| | )GZF

g outd k N g k g k= − − − , { }1, ..., | |k g∈ .   (8)                                      

IV. GZF TRADEOFF  EVALUATION 

Let ,out HΩ  denote the outage event of the overall system 
when GZF is used, written as  

{ }, :out H HH I RΩ = <  

where ( | )HI I H= =X;Y H  is the mutual information of the 

system in (1) conditioned on H=H. Also, let ( )GZF
outP R denote 

the overall system outage probability. 
When group detection is applied, an overall outage event 

indicates that any of the considered groups is in outage. 
Hence, 

{ }, ,
1

:
G

out H g H g
g

H I R
=

Ω = <
 
 
 
∪  

According to (2), the G group outage events are independent 
of each other resulting in 

, , ,, 1 2out H out H out Hout H GΩ = Ω ∪ Ω ∪ ∪ Ω… . 

Hence, the overall system outage probability satisfies  

,
1

( ) 1 1 ( )
G

GZF
out g out g

g

P R P R
=

 = − − ∏ .               (9).                                                

At high SNR values, we have  

,1,...,
( ) max ( )GZF GZF

out g out gg G
P R P R

=
≈ .                 (10) 

According to (7), ( )GZF
g gd r  is given by (8) when g≥ . 

Let max 1,...,
maxGZF

gg G=
= . It follows that when max

GZF≥ , 

( )( ) ( )
GZFGZF GZF d r

e outP R P R SNR−� �                    (11) 

where ( )GZF

eP R is the system FER. The overall tradeoff 
function is hence given by 

{ }
1 1

( ) min ( ) ;
G

GZF GZF
g g gg G g

d r d r r r
= =

 
= = 
 

∑"
.              (12) 

where ( )GZF

g gd r are given in (8). 
 

V. OPTIMAL RATE ALLOCATION 
 
In this section, we provide the optimal rate allocation 

algorithm that maximizes the overall system tradeoff. Due to 
space limitations, the derivation of the algorithm will not be 
explained and only the final results will be given. Consider a 
group partition {p}, and let { } ( )pd r  denote its corresponding 

tradeoff when the data rate is optimally allocated among the 
groups. We have  

{ }{ }
1

{ }

1,...,
( ) max min ( )

G

p GZF

g g
g Gr r

d r d r
=

=
"

 

subject to:  

1

; [0 | |], 1, ...,
G

g g
g

r r r g g G
=

= ∈ ∀ =
 
 
 
∑ . 

In what follows, we assume max
GZF≥  and denote by 

{ }
1

pg  the group with the largest size, by { }
2

pg  with the second 
largest size and so on. Hence, we have 

{ } { } { }

1 2| | | | ... | |p p p

Gg g g≥ ≥ ≥ . 
With this scheme, the allocation is performed in G slots 

such that only “j” groups are allocated rates different than zero 
in the jth slot. Let { }{ } { } { }

0 1, , ...,p p p

Gr r r denote the borders of 

these slots, and let { } ( )pd j be their corresponding diversity 

levels. { } ( )pd r  will  then connect the points with coordinates  

( ){ } { }, ( )p p

jr d j . These coordinates, as well as, { } ( )pd r  are 
computed according to the following algorithm 
 Let 

{ } { } { }

( ) 1( ) ( ) | |p p p

j jd j N K g += − , 0, ..., 1j G= −       (13) 
       and  

{ } { } { }

( )/ 2 (1 / 2) / 2p p p

j j jr Nj j K j= + − − ∆       (14) 

for 1, ..., 1j G= − , where 

{ } { }

( )
1

| |
j

p p

j k
k

K g
=

=∑ , { } { }

( )

p p

j jA N K= −          (15) 

and ( )2{ } { } { }4p p p {p}

j j j j+1A A | g |∆ = + .           (16) 

 Also let { }
0 0pr = , { }p

Gr K=  and { } ( ) 0pd G = .  

When { }p

jr r= , GZF tradeoff with optimal allocation is 

given by { } ( )pd j . 

 When { } { }

1[ , ]p p

j jr r r−∈ : only the set of groups 

{ }{ } { } { }

1 2, , ...,p p p

jg g g are allocated a non zero rate, { }
*

p
ig

r , 

such that  

( ){ }

* { } { }

( )

1
| |p

i

p p

i jg
r r j g K

j
= + − .              (17)               

The optimal tradeoff is given by  

{ } { }

( )( ) ( )p p

j

r r
d r N K

j j
= − − 
 
 

.               (18) 

A close observation of { } ( )pd r  in this case, indicates that 
the obtained tradeoff is equivalent to the optimal tradeoff [2] 
achieved with a system of N receiving antennas and { }

( )

p

jK  

antennas transmitting with a rate /r j .  
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VI. SIMULATION RESULTS 
 
We assume throughout this section that K=N=8 and 
{ }2,3, ..,G K∈ . We shall denote by {a1, a2,…, aG} an ordered 

group partition where ai refers to the size of the ith  detected 
group. Finally, we assume that the coding block length, 

max
GZF≥  and that all transmitted symbols have the same 

constellations. 
 
First, we investigate the diversity-multiplexing tradeoff of 

GZF for a given group partition. Particularly, we consider the 
{3,2,2,1} and the {2,2,2,2} partitions when G=4. We evaluate 
and compare in this case GZF tradeoff with both the optimal 
rate allocation and the equal rate allocation. With the first 
scheme, rates are optimally allocated according to Section V. 
As for the equal rate allocation scheme, groups are equally 
allocated rates for transmission. Results are provided in Figure 
1.  Clearly, the optimal allocation scheme outperforms the 
equal rate one with both partitions. When {p} ={3,2,2,1}, a 
close observation of Figure 1 indicates that the maximum 
multiplexing rate has improved by 4 sym/sec with the optimal 
scheme. A gain of the order of 25 in the system diversity is 
also observed. When {p} ={2,2,2,2}, we notice that GZF 
performance with the optimal allocation scheme presents 
diversity degradation, while both diversity and multiplexing 
rate gains are achieved with the equal rate scheme. We also 
observe that the equal rate scheme performs similarly to the 
optimal one when r>2 sym/sec.  

 
Next, we find the optimal group partition that maximizes 

the tradeoff when G=4 and K=N=8. To do so, we evaluate the 
tradeoff for each partition and choose the best tradeoff for 
each r.  Figure 2 illustrates such process when rates are 
allocated optimally among the four groups. A close 
observation of this figure indicates that the {5,1,1,1} partition 
outperform all others, and that the {2,2,2,2} partition performs 
the worst. Such results hint that GZF tradeoff is maximized 
when the first retrieved group has the largest possible size, i.e. 
K-G+1, and is minimized when all groups have the same size. 
This can be easily confirmed using the results in (17)-(18). In 
what follows, we denote the obtained tradeoff with such 
process by the optimized tradeoff. 

 
In Figure 3, we compare the optimized tradeoff obtained 

when rates are optimally or equally allocated among the four 
groups. Results demonstrate that the optimal allocation 
scheme achieves an unprecedented diversity gains at low 
values of r. For example, when r=0, the maximum diversity 
achieved with the equal rate scheme is around 4 versus 32 
with the optimal scheme. Such gains are also observed to 
reduce exponentially with r and to vanish when r>4. Indeed, 
the optimized tradeoff performance obtained with equal rate 
allocation scheme is observed when r>4 in Figure 3 to 
approach the optimized performance when rates are optimally 
allocated among groups. This implies that the equal rate 
allocation scheme can be used instead of the optimal 
allocation one when groups are optimally partitioned to maxi- 

 
Fig. 1:  Optimal versus equal rate allocation tradeoff performance 

with a random partition. N=K=8. 

 
Fig. 2:  Tradeoff optimization with optimal rate allocation. 

N=K=8 and G=4. 
 

 
mize the system tradeoff. By doing so, similar levels of 
performance along with significant complexity reduction are 
obtained. 
 

Finally, we investigate the effect of G on the optimized 
tradeoff of GZF with the optimal rate allocation scheme. 
Figure 4 provides the obtained results for G=2,…,8. We note 
here that when G=8, GZF is equivalent to V-BLAST and our 
results confirm those in [2]. The optimal tradeoff given in (5) 
when group detection is not used at the receiver but rather the 
optimal detection  [2] is also shown in this figure for 
comparison.  Results indicate in this case that the optimized 
tradeoff is enhanced when G is decreased. Indeed, when G=2, 
the GZF approaches the optimal tradeoff significantly, while 
G=8 presents the worst performance. We note here that when 
G=2, we found that the best tradeoff is obtained with the {7,1} 
partition. This further confirms our results listed in Figure 2. 
We can conclude here that group detection is efficiently bridg- 
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Fig. 3:  Optimized tradeoff performance with equal rate and optimal 
rate allocation schemes. N=K=8 and G=4. 

 

ing the gap between BLAST [5] and the optimal scheme [2] 
while offering lower levels of complexity. 

VII. CONCLUSIONS 

In this paper, we considered a MIMO system where group 
detection is employed at the receiver. For each of the groups, 
we evaluated its outage probability and diversity-multiplexing 
tradeoff. We provided an expression of the overall system 
outage probability as a function of the group outage ones, and 
showed that the overall system tradeoff is given by the 
minimum group tradeoff performances. The optimal rate 
allocation scheme that maximizes the system tradeoff 
performance has been proposed. We have also provided the 
closed form expression of the tradeoff in this case. 
Comparison results with the equal rate allocation scheme have 
demonstrated significant diversity, as well as, multiplexing 
rate gains. We had further optimized the obtained tradeoff 
with both schemes over all possible partitions for a given G. 
Simulation results put in evidence unprecedented diversity 
gains with the optimal scheme at low data rates. On the other 
hand, when high data rates are required, we showed that the 
equal rate allocation scheme might be used to provide the 
same level of performance as the optimal one. Finally, we 
have demonstrated that the GZF optimized performance with 
the optimal rate allocation approaches the ultimate optimal 
performance [2] when G is reduced. By doing so, we can 
bridge the gap between the optimal receiver [2] and BLAST.  
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