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Abstract—Multiple-input multiple-output (MIMO) systems can 
provide great capacity improvement but suffer from multiple 
expensive RF chains. Antenna selection offers a good tradeoff 
between complexity and performance. This paper addresses the 
problem of optimal receive antenna selection in correlated 
channels.  We consider the transmission of M independent signals 
to a base station with N correlated antennas and present two 
criteria for selecting the optimal L out of N receive antennas in 
terms of capacity maximization or BER minimization, assuming 
that only the long-term channel statistics, instead of the 
instantaneous channel state information, are known.  Simulations 
will validate our theoretical analysis and demonstrate that within 
a rather wide angular spread range, the number of required RF 
chains can be significantly decreased using our proposed 
selection strategy while achieving very close performance to the 
instantaneous antenna selection system and the conventional 
MIMO system without antenna selection. 

Keywords- Correlated channels, Antenna selection, MIMO 
systems, Channel capacity, Singular value decomposition. 

I.  INTRODUCTION 
MIMO (Multiple-Input Multiple-Output) systems with 

multiple antennas at both the transmitter and receiver can 
provide great capacity improvements [1-4]. However, the 
deployment of multiple antennas would require the 
implementation of multiple RF chains that are typically very 
expensive. Dealing with this issue, [5-7] proposed a system 
know as Hybrid Selection/Maximum ratio combining in which 
only L out of N antennas are effectively deployed, and only L 
RF chains are thus required. [8-9] further applied this antenna 
selection technique to MIMO links. Transmit [8] or receive [9] 
antennas are selected to maximize the channel capacity and it 
was shown that selecting the best antenna subset gives almost 
the same capacity as the conventional systems but with much 
less RF chains. 

The above stated advantages hold unfortunately only when 
the channel is rich enough.  Usually channel links present 
spatial correlation due to the lack of spacing between antennas, 
or to the existence of small angular spread. Both cases lead to a 
diminishing diversity and multiplexing gain, and this will 
significantly affect the capacity [10]. Numerous work have 
been done to combat this harmful effect using feedback at the 
transmitter, such as adding a linear transformation matrix [11], 
applying per-antenna rate and power control [12], selecting 

transmit antennas [13], or jointly selecting the transmit-receive 
antenna pair [14]. All of these schemes aim at more efficiently 
designing the transmission signals or obtaining more diversity 
advantage so as to improve the performance under correlation. 
However, little work has been done to make use of the 
correlation to decrease the receive complexity.  This paper will 
show that the number of RF chains at the receiver side can 
actually be greatly reduced with very slight performance loss in 
correlated channels. 

We consider a narrow-band uplink communication system 
with M transmitted signals over a slowly varying flat channel, 
and received by N antennas. Since there are usually enough 
scatters around the mobile while at the BS the angular spread is 
small due to the high attitude, we assume that antenna 
correlation only exists at the receiver (BS) side. We present 
two criteria for receive antenna selection, which are based on 
maximizing the capacity and minimizing the bit error rate 
(BER), respectively. Unlike the work in [9], our receive 
antenna selection is only based on the long-term statistical 
channel knowledge, namely, the correlation matrix, instead of 
the instantaneous channel state information. Since the 
correlation matrix only changes with the antenna position 
patterns or the surrounding environment, such as buildings, 
etc., it will remain invariant for long time intervals. Thus, our 
proposed correlated selection algorithm (CSA) has the 
advantage of introducing further complexity reduction than the 
one that selects the receive antennas based on the exact channel 
knowledge which we refer to as instantaneous selection 
algorithm (ISA). We demonstrate that for capacity 
maximization, the antenna subset should be chosen to 
maximize the determinant of the correlation matrix, while for 
BER minimization, the antenna subset should be chosen to 
minimize the square sum of the eigenvalues of the correlation 
matrix. Simulation results will be used to validate our analysis 
and show that our selection algorithm can achieve nearly the 
same capacity and BER performance as ISA in correlated 
channels. Although with increasing angular spread the 
performance gap between ISA and CSA will get bigger, it is 
shown that within a rather wide angular spread range (1o, 60o), 
the capacity difference between both algorithms is lower than 1 
bit/s/Hz. The comparison results between our selection system 
and the conventional system will also show that in correlated 
channels the number of selected antennas can be dramatically 
reduced while keeping the BER performance nearly 
unchanged. 

This work is supported in part by the Hong Kong Telecom Institute of 
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This paper is organized as follows. In Section II, we 
provide the system model and the various notations used 
throughout the paper. In Section III, we derive two criteria for 
receive antenna selection: Capacity maximization and BER 
minimization, which are only related to the correlation matrix. 
Section IV shows the capacity and symbol error rate (SER) 
performance of CSA along with the comparison to ISA and the 
conventional system. Finally, Section VI summarizes and 
concludes this paper. 

II. SYSTEM MODEL 
We consider the transmission of M signals to a receiver 

with N antennas. These signals undergo a slowly Rayleigh 
fading channel. The channel is then assumed to be constant 
within a frame of T symbols. Once received, these signals are 
multiplexed into L RF chains, and only the best L out of N 
signals are selected based on some criterion for further 
processing and the remaining N-L receive antennas are shut 
down. Therefore, once selected, only L RF branches are needed 
and thus the complexity can be greatly decreased. For 
simplicity, we assume in the following a perfect channel 
knowledge at the receiver side only, through the use of training 
sequences. 

Let 1 2[ , ,..., ]T
Mx x x=x  denote the transmitted signal 

vector. Each element ix  is transmitted with the same power 
from the ith antenna. Also, let H  denotes the N M×  channel 
matrix. Assuming perfect symbol synchronization at the 
receiver, then the discrete model of the received complex N-
length signal vector can be written as 

= +y Hx n    (1) 
where n  denotes the complex Gaussian N-vector noise with 
covariance 2σ I .  

Following the channel model provided in [10], the channel 
matrix could be written as 1/2 1/2

r w tH = R H R , where wH  is an 
N M×  complex matrix of i.i.d. zero-mean, unity variance 
complex Gaussian random variables. tR  and rR  denote 
M M×  and N N×  antenna correlation matrices at the 
transmitter and the receiver sides, respectively. In this paper, 
we deal only with the correlation at the receiver, and H  is 
given by 

1/2
r wH = R H          (2) 

We define the selected antenna subset as LΛ  which is not 
an ordered set with L selected antennas. Let 

LΛy  be the 
complex data vector obtained after selection and 

LΛR  be the 
cross-correlation matrix of these L selected antennas. The latter 
is obtained by eliminating the columns and rows of the non-
desired antennas. 

LΛ
H  represents the channel gain between M 

transmit antennas and the L receive antennas. Then, we have 
L

L L L L L

Λ1/2
Λ Λ Λ Λ w Λy = H x + n = R H x + n           (3) 

The following notation is used throughout this paper: * for 
conjugate transpose, ’ for transpose, ×n nI  for n n×  identity 
matrix, ×m n0  for m n×  zero matrix, det( )⋅  for determinant, 

( )trace ⋅  for trace, ija  for the element in the ith row and the jth 
column of matrix A . 

III. ANTENNA SELECTION CRITERIA 
In the following derivation, we try to separate the 

eigenvalues of LΛ
wH  and that of the correlation matrix 

rΛ
R  so 

as to obtain the selected criterion which is only related to 
rΛ

R . 

A. Capacity Maximization 
As we know, 

2log det( )C
M
ρ ∗

×= +
L L LΛ L L Λ ΛI H H       (4) 

where ρ  is the mean SNR per receive branch. 
By applying Singular Value Decomposition (SVD) to 

rΛ
R , 

we have 

r

*
Λ r r rR = U Q U           (5) 

where rU  is a unitary matrix whose columns are the 
eigenvectors of 

rΛ
R , and rQ  is a diagonal matrix whose 

diagonal entries are the eigenvalues of 
rΛ

R . 
The capacity can then be written as 

( )2log det[ ]

det[ ]

C
M
ρ ∗

×

×

= +

= +

L L

L

Λ Λ1/2 1/2 *
Λ L L r r w w r r

L L r

I U Q H H Q U

I Q W

  (6) 

where ( )M
ρ ∗

= L LΛ Λ
w wW H H .             (7) 

Assume that Z is an L L×  diagonal matrix with the 
diagonal elements iiz ’s, where 

(1) 1,...,
1,...,1

ii

i Md
z M

i M L

ρ ==  = +

LΛ , ( )kd
LΛ

’s are descending sorted 

eigenvalues of ( )∗
L LΛ Λ

w wH H , for k=1,…,M. Therefore (1)d
LΛ

 is 

the maximum eigenvalue of ( )∗
L LΛ Λ

w wH H . 
We present the following lemma. 
Lemma 1: Assume that A is an arbitrary n m×  matrix with 

non-negative eigenvalues and B is an n n×  non-negative 
definite diagonal matrix with m n≤ . Then,  

1( ) ( ) ( )i iλ λ λ∗ ≤ *A BA AA B , 1,...,i m= . 
With the above lemma, it is clear that ( )i

iiz λ≥ W , 1,...,i L= , 
where ( )iλW ’s are the eigenvalues of W, 1,...,i L= . 

If A and B are both n n×  Hermitian non-negative definite 
matrix, and ≥A B (i.e., − ≥A B 0 ), then det( ) det( )≥A B . 
Hence, given that ≥Z W , we have 

( )

1

det[ ] det[ ] (1 )
L

i
ii

i

q z× ×
=

+ ≤ + = +∏ LL L r L L r ΛI Q W I Q Z    (8) 

where ( )iq
LΛ

’s are the descending sorted eigenvalues of 
rΛ

R , for 
1,...,i L= .  
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For high ρ , we can make the following approximation: 

( )( ) (1) ( )

1 1

(1 )
ML LMi i

ii
i i

q z d q
M
ρ

= =

 + ≈   
∏ ∏L L LΛ Λ Λ

        (9) 

As a result, we can get 

( )(1) ( )
2 2 2

1

log log log
L

i

i

C M M d q
M
ρ

=

  ≤ + +      
∏L L LΛ Λ Λ

  (10) 

Therefore, to maximize the capacity upper bound, we should 

maximize the determinant of 
LΛR , namely, ( )

1

L
i

i

q
=

∏ LΛ
. Define 

( )

1

L
C i

i

qξ
=

= ∏L LΛ Λ
 .  (11) 

Then, our capacity maximization criterion can be written as 
follows. 

Proposition 1: For a given L, the optimal selected antenna 
subset ∗

LΛ  that maximizes the capacity is given by 

arg max Cξ∗ =
L

L
L ΛΛ

Λ       (12) 

where Cξ
LΛ

 is given by (11). 

B. BER minimization 
Assume that the zero forcing based detector is employed. 

Then, the decorrelating matrix can be written as 

( )∗ -1

L L LG = H H H          (13) 

Next, assume that [ ]1 2, ,...,i i iMg g g=iω , then the receive SNR 

of the ith stream is 2( / ) /Mρ iω . 
We would like to minimize the worst BER. This is 

equivalent to maximization of the minimum receive SNR, 
namely, 

( ){ }2max min 1/
i iω          (14) 

Given that ( )2
,, i ii i

∗= ⋅ = ⋅ =
__

*
i i iω g g G G J , where 

1( )∗ −= L LJ H H . Then, (14) is equivalent to 

{ },min max i ii
J   (15) 

We can further derive that 

1
, ( ) ( )

( )1

1

1 1max
M

i i i ML Mi ii

i

M M
q dd

λ −

=

=

 
 − ≤ ≤ ⋅ +
 
  

∑
∑L L

L

Λ Λ
Λ

J  (16) 

where iλ ’s are the eigenvalues of ∗
L LΛ ΛH H . 

From (16) it is clear that the upper bound of BER is 
dependent on ( )Lq

LΛ
 which is the minimum eigenvalue of 

LΛR . 
Thus, if we define 

( ) ( )

1,...,
minBER L i

i L
q qξ

=
= =

L L LΛ Λ Λ
         (17) 

Then, according to (16), our BER minimization criterion can 
be written as follows. 

Proposition 2: For a given L, the optimal selected antenna 
subset ∗

LΛ  that minimizes the BER is given by 

arg max BERξ∗ =
L

L
L ΛΛ

Λ    (18) 

where BERξ
LΛ  is given by (17).  

We conclude this selection by summarizing our selection 
algorithm, which we refer to as CSA. For simplicity, we take 
the example of capacity maximization. The description of CSA 
for BER minimization is similar. 

ALGORITHM I 

CORRELATED SELECTION ALGORITHM  (CSA) 

 

 

 

 

 

 

 

 

 

 

IV. SIMULATION RESULTS 
In this section, we present simulation results that validate 

the criteria derived in the previous propositions.  We will also 
compare the performance between our selection scheme CSA 
and ISA.  Performance is evaluated in terms of capacity and 
symbol error rate (SER) for a frame of 200 symbols from 
QPSK constellations averaged over 5000 frames. We consider 
an uncoded system with M = 2 transmit antennas and N = 6 
receive antennas.  We adopt the correlated channel model 
described in [10,15].  Linear arrangement of the antenna array 
is assumed at the receiver (BS side) with the antenna separation 
being 4 wavelengths. We also assume the “broadside” case as 
defined in [10], and that the incoming waves are uniformly 
distributed in the angular spread ∆  [14]. 

A. Theoretical results validation 
In order to show the validity of our criteria, we use Monte 

Carlo simulations to decide which L antennas should be 
selected. For every possible antenna subset LΛ , we compute 
its corresponding capacity or SER and select the one that has 
the best performance. Table I presents a sample of the 
comparison results under different angular spreads and 
different number of selected antennas. We label the receive 
antennas as 1, 2, … , 6. We also notice that the optimal antenna 
subset ∗

LΛ  obtained using the theoretical criteria as described 
in the propositions may not be unique. For example, for 

o5∆ = and 3L = , Subset (1)
LΛ  = {1, 2, 6} and Subset (2)

LΛ  = 
{1, 5, 6} have (1) ( 2)

C Cξ ξ=
L LΛ Λ

. Thus, both subsets are optimal in 

terms of capacity maximization. We computed their 

(i) Let L
NK C= . 

Initialization: Set 0Cξ = , ∗
×=L L 1Λ 0 , and 

generate all possible LΛ ’s: (1)
LΛ , (2)

LΛ , …, ( )K
LΛ . 

(ii) For 1m =  to K , 
Compute ( )m

Cξ
LΛ

 for each ( )m
LΛ . 

If 
( )m

C Cξ ξ≥
LΛ

, then  
( )m∗ =L LΛ Λ , 

( )m
C Cξ ξ=

LΛ
. 

End if. 
End loop 

(iii) Output ∗
LΛ . 
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corresponding capacity using Monte Carlo simulations and 
found the difference between their corresponding capacity 
values to be within 2%. Therefore, in the “Simulation” column 
we also list both subsets. From Table I, it is obvious that the 
theoretical results coincide very well with the simulation 
results, thus, verifying the validity of our criterion. 

TABLE I.  SELECTION RESULTS USING THE PROPOSED SELECTION 
SCHEME AND MONTE CARLO SIMULATION WHEN N = 6 AND M = 2 

Theory Simulation  
(SNR=16dB) 

∆  L 

Capacity 
max. 

BER  
min. 

Capacity 
max. 

BER 
 min. 

2 {1, 6} {1, 6} {1, 6} {1, 6} 
3 {1, 2, 6} 

or  
{1, 5, 6} 

{1, 2, 6} 
or  

{1, 5, 6} 

{1, 2, 6} 
or 

{1, 5, 6} 

{1, 2, 6} 
or  

{1, 5, 6} 

 
5  

4 {1, 2, 5, 
6} 

{1, 2, 5, 
6} 

{1, 2, 5, 
6} 

{1, 2, 5, 
6} 

2 {1, 6} {1, 6} {1, 6} {1, 6}  
45
 

3 {1, 3, 6} 
or  

{1, 4, 6} 

{1, 3, 6} 
or  

{1, 4, 6} 

{1, 3, 6} 
or  

{1, 4, 6} 

{1, 3, 6} 
or 

{1, 4, 6} 

B. Performance comparison for different L under given ∆  
According to the above criteria, with a given L, we can 

easily select the “best” receive antennas. Fig. 2 and Fig. 3 show 
the cumulative distribution function (cdf) of the capacity and 
SER of our selection algorithm CSA for different values of L 
under a given angular spread ∆ , respectively. For comparison, 
the performance of ISA is also presented. In ISA, for every 
realization of the channel matrix H, a complete set of all the 
possible matrices H  is created by eliminating all possible 
permutations of N-L rows from the matrix. Then, for each H , 
the capacity (or SER) is computed and the best one from the set 
is selected. 

Fig. 1 presents the capacity cdf curves of CSA and ISA 
with L ranging from 2 to 4 and the angular spread being 5  and 
45  with SNR 16dB. We can see that when 5∆ = , CSA can 
achieve nearly the same capacity as ISA. Actually, such a low 
angular spread implies a fully correlated channel, which means 
that the receive correlation effect dominates the whole channel. 
Hence, a selection based on the correlation matrix will not 
result in any performance degradation compared with that 
based on the instantaneous channel state information. 
However, with the increase of angular spread, the effect of the 
correlation will weaken and ISA’s advantage over CSA 
becomes more and more significant. As Fig. 1 shows, when ∆  
increases to 45 , the 10% outage capacity of ISA is at least 1.8 
bit/s/Hz larger than CSA for L=2 case. However, with a larger 
value of L, the capacity difference decreases greatly. As a 
comparison, we also plot the capacity cdf curves of the 
conventional system without receive selection (L=N=6). 
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f
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Without selection

L=2 L=2

L=3

L=4

L=3

L=4

∆=5o ∆=45o

 
Fig. 1:  Capacity cdf of CSA, ISA, and the conventional system with different 

values of L and ∆ , SNR=16dB 

Fig. 2 compares the SER performance of CSA and ISA. 
Similar to the above conclusions, we can see that with a small 
∆ , their performance are nearly the same, while with 
increasing ∆ , the performance gap increases.  However, there 
are two key observations. First, in Fig. 1 it can be observed that 
no matter whether CSA or ISA is adopted, the capacity loss is 
significant compared with the conventional system. While from 
Fig. 2, we can see that for a low ∆ , CSA with L=2 can achieve 
the same performance as the conventional one. This implies 
that with much fewer selected antennas, we can keep the SER 
performance nearly unchanged. Therefore, in correlated 
channels, the receiver complexity can be decreased greatly 
with very slight performance loss. Second, when the angular 
spread increases, L should also increase to achieve good 
performance. Otherwise, a small L will lead to severe 
performance degradation. In the following sub-section, we 
specify L to be equal to the rank of the correlation matrix rR  
and we will see that within a rather wide angular spread range 
( [1 ,60 ]∆ = ), CSA can achieve very close performance to 
ISA and even the conventional system. 
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Fig. 2:  SER vs. SNR curves of CSA, ISA, and the conventional system with 

different values of L and ∆  
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C. Performance comparison for different ∆  under given L 
In Fig. 3 and Fig. 4, the 10% outage capacity curves and 

SER curves with different degrees of spatial correlation ( ∆  
ranging from 1  to 90 ) are plotted. SNR is assumed to be 
16dB. It can be seen that CSA can always achieve nearly the 
same capacity as ISA and very close SER performance to the 
conventional system. However, with increasing ∆ , the 
required number of selected antennas L, which is set to be 
equal to the rank of the correlation matrix rR , also increases. 
In particular, when ∆  is larger than 60 , the correlation 
matrix is approaching ×N NI . This means that the channel is 
close to the uncorrelated case. As a result, CSA is not effective 
any more since it selects nearly all the receive antennas so as 
to keep good performance. Nevertheless, within a rather wide 
range ( [1 ,60 ]∆ = ), using CSA the system complexity can be 
decreased greatly while keeping a close performance to ISA 
and even the conventional system. 

 
Fig. 3:  Capacity vs. angular spread curves for CSA, ISA and the conventional 

system. SNR=16dB 

 
Fig. 4:  SER vs. angular spread curves for CSA, ISA and the conventional 

system. SNR=16dB 

V. CONCLUSIONS 
In this paper, we derived the capacity maximization and 

BER minimization criterion for receive antenna selection, 
according to the receive antenna correlation matrix only. We 
showed that in correlated channels, our algorithm, which we 
refer to as the CSA scheme, can achieve nearly the same 
capacity and BER performance as the ISA scheme which 
selects the receive antennas based on the exact channel state 
information while dramatically decreasing the complexity since 
only the correlation matrix is needed for selection. It is also 
shown that within a rather wide angular spread range, the 
required number of RF chains when the CSA scheme is 
employed can be significantly decreased while achieving very 
close performance as the conventional system. 
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