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Abstract - A spatial multiplexing technique for distributed
antenna systems is propoesed, where the mobile co-located with
muitiple antennas is capable of receiving distinct sub-streams
from multiple widely separated antennas. Modulation and
power are adapted based on the knowledge of large-scale
fading, which varies much sfower than instantaneous channel
state information. Three modulation and power adaptation
criteria are presented, which minimize the error probability,
consumption and maximize data

minimize the power

throughput, respectively. Simulations based on minimum error '

probability criterion illustrate the performance improvement
compared with original V-BLAST. Based on minimum power
consumption criterion and maximum data throughput ¢criterion,
numerical results also indicate that DAS is more power efficient,
" spectral efficient and uniform in quality of service than
co-located antenna systems {CAS), which validates the previcus
theoretic analysis results,

L. INTRODUCTION

As the demands for high quality and capacity grow in
future wireless communication systems, distributed antenna
svstems (DAS) draw considerable attention since it can
counzeract large-scale fading, improve coverage, link quality
and system capacity by exploiting its inherent macroscopic
diversity and shortened access distance [1-3].

Recently. DAS that employs multiple co-located antennas
at one end of the communication fink and widely spaced
antennas at the other has received new research attention due
10 its capacity advantages. Information theoretical research
in [4] and [5] shows the MIMO channel capacity
improvement in DAS compared with co-located antenna
system (CAS) thanks to the independent large-scale fading
in addition to the small-scale fading, However. in the
downlink of conventional “simulcasting” DAS [1-3}, the
same signals are transmitted from muitiple distributed
antennas simultaneously. Though macroscopic diversity gain
can be obtained, the channet capacity is not fully exploited.
In order 1o realize very high spectral efficiency, spatial
multiplexing schemes must be used, such as Vertical
Bell-labs Layered Space-Time (V-BLAST). Therefore, in
this paper, we are motivated to investigate the feasibility of
employing spatial multiplexing BLAST-like scheme to the
downlink DAS to exploit the information-theoretic capacity.
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One major distinction between DAS and CAS is that DAS
suffers different degree of large-scale fading (e.g. shadowing
and path loss) from each distributed antenna, which
significantly degrades the performance of open-foop
V-BLAST. To alleviate this detrimental effect, link
adaptation techniques should be used in conjunction with
MIMO techniques. In {6]. an extended V-BLAST with
per-antenna rate and power control is proposed to achieve
very high spectral efficiency. However it requires the
knowledge of instantaneous channel realization and high
computational intensity. which is oo demanding for DAS.
The [arge-scale fading, on the other hand, is locally
stationary and thus varies on a much slower time scale. It is
easy to be measured by local averaging. Therefore, we
propose a spatial multiplexing technique (referred as
adaptive V-BLAST), by which the rate and power of each
distributed antenna are subject to large-scale fading only,
offering a reasonable tradeoff between complexity and
performance.

We describe our system model in the next section. The
modulation and power adaptation criteria are derived in
Section Ill. Based on these criteria, some numerical
comparisons between adaptive V-BLAST and the original
one, and between DAS and CAS are made in Section V.
Finally. Section V contains our concluding remarks.

[I.  SYSTEM MODFL

A. Channel Model

We consider a mobile equipped with m co-located receive
antennas, around which the distributed antennas (DA) are
spatially scattered (see Fig. t). There is no specific signal
processing at the distributed antennas except for RF
amplification,  frequency  translation and  possibly
optic-electric conversion, Through separate optical fibres or
coaxial cables these antennas are connected to a central
processor where all complex signal processing is done. By
measuring the local mean receive power of each distributed
antenna in the uplink, the central processor selects the
strongest n distributed antennas for downlink transmission
simultaneously and on the same frequency. This is basically
an (n, m) MIMQ system. We assume that the channel is flat
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fading and quasi-static. The following downlink channel
model! is then applied.

v=H_F”x+n n

where x and y are the transmit and receive vectors
respectively. and n s the complex additive white Gaussian
noise vector. The small-scale fast fading is modeled as
Rayleigh. denoted by an mxn watrix H_~ with iid.
V0. 1y entries. The large-scale fading is denoted by a local
stationary pxn diagonal matrix  F = diagia; ., ...a)) -
Both shadowing and path loss are modeled in the diagonal
entries of F. ie. af:c‘si/d{, where .the shadowing is
represented by an independent log-normal random variable
s, with unit mean and standard deviation o, 4, is the
access distance between the mobile and the k-th nearest
distributed antenna, and , is the path loss exponent,
typically between 3.0 and 5.0, Finally € is a scaling
constant. which is trivial in our analysis and thus is set to I.

B Aduptive V-BLAST

Fig. 2 shows the transmitter structure of our proposed
adaptive V-BLAST. A single user’s data stream is
demultiplexed among the n selected distributed antennas,
gach of which conveys a distinct sub-stream. Each
sub-stream is separately encoded into symbols drawn from a
modulation set At consisting of different QAM
modulations. These sub-streams are then transmitted by
different distributed antennas simultaneously and on the
same frequency. Note that the QAM constellation size and
average transmit power may differ from one sub-stream
from another and is chosen via the modulation and power
adaptation criteria described later. At the receiver, we
assume that the channel is perfectly estimated and
zero-forcing (ZF) is used for symbol detection.

Before proceeding further. we first describe some
notations. Let A7 (A, e M) denote the modulation of the
k-th sub-stream. The corresponding rate is denoted as
RO equal to fogxconstellation size of A1, ). In
particular. R(A7,)=0 means that the k-th antenna is not
used for transmission. Define the active antenna ser
5 5 = LA | R(M ) > 0.7k}
scheme. the number of active antennas |A| should not
exceed the number of receive antennas, Define the mode
vector as M =[Af,AM,,... 47 ]. The total data throughput
R :thuR("Hi) {bit/symbol vector). Likewise, define the
power allocation vector as [ =[y,7ent,] where 7,

For the effectiveness of our

denates the transmit signal to noise ratio (SNR) from the -

k-th  distributed

Yo= 2o e

antenna. The total transmit SNR

11, MODULATION AND POWER ADAPTATION CRITERA

In what follows, we will derive the modulation and power
adaptation criteria solely based on the knowledge of farge
scale fading F, which is much easier to be measured than
instantaneous channel realization. Knowledge of F at the
transmitter is a reasonable assumption due to the mechanism
of antenna selection in DAS. We will start from the
derivation of minimum error probability criterion. The
derivations of minimum power consumption criterion and
maximum data throughput criterion are then straightforward.

With ZF detection, the post-processing SNR on the k-th
sub-stream p, is a weighted Chi-squared distribution with
2(m—|_,4|+1) degree of freedom, distributed as [7)]

N )|
( ’ } xz0.keA 2
v

where ! is the k-th diagonal entry of F. Assuming
independent maximum likelihood decoding per sub-stream.
the symbol error probability on the k-th sub-stream is then
bounded by ’

Py S NOM ) Efe )

e ftair

jm (x): afy,‘(mf\AD!

=N e g (xyax

where n(pf,) and 4 (A} are the average number of
nearest neighbors and the minimum distance of separation of
the unit energy constellation on the k-th sub-stream,
respectively. The inequality follows from the Chernoff
bound.

Performance specifications are typically more concerned
with the bit error probability. If we assume Gray encoding
and mapping between data bits and data symbols. then at
relatively high SNRs, we can make the approximation [8]
e )

P
PETRIM)

From (2), (3) and (4), we have the following upper bound
after some algebra

K (5)

’Lju 5 i ne={4|+1
[1 + Eajdf‘i” (M7, J

where m—|A]+l is referred as the diversity order of ZF
detection and K s a constant. An obvicus upper bound of
K is Téx{f\"(/\f)/R(;\/l)}- However, this is a rather loose
Mzt . .
bound. ﬂrough numerical methods, a much tighter bound
which we find to be a good approximation for
2€R(M <8 and 107 <p, <107 is K=0.1.
Based on the approximation in (5}, we consider the
optimization problem te minimize the bit error probability as
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the 1otal ransmit SNR  and total data throughput R, are
fixed over time. Since the sub-stream with the worst error
rate limits the system performance. minimizing the bit error
prabability on the worst sub-stream is a reasonable
approximate solution for minimizing the overall bit error
probability. The optimal M and T are then given by

a1
M. I"farcrmn{mm[lJriai do, (M, )ykj } (6)

AL

There are two variables for optimization. But it is not
difficult to prove that when M is given, the optimal [
should satisty

P L) R .
3 dadi,on)

The consequence of this power allocation strategy
equalizes the bit error probability of all sub-streams.
Therefore, the overall bit error probability £ should equals
the bit error probability of any sub-stream, i.e. p,=p . for
vhe A.

Bv substituting (7) into (5) and rephcmo £, with p,
we arrive at the expression of a simple relation amonc total
trangmit SNR . bit error probability p and transmit
mode vector M. given by

meirictM y,)- H < K (8

where

LTkl
meiricti‘l}’,)=[l+(7r/4z‘e @ty (M )) )J )

The following criterion is then derived

Criterion |: Minimum error probubility

Given the total transmit SNR . and the required data
. throughput £ . the optimal M that minimizes the bit error
probability on the worst sub-stream is given as

M= arg max {uwn*z’c(M.y,)} (10)
A

subjectto g = z:jl R(AM, -

Note that though reducing 14| results in fewer
sub-streams with higher modulation level and thus may
decrease ihe base-number in (9), it increases the diversity
order (ie. the exponential in (9)), which may enlarge
meirictM.y,) 10 improve BER performance.

By alternating the constraints and the wvariable for
optimizing, the other two criteria can be written out as
follows

Criterion 2: Mininuan power consumpltion
Given the required data throughput R and the target bit

error probability p,, the optimal M that minimizes the
total transmit power is given as

ﬁ=argmin;/, (11)

M
subjectto g IZ::I Rim,) and memic(M.y}- P £ K.

Criterion 3: Maximum data throughput

Given the total transmit SNR ¥, and the target bit error
probability p,. the optimal M that maximizes the total
data throughput is given as

ﬁ =argmaxZR(M,‘) (12)
M
subject 10 merriciM,y,)-F, = K .

In all three criteria, the corresponding optimal [ follows
from (7).

[V.  NUMERICAL RESULTS

Based on the criteria, we will provide some numerical
results through Monte Carlo simulations, where we consider
an upcoded system with 4 transmit antennas and the
modulation set is given as
M={0OPSK,1604AM ,640AM 2560AM } .

A. BER performance based on minimum error probability
criterion

Fig. 3 shows the BER performance comparison of a (4, 6)
system based on the minimum error probability criterion,
where the total data rate R is constrained 10 be 16
bit/symbol vector. We assume that the path loss from each
distributed antenna is 0 dB and the shadowing is modeled as
log-normal with the standard deviation o =1048 . For
comparison purpose, we also plot the performance of
V-BLAST without shadowing, where adaptive V-BLAST
selects the same transmission policy (four 16QAM with
uniform power allocation) as original V-BLAST at SNRs of
interest and thus they have the same performance. We note
that the performance of both schemes degrades due to the
independent shadowing of each transmit antenna. However
the degradation of adaptive V-BLAST is slighter than that of
the original one thanks to the utilization of the knowledge of
large-scale fading. More than 2dB gain over original
V-BLAST is found at a BER of 107 and the gain is more
evident at higher SNRs.

Fig. 4 shows the BER performance comparison of a (4, 4)
system with other parameters same as that in Fig. 3. We note
that the performance of adaptive V-BLAST in environments
with shadowing is almost as good as that in environments
without shadowing while original V-BLAST suffers 2dB
performance loss due to shadowing. It is also worth noting
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that unlike the (4. 6) system. in the (4. 4) system, even in
environments without shadowing, adaptive V-BLAST still
shows significant performance gain (8dB at a BER of 10
compared with the original one. This is because ZF detection
behaves poorly due 1o lack of degree of freedom as there 1s
merely equal number of transmit antennas and receive
antennas. Adaptive V-BLAST. however, judiciously use
fewer antennas with higher modulation level to provide
diversity gain which may greatly improve the BER
performance (see (8)-(10)).

Fig. 3 and Fig. 4 don’t dealing with path loss variation. A
more realistic performance simulation is shown in Fig. S,

which takes both shadowing and path loss into consideration.

The statistical model of access distance with random antenna
layout proposed in [5] is adopted with antenna density 1/x .
The path loss exponent r is 4 and o =10d8. We observe
that. in this scenario. adaptive V-BLAST shows much more
performance gain over original V-BLAST.

In the rest two subsections, we will consider the power
consumption and data throughput in DAS under the same

channel mode! and statistical mode] of access distance as Fig.

3. and compare them with those in CAS that has the same
antenna density. Adaptive V-BLAST is adopted in both
svstems.
B Power distribution based on minimum  power
CORSTUMPIIORN Crilerion

Fig. & shows the probability density of the power
consumption in CAS and DAS based on minimum power
consumption criterion, where the total data rate R is
constrained to be 16 bit/symbol vector and the target
uncoded BER is 1{7. We note that the average power
consumption in DAS is smaller than that in CAS, showing
that DAS is more power efficient than CAS. Moreover, the
stancard deviation of power consumption in DAS is also
smaller. which 13 desirable in multiuser systems to reduce
variations in interference power. These observations are

coincident with the thecretic analysis in [5].

C. Data throughput distribution based on maximum data
throughpur criterion

Fig. 7 shows the distribution of data throughput in CAS
and DAS based on maximum data throughput criterion,
where the total transmit SNR. y, s cgnstrained to be 26 dB
and the target uncoded BER is 107. We note that DAS
obtains higher mean rate and rate with maximum probability
than CAS. indicating that DAS is more spectral efficient.
The smaller deviation of data throughput in DAS shows that
DAS is less sensitive to user’s location and thus offers a
more uniform quality of service. Also the cut-off probability
(cormesponding to the probability of zero rate) in DAS is

much smaller than that in CAS. These advantages of DAS
are also well predicted by the information-theoretic study in

{5].
V. CONCLUSION

We have proposed a technique for distributed antenna
systems that support spatial multiplexing. The modulation
level and power allocation of each sub-stream are adapted
based on the local stationary large-scale fading, which is
very practical for implementation. Simulation results
showed that adaptive V-BLAST significantiy outperforms
original V-BLAST in environments with independent
large-scale fading. Our proposed technique also exploits
DAS’s inherent advantages in power consumption and data
throughput. Therefore, it is an excellent technique candidate
for further DAS.
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