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A Quasi-Orthogonal Group Space-Time
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Abstract— Most existing MIMO (Multiput-Input Multiput-
Output) schemes optimize only either the diversity gain or the
multiplexing gain. To obtain a good tradeoff between these two,
the Quasi-Orthogonal Group Space-Time (QoGST) architecture
is proposed, wherein the transmit stream is subgrouped but
encoded via an inter-group space-time block encoder, with group
interference suppression at the receiver. This paper also considers
another combined space-time coding and layered space-time
architecture, which we refer to as Group Layered Space-Time
(GLST), where space-time block coding is employed within each
group. Under the assumption of Rayleigh fading and a prior
perfect channel state information at the receiver, a performance
analysis will demonstrate that both QoGST and GLST can
achieve a good diversity-multiplexing tradeoff. QoGST is even
superior to GLST. Simulation results will validate our analysis
and further show that compared to the existent Layered Space-
Time Block Code (LSTBC) scheme, both QoGST and GLST can
achieve a significant performance gain.

Index Terms— Diversity-multiplexing tradeoff, group detec-
tion, layered space-time, MIMO systems, quasi-orthogonal group
space-time, space-time block coding.

I. INTRODUCTION

M IMO (Multiple-Input Multiple-Output) systems have
shown their ability in providing great performance

improvements over the SISO (Single-Input Single-Output)
systems thanks to their higher spectral efficiency [1]. It has
been well understood that multiple antennas can not only be
used to achieve diversity gain [2], but also as an effective
way to increase the degrees of freedom of the channel [3].
With multiple antennas at both the transmitter and receiver,
independent information streams can be transmitted through
the parallel spatial channels so that the data rate is increased.
Therefore, a MIMO system can provide both diversity gain
and multiplexing gain [4].
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In order to reveal the relationship between these two gains,
Zheng and Tse proposed a powerful tool known as diversity-
multiplexing tradeoff function [4]. It is found that a higher
spatial multiplexing gain comes at the price of sacrificing
diversity and vice versa. An optimal diversity-multiplexing
tradeoff curve is characterized in [4] and is shown to be
achievable by Gaussian random codes. Zheng and Tse also an-
alyzed the tradeoff functions of some existing MIMO schemes
and found that most of them aim at achieving either maximum
diversity gain or maximum multiplexing gain. For example,
space-time codes (STC) (including space-time block codes
(STBC) [5]-[6] and space-time trellis codes (STTC) [7]) are
carefully designed to achieve the full diversity order, but no
multiplexing gain can be obtained. Layered space-time (LST)
such as VBLAST [8] can achieve maximum multiplexing gain
but with a very low diversity gain. Actually, it is shown in [4]
that no existing scheme, except for the Alamouti’s scheme [5]
with 2 transmit antennas and 1 receive antenna and DBLAST
[9] employing an MMSE decoder,1 can achieve this optimal
tradeoff.

There have been some efforts on explicit code construction
to achieve the optimal tradeoff. [10] developed a structured
coding scheme for two-transmit two-receive antenna sys-
tems with code duration two which has been shown to be
able to achieve the full diversity-multiplexing frontier. [11]
constructed some explicit optimal permutation codes for a
parallel channel with two diversity branches. In [12], full-rate-
full-diversity codes are proposed based on LCF coding and
ML decoding. [13] further provided a general framework for
constructing the optimal coding/decoding schemes for delay
limited MIMO fading channels and claimed that their Lattice
Space-Time (LAST) codes can achieve the optimal diversity-
multiplexing tradeoff under generalized minimum Euclidean
distance lattice decoding.

Another class of designs focuses on signal processing
instead of code construction. [14] proposed a combined array
processing and space-time coding architecture, in which the
transmit stream is partitioned into different groups and in
each group STC is applied. At the receiver, group interference
suppression is adopted, where each individual STC is decoded
by suppressing the signals transmitted from other groups.
This combination of STC and LST provides much better
multiplexing gain than STC with lower decoding complexity.

1Here it is assumed that the overhead that is required to start the DBLAST
processing is ignored.
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At the same time, it achieves a much higher diversity gain
than LST. Unlike the work in [10]-[13], which approach
the optimal diversity-multiplexing tradeoff at a cost of high
complexity, [14] shows how to trade off between diversity gain
and multiplexing gain by virtue of group detection with very
low complexity. [15]-[17] further developed this architecture.
In [15] and [16], Alamouti’s scheme and variable rate STBC
were adopted as the component encoder, respectively, and the
transmit power was optimized to minimize the average FER
or BER. [17] focused on the receiver design and proposed an
optimal decoding order and a computationally efficient hard-
decision iterative decoding algorithm.

In [14], the substreams of each group are encoded indepen-
dently and no special transmit design is adopted to suppress
the interference among the groups. At the receiver, space-
time decoding is performed for each group by assuming that
the interference has been suppressed by virtue of a group
detector. That is, in [14] (including [15]-[17]), group detection
is performed first followed by space-time decoding. Therefore,
the overall performance is limited by the group detection step.

This paper further presents a novel group space-time archi-
tecture, which we shall refer to as Quasi-Orthogonal Group
Space-time (QoGST). At the transmitter, all the groups are
encoded together via an inter-group STBC. To keep the same
spectral efficiency as [14], we assume that in each group no
space-time coding is adopted. Particularly, at each time slot
t, we regard the transmit vector of each group as one symbol
and apply STBC to all the transmit vectors. It can be seen that
with this inter-group STBC, the interference among groups can
be effectively suppressed because of the orthogonal nature of
STBC. Therefore, QoGST should have a better interference
suppressing capability. However, it should be pointed out that
the encoded vectors of each group are not strictly orthogonal
to each other. Instead, they are orthogonal only when the group
size is one. This is why the proposed scheme is referred to
as “quasi-orthogonal.” This should be distinguished from [18]
which aims at constructing a kind of rate one quasi-orthogonal
STBC by building a k × k code matrix from two k

2 × k
2

matrices.
At the receiver, and in contrast to the detector used in [14]-

[17], space-time block decoding is performed before group
detection is applied. Specifically, for the case of m transmit
and n receive antennas during T time slots, the linear nature
of STBC can be exploited to obtain an equivalent Tn × m
channel [19]. Group detection is then applied based on this
equivalent channel. It can be seen that after decoding, the
receive dimensions increase from n to Tn and thus much
better performance can be achieved by group detection. In
this paper, we shall always assume that this novel detector is
adopted instead of the one used in [14]-[17]. For the sake of
comparison, the structure that combines the proposed detector
and the transmission structure proposed in [14] with STBC
in each group is considered in this paper. Such combined
structure, which we refer to as Group Layered Space-Time
(GLST), should be distinguished from the Layered Space-
Time Block Code (LSTBC) proposed in [15], as we adopt
a different detection methodology.

The performance of our proposed QoGST and GLST,
is evaluated in terms of the diversity-multiplexing tradeoff

function. To do so, we first obtain the equivalent channel
models of GLST and QoGST, respectively, by virtue of the
linear structure of STBC. For m-transmit-n-receive-T -coding-
length GLST and QoGST, we derive the tradeoff function of
an m-transmit-Tn-receive system over Rayleigh slow fading
channels with group zero-forcing (GZF) detection since their
equivalent channels are both of Tn×m dimensions. However,
it is very difficult to get the exact tradeoff function of
both GLST and QoGST in general. Therefore, we resort to
tradeoff bounds. Particularly, we obtain the lower and the
upper bound tradeoff functions of GLST and QoGST. It is
found that the lower bound tradeoff of QoGST is usually
better than the upper bound tradeoff of GLST, which implies
that QoGST has a better diversity-multiplexing tradeoff than
GLST. Simulation results will further validate our analysis
and show that compared to the existent LSTBC scheme, both
QoGST and GLST can achieve a significant performance gain.
Throughout the paper, we assume Rayleigh fading and a prior
perfect knowledge of the channel at the receiver.

This paper is organized as follows. In Section II, we provide
our channel model and briefly present the group detection
scheme. In Section III, we introduce the transmitter and re-
ceiver design of GLST, and then QoGST. Section IV presents
the performance analysis, which is evaluated in terms of
the diversity-multiplexing tradeoff function. Simulation results
are given in Section V. Finally, Section VI summarizes and
concludes this paper.

II. CHANNEL MODEL AND GROUP DETECTION

We consider a wireless link with m transmit and n receive
antennas, which we refer to as (m, n). At each time slot t,
the encoded and modulated signal xi

t is transmitted through
transmit antenna i, 1 ≤ i ≤ m. We assume that the channel
remains constant within a block of L symbols. Let hij denote
the complex path gain from transmit antenna j to receive an-
tenna i, which is modeled as samples of independent complex
Gaussian random variables with mean zero and variance 0.5
per dimension. We also assume perfect channel knowledge at
the receiver side only, through the use of training sequences.

Let (·)′
denote the transpose operator. The discrete received

complex signal vector can now be written as

yt =

√
SNR

m
Hxt + zt, (1)

where xt =
[
x1

t,x
2
t, . . . , x

m
t

]
and yt =

[
y1

t,y
2
t, . . . , y

n
t

]
. The

additive noise zt has i.i.d. entries zi
t, i = 1, . . . , n, which are

all Gaussian complex random variables with mean zero and
unit variance. Also SNR is the average signal-to-noise ratio
at each receive antenna.

Assume that the transmit signals are divided into G groups,
G1,G2, . . .GG, with group size |Gi|, i = 1, . . . , G. Then, (1)
can be written as

yt =

√
SNR

m
[HG1 ,HG2 , . . . ,HGG ] .

⎡⎢⎢⎢⎣
s1t
s2t
...

sGt

⎤⎥⎥⎥⎦ + zt, (2)
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where sit is the transmit vector of group Gi at time slot t,
t = 1, . . . , L and i = 1, . . . , G. HGi is the n × |Gi| channel
matrix of group Gi, i = 1, . . . .G.

When group detection is adopted, two types of receiver can
be deployed: Group Zero-Forcing (GZF) and Group Succes-
sive Interference Cancellation (GSIC). With GZF, groups are
detected independently. In particular, at time slot t, group Gi is
assumed to be detected. Then, the interference from the other
groups G1, . . . ,Gi−1,Gi+1, . . . ,GG should be nulled out using
an orthogonal projection. To obtain the projection matrix, we
partition H into H =

[
HGi,HGi

]
, where HGi

includes the
columns of H corresponding to all the groups except Gi. The
projection matrix PGi is then defined as [20]

PGi = In − HGi

(
H+

Gi
HGi

)−1

H+

Gi
, (3)

where (·)+

denotes the complex conjugate transpose. There-
fore, using the transformation Wi = H+

Gi
PGi on yt we have

ỹi
t = Wiyt =

√
SNR

m
H+

Gi
PGiHGis

i
t + z̃t

=

√
SNR

m
Q−1

Gi
si
t + z̃t, (4)

where
Q−1

Gi
= H+

Gi
PGiHGi . (5)

It turns out that QGi =
[
(H+H)−1

]
|Gi|×|Gi|

is the |Gi| ×
|Gi| diagonal submatrix of (H+H)−1 and the noise z̃t has
covariance Q−1

Gi
[20]. The transmit symbols of group Gi at

time slot t can then be decoded using MLD based on ỹi
t as

follows:
ŝit = arg min

sit∈Ω

(
rit
)+

Qi
Gi

rit, (6)

where Ω is the constellation set and

rit = ỹi
t −

√
SNR

m
Q−1

Gi
si
t. (7)

When GSIC is adopted, the channel matrix H is updated
by eliminating the columns corresponding to G1,G2, . . . ,Gi−1

before detecting Gi. After obtaining ŝit, the interference in-
troduced by Gi should be subtracted from yt. The remaining
process is similar to GZF.

Throughout this paper, we denote by (·)∗ and det(·) the
conjugate and the determinant operators, respectively. Im and
0m×n represent an m×m identity matrix and an m×n zero
matrix, respectively. For an arbitrary matrix A, aij refers to
its element at the ith row and the jth column, and (A)n×n to
its n×n diagonal submatrix. When A is a Hermitian positive
definite matrix, we shall write it as A > 0. If A and B are
both Hermitian matrices and we have A− B > 0, we write
it as A > B. Finally, S shall represent the complement of a
set S with the length |S|.

III. COMBINED STBC AND LST

We begin by presenting GLST, and then provide the details
of the QoGST architecture.

A. GLST

1) Transmitter: As shown in Fig. 1, all the m transmit an-
tennas are partitioned into Gm groups, respectively, compris-

ing m1, m2, . . . , mG antennas with
Gm∑
i=1

mi = m. A block of

input bits {bi}i=1...K with length K is divided into Gb groups,
G1,G2, . . .GGb

, and in each group, bi =
[
bi,1,, bi,2, . . . , bi,|Gi|

]
,

i = 1, . . . , Gb, is then encoded by a component space-time
block code STBCi associated with mi transmit antennas. In
GLST, it is required that Gm = Gb = G. For simplicity,
here we do not consider the case of variable-rate STBC.
Therefore, we assume that all the component codes STBCi,
i = 1, . . . , G, have the same code length T , and we have
mi = gm and |Gi| = gb for i = 1, . . . , G. Then, the output
m×T codeword matrix X over a block of T symbol intervals
can be written as

X=

⎡⎢⎣ x1
1 · · · x1

T
...

. . .
...

xm
1 · · · xm

T

⎤⎥⎦
=

⎡⎢⎣ s1
1 · · · s1

T
...

. . .
...

sG
1 · · · sG

T

⎤⎥⎦ =

⎡⎢⎣ S1

...
SG

⎤⎥⎦ , (8)

where Si =
[
si
1, . . . , s

i
T

]
is the gm × T codeword matrix of

group Gi, i = 1, . . . , G.
An m-antenna-T -time-slot-K-symbol STBC Ox can be

represented as [23]

Ox = [A1x + B1x∗,A2x + B2x∗, . . . ,AT x + BT x∗] (9)

where x is a K × 1 complex variable vector and At,Bt are
constant coefficient matrices in Rm×K , t = 1, . . . , T . The
matrix Ox is called [m, T, K] STBC for short in the following.
Therefore, Si can be written as

Si =
[
Ai

1bi, . . . ,Ai
T bi

]
+
[
Bi

1b
∗
i , . . . ,B

i
T b∗

i

]
, (10)

for i = 1, · · · , G, where Ai
t,B

i
t are constant coefficient

matrices in Rgm×gb , t = 1, , T .
It can be seen that in this transmit architecture, the bit

streams of each group are space-time coded. Therefore, a
higher diversity gain can be achieved compared to the con-
ventional LST. Besides, the multiplexing gain is higher than
the conventional STBC due to the use of multiple group trans-
mission. We can thus conclude that this transmit scheme offers
a good tradeoff between the diversity gain and multiplexing
gain.

2) Receiver: The detector presented in [14]-[17] is to
suppress signals transmitted from other groups of antennas
by virtue of a group detector first, and then perform space-
time decoding for the desired group. Particularly, assume
that GZF is adopted. At each time slot t, the nulling matrix
Wi = H+

Gi
PGi for group Gi can be computed, as shown

in Section II. However, to decode the whole codeword Si of
group Gi, an ML space-time decoder should be adopted instead
of the one given by (6) as

b̂i = arg min
bi∈Ω

T∑
t=1

(
ri

t

)+
QGir

i
t, (11)
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Fig. 1. Block diagram of GLST.

Y =

√
SNR

m

⎡⎢⎣[H1A1
1, . . . ,HGAG

1

] ·
⎡⎢⎣ b1

...
bG

⎤⎥⎦ , · · · ,
[
H1A1

T , . . . ,HGAG
T

] ·
⎡⎢⎣ b1

...
bG

⎤⎥⎦
⎤⎥⎦ +

√
SNR

m

⎡⎢⎣[H1B1
1, . . . ,HGBG

1

] ·
⎡⎢⎣ b∗

1
...

b∗
G

⎤⎥⎦ , · · · ,
[
H1B1

T , . . . ,HGBG
T

] ·
⎡⎢⎣ b∗

1
...

b∗
G

⎤⎥⎦
⎤⎥⎦ + Z. (12)

where rit is given by (7).
In this paper, we adopt a new detector, in which space-

time decoding is performed first followed by group detection.
To do so, an equivalent channel is obtained by virtue of the
linear nature of STBC. GZF is then performed. Particularly,
by combining (8) and (10), the received signal vector can be
written as (12).

Let yi represent the i-th column vector of Y and
r =

[
y

′
1,y

′
2, . . . ,y

′
T

]
. Then, from (12) we have (13) (see

next page). [23] has proposed an algorithm for constructing
any [m, T, K] STBC that guarantees that b and b∗ will not
appear in the same time slot t. Under this assumption, (13) is
equivalent to (14) (see next page), where r̃ = [ỹ1, . . . , ỹT ]

and ỹT =
{

yt,
y∗

t ,
Bi

t = 0gm×gb

Ai
t = 0gm×gb

, t = 1, . . . , T . Also

ṽ has covariance ITn. For any group Gi, i = 1, . . .G, its
corresponding subchannel matrix is given by

HG1 =

⎡⎢⎣ HiAi
1 + H∗

i B
i∗
1

...
HiAi

T + H∗
i B

i∗
T

⎤⎥⎦ . (15)

Notice that (15) is an equivalent subchannel for each group
with subchannel Hi. From (15), it can be also seen that the
equivalent subchannels of each group are independent. This
is because an independent STBC is adopted for each group
in GLST. Notice that

{
Ai

t

}
t=1,...,T

and
{
Bi

t

}
t=1,...,T

, are the
coefficient matrices of STBCi, i = 1, . . . , G. We present the
following proposition.

Proposition 1: For the equivalent channel matrix of any
group, HG1 =

[
hi,1, . . . ,hi,gb

]
, i = 1, . . . , G, its column

vectors are orthogonal to each other, namely,

h
+

i,khi,j =

⎧⎨⎩
gm∑
l=1

h
∗
i,lhi,l j = k

0 otherwise
, (16)

where hi,l is the ((i − 1) · gm + l)th column vector of the
channel matrix H, l = 1, . . . , gm and i = 1, . . . , G.

Proposition 1 can be easily obtained from the properties of{
Ai

t

}
t=1,...,T

and
{
Bi

t

}
t=1,...,T

. Therefore, we omit the proof
here.

From (14) it is clear that after obtaining this Tn × K
equivalent channel of GLST, the decoding process is done.
Group detection can then be applied so as to get the original
transmit symbols. The details have been presented in Section
II and we do not repeat them here. Besides, it should be
noticed that there should be some constraint on the number of
receiver antennas since group detection is applied to a Tn×K
equivalent channel at the receiver. In particular, Tn should be
larger than m− gm in order to ensure that the group detector
works.

B. QoGST

1) Transmitter: In GLST, the bit streams of each group are
encoded separately so that the output streams S1,S2, . . . ,SG

are independent of each other. No special transmit design
is adopted to suppress the interference among the groups.
Besides, the mapping from different groups to the transmit
antennas is always fixed over all the time slots. Therefore,
no interleaving gain can be achieved. In this section, we will
present a new space-time architecture, in which all the groups
are encoded together via an “inter-group STB” encoder. We
call it Quasi-Orthogonal Group Space-time (QoGST).

As Fig. 2 shows, the input stream {bi}i=1,...,K and all the
m transmit antennas are equally partitioned into Gb and Gm

groups with the group size gb and gm, respectively, as GLST
does. However, instead of being encoded separately, all the
groups b1,b2, . . . ,bGb

are encoded together. The design of
the inter-group STBC is given by

X =
[
Ã1b, . . . ,ÃT b

]
+
[
B̃1b∗, . . . ,B̃T b∗

]
, (17)
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r =

√
SNR

m

⎧⎪⎨⎪⎩
⎡⎢⎣ H1A1

1 · · · HGAG
1

...
. . .

...
H1A1

T · · · HGAG
T

⎤⎥⎦ ·

⎡⎢⎣ b1

...
bG

⎤⎥⎦ +

⎡⎢⎣ H1B1
1 · · · HGBG

1
...

. . .
...

H1B1
T · · · HGBG

T

⎤⎥⎦ ·

⎡⎢⎣ b∗
1
...

b∗
G

⎤⎥⎦
⎫⎪⎬⎪⎭ + v (13)

r̃ =

√
SNR

m

⎧⎪⎨⎪⎩
⎡⎢⎣ H1A1

1 + H∗
1B

1∗
1 · · · HGAG

1 + H∗
GBG∗

1
...

. . .
...

H1A1
T + H∗

1B
1∗
T · · · HGAG

T + H∗
GBG∗

T

⎤⎥⎦ ·

⎡⎢⎣ b1

...
bG

⎤⎥⎦
⎫⎪⎬⎪⎭+ ṽ =

√
SNR

m
[HG1 , . . . ,HGG ] ·

⎡⎢⎣ b∗
1
...

b∗
G

⎤⎥⎦+ ṽ

(14)

Fig. 2. Block diagram of QoGST.

where

Ãt=
[
Ã1

t , . . . , Ã
Gb
t

]
, B̃t

[
B̃1

t , . . . ,B̃
Gb
t

]
, (18)

and Ãi
t = At [ : , i] ⊗ Ig , B̃i

t = Bt [ : , i] ⊗ Ig , i = 1, . . . , Gb

and t = 1, . . . , T . At [ : , i] and Bt [ : , i] are the ith column
vector of At and Bt, respectively. At and Bt, t = 1, . . . , T ,
are the coefficient matrices of a [Gm, T, Gb] STBC. Here it is
required that gm = gb = g.

To further illustrate this encoding process, we consider the
following example. Assume that the bit streams are divided
into Gb = 2 groups and transmitted by m = 4 transmit
antennas over T = 2 time slots. Obviously, we have g = 2 and
Gb = Gm = 2. For a [2,2,2] STBC, the coefficients matrices
A1,A2,B1,B2 are given by:

A1 =
[

1 0
0 1

]
, B2 =

[
0 −1
1 0

]
,

A2 = B1 = 02×2. (19)

Then, the new coefficients matrices can be obtained as:

Ã1 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , B̃2 =

⎡⎢⎢⎣
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ ,

Ã2 = B̃1 = 04×4. (20)

Therefore, the output codeword matrix of QoGST is given by:

XQoGST =

⎡⎢⎢⎣
b1,1 −b∗2,1

b1,2 −b∗2,2

b2,1 b∗1,1

b2,2 b∗1,2

⎤⎥⎥⎦ . (21)

Compared to the codeword matrix of GLST:

XGLST =

⎡⎢⎢⎣
b1,1 −b∗1,2

b1,2 b∗1,1

b2,1 −b∗2,2

b2,2 b∗2,1

⎤⎥⎥⎦ , (22)

it is obvious that in QoGST the mapping from the bit streams
of different groups to the transmit antennas is not constant
any more. Therefore, a higher diversity gain can be achieved
thanks to an interleaving gain that is obtained as a result of
this non-constant mapping. Besides, here STBC is applied to
the transmit vectors. The interference among the groups is not
independent any more and thus can be better suppressed.

2) Receiver: From (17), we have (23) (see top of next
page). Similarly, we can get (24) and (25) (see top of next
page), where for i = 1, . . . , Gb,

HG1 =

⎡⎢⎢⎣
HÃ

i

1 + H∗B̃i∗
1

...

HÃ
i

T + H∗B̃i∗
T

⎤⎥⎥⎦ . (26)

Given r̃, group detection can then be applied.
Clearly, the equivalent channel matrix of QoGST with the

element given by (26) also has Tn×K dimensions. However,
in contrast to GLST, here HGi’s are dependent on each other.
Notice that when the group size g is one, QoGST is reduced to
an STBC scheme and thus all HGi ’s are orthogonal. However,
when g is larger than one, HGi’s are not strictly orthogonal.
Actually, for any i �= j, H+

Gj
HGi is a matrix with zero diagonal

elements instead of 0g×g. Nevertheless, compared with GLST,
QoGST is expected to achieve better performance since the
interference among the groups is better suppressed. We further
provide the following proposition.
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Y =

√
SNR

m

⎡⎢⎣[HÃ1
1, . . . ,HÃGb

1

]
·

⎡⎢⎣ b1

...
bGb

⎤⎥⎦ , . . . ,
[
HÃ1

T , . . . ,HÃGb

T

]
·

⎡⎢⎣ b1

...
bGb

⎤⎥⎦
⎤⎥⎦

+

√
SNR

m

⎡⎢⎣ [
HB̃1

1, . . . ,HB̃Gb
1

]
·

⎡⎢⎣ b∗
1
...

b∗
Gb

⎤⎥⎦ , . . . ,
[
HB̃1

T , . . . ,HB̃Gb

T

]
·

⎡⎢⎣ b∗
1
...

bGb

⎤⎥⎦
⎤⎥⎦ + Z (23)

r =

√
SNR

m

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

HÃ
1

1 · · · H1ÃGb
1

...
. . .

...

HÃ1
T · · · HÃ

Gb

T

⎤⎥⎥⎦ ·

⎡⎢⎣ b1

...
bGb

⎤⎥⎦+

⎡⎢⎣ HB̃1
1 · · · HB̃Gb

1
...

. . .
...

HB̃1
T · · · HB̃Gb

T

⎤⎥⎦ ·

⎡⎢⎣ b∗
1
...

b∗
Gb

⎤⎥⎦
⎫⎪⎪⎬⎪⎪⎭ + v (24)

r̃ =

√
SNR

m

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

HÃ
1

1 + H∗B̃1∗
1 · · · HÃGb

1 + H∗B̃Gb∗
1

...
. . .

...
HÃ1

T + H∗B̃1∗
T · · · HÃGb

T + H∗B̃Gb∗
1

⎤⎥⎥⎦ ·

⎡⎢⎣ b1

...
bGb

⎤⎥⎦
⎫⎪⎪⎬⎪⎪⎭ + ṽ =

√
SNR

m

[
HG1,...,HGGb

]
·

⎡⎢⎣ b1

...
bGb

⎤⎥⎦ + ṽ

(25)

Proposition 2: The row vectors, HGi [j, : ], j = 1, . . . , Tn,
of any sub-channel matrix HGi , i = 1, . . . , Gb, are indepen-
dent.

Proof: See Appendix I.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of QoGST and
GLST in terms of diversity-multiplexing tradeoff. From (14)
and (25), it is clear that QoGST and GLST both have a Tn×m
equivalent channel. Group detection can be then applied based
on the equivalent channel so as to get the original transmit
symbols. This implies that the diversity gain of GLST and
QoGST should be the same as the m-transmit Tn-receive
systems with a group detector over a channel given by (14) and
(25), respectively. Therefore, before investigating the diversity-
multiplexing tradeoff of GLST and QoGST, we first derive the
tradeoff function of an m-transmit-Tn-receive system over
Rayleigh quasi-static channels with GZF (we refer it to as
(m, N) GZF , where N = Tn).

A. Tradeoff of (m, N)GZF

Assume that an (m, N) system is given by

y =

√
SNR

m
Hb + z (27)

where the elements of H and z are all independent complex
Gaussian random variables with mean zero and variance 0.5
per dimension.

From (4) we know that, for any group Gi, i = 1, . . . , G, we
have

yGi =

√
SNR

m
Q−1

Gi
bGi+zGi , (28)

where {bij}j=1,...,|Gi| are independent with the covariance

matrix Γ. zGi has the covariance Q−1
Gi

. Therefore, the mutual

information is given by

I
(
bGi ;yGi |H = Q−1

Gi

)
= log det

(
Q−1

Gi
+ SNR/m ·Q−1

Gi
Γ
(
Q−1

Gi

)+

Q−1
Gi

)

= log det
(
I|Gi| +

SNR

m
Γ
(
Q−1

Gi

)+)
. (29)

From [4], we know that the outage probability
PGi,out (RGi) = P

[
I
(
bGi ;yGi |H = Q−1

Gi

)
< RGi

]
is

given by

PGi,out (RGi)
.= P

[
log det

(
I|Gi| + SNR · Q−1

Gi

)
< RGi

]
= P

⎡⎣log
|Gi|∏
j=1

(1 + SNR · λj) < RGi

⎤⎦ , (30)

where
.= is defined in [4], specifically, f (SNR) .= SNRb

means that lim
SNR→∞

log f(SNR)
log SNR = b. Also {λj}j=1,...,|Gi| are

the ascending ordered eigenvalues of Q−1
Gi

.
Theorem 3: Q−1

Gi
∼ W|Gi|

(
N − ∣∣Gi

∣∣) and the joint proba-
bility density function (pdf) of {λj}j=1,...,|Gi| is given by2

p
(
λ1, λ2, . . . , λ|Gi|

)
= K−1

|Gi|,N−|Gi|
|Gi|∏
j=1

λ
N−|Gi|−|Gi|
j

∏
j<k

(λj − λk)2 e
−

|Gi|�
j=1

λj

. (31)

Proof: See Appendix II.
In [4], it has been proved that for an n×m Rayleigh channel

H, H+H ∼Wm (n). Then, the diversity-multiplexing tradeoff
dout (r) .= − log Pout (R) / log SNR = (m − r) (n − r),
where r is the multiplexing gain and r = R/ log (SNR).

2Wp (n) represents a Wishart distribution with n degrees of freedom.
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Therefore, by applying a similar approach as the one in [4],
it can be derived that

dGi,out (rGi) = (N − m + |Gi| − rGi) (|Gi| − rGi) (32)

where rGi = RGi
/ log (SNR) is the spatial multiplexing gain

of group Gi.
Theorem 4: When the block length L ≥ N − ∣∣Gx

∣∣+ |Gx|−
1 (where Gx = arg max

i=1,...,G
|Gi|), the diversity-multiplexing

tradeoff of an m-transmit-N -receive system with GZF is given
by

d (r) =

{
min

i=1,...,G
{dGi,out (rGi)} ;

G∑
i=1

rGi = r

}
(33)

where dGi,out (rGi) is defined by (32).
Proof: See Appendix III.

The tradeoff function presented in Theorem 2 clearly de-
pends on the rate RGi and size |Gi| of each group. If all G
groups are assumed to be allocated the same rate with the
same size g, the diversity-multiplexing tradeoff is given by

deqr (r) = (N − m + g − r/G) (g − r/G) , (34)

From (34), it can be seen that (m, N) GZF can achieve the
maximum diversity gain g (N − m + g). With an increasing
group size g, a better diversity-multiplexing tradeoff can be
achieved but at the cost of higher complexity.3

B. Tradeoff of GLST

The equivalent Tn × m channel of GLST has been given
by (14). It can be seen that although the row vectors of H,
hi, i = 1, . . . , n are independent Gaussian distributed vectors,
the row vectors of HGi (given by (15)) are not i.i.d. any more.
Hence, Theorem 1 cannot be directly applied. Here, we resort
to the upper and lower bounds of the tradeoff function.

Theorem 5: The diversity-multiplexing tradeoff of GLST is
bounded by

dlower_GLST (r) ≤ dGLST (r) ≤ dupper_GLST (r) ,

where

dupper_GLST (r) = gmn (1 − Tr/K) and

dlower_GLST (r) = (x − Tr/G) (gb − Tr/G) , (35)

with x = min (n, Tn− K + gb) .
Proof: See Appendix IV.

Orthogonal design and VBLAST can both be regarded as
special cases of GLST. When G = m = K = n and gb =
gm = 1, GLST is reduced to VBLAST. Notice here that n =
K and T = 1. Therefore, x = Tn − K + gb = 1. From
Appendix IV, we know that the lower bound can be achieved
only when x = Tn−K+gb. Therefore, we have dGLST (r) =
1 − r/K ≡ dV BLAST (r), which is exactly the same as the
one presented in [4]. On the other hand, we also show in
Appendix IV that when there is only one group, the upper
bound can be achieved, i.e., dGLST (r) = mn (1 − Tr/K). In

3In the following, equal rate allocation is assumed in QoGST, GLST and
LSTBC.

this case, GLST is reduced to orthogonal design and obviously
we have4 dGLST (r) = dortho (r) = mn (1 − Tr/K).

C. Tradeoff of QoGST

The equivalent Tn×m channel of QoGST has been given
by (25). Since HGi’s are not independent, PGi is dependent on
HGi , i = 1, . . . , Gb. Hence, Theorem 1 cannot be applied and
we also resort to the upper and lower bounds of the tradeoff
function.

Theorem 6: The diversity-multiplexing tradeoff of QoGST
is bounded by

dlower_QoGST (r) ≤ dQoGST (r) ≤ dupper_QoGST (r)

where

dlower_QoGST (r) = (Gmn − Tr/Gb) (g − Tr/Gb) and

dlower_QoGST (r) = (Gmn − m + G − Tr/Gb)
(g − Tr/Gb) . (36)

Proof: See Appendix V.
dupper_QoGST (r) reflects the optimal case with no inter-

ference among the groups. In other words, dQoGST (r) can
reach the upper bound dupper_QoGST (r) when all the groups
are orthogonal. However, this condition is satisfied only with
the group size g = 1. In this case, QoGST is reduced to
an orthogonal design and obviously we have dQoGST (r) =
mn (1 − Tr/K) = dortho (r).

When there is only one group, i.e., G = 1, QoGST
turns into an m-transmit n-receive system with a maxi-
mum likelihood detector over Rayleigh quasi-static chan-
nels. In this case, the upper bound and lower bound
converge to dlower_QoGST (r) = dupper_QoGST (r) =
(n − r) (m − r). Therefore, the diversity-multiplexing trade-
off function of QoGST can be exactly given by dQoGST (r) =
(n − r) (m − r), which is exactly the same as the optimal
tradeoff function for an (m, n) over Rayleigh channels as
shown in [4].

D. Tradeoff Comparison

Fig. 4 presents the diversity-multiplexing tradeoff curves
of GLST and QoGST when m = K = 4 and n = 2. For
comparison, we also show the optimal tradeoff curve for an
(m, n) over Rayleigh channels. In GLST, assume that there
are 2 groups, i.e., G = 2 and gm = gb = 2. For QoGST,
assume that the group size g = 2 and thus Gm = Gb = 2.
Both GLST and QoGST needs T = 2 time slots. Since
x = Tn − K + gb = 2, the lower bound tradeoff function
of GLST can be achieved. Therefore, from (34) and (35), the
tradeoff function of GLST and the lower and upper bound
tradeoff functions of QoGST can be obtained. As Fig. 4
shows, the tradeoff curve of GLST is exactly the same as
that of the lower bound of QoGST. This implies that QoGST
always has a better diversity-multiplexing tradeoff than GLST.
Besides, the upper bound tradeoff of QoGST overlaps with the

4In [4], the diversity-multiplexing tradeoff of the orthogonal design with
2 trasmit antennas and n receive antennas has been presented as d (r) =
2n (1 − r). Through a similar analysis, the tradeoff of the orthogonal design
with an arbitrary m and n can be derived as d (r) = mn (1 − Tr/K). We
omit the proof doe to space limitation.



1302 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 4, APRIL 2007

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

SNR   (dB)

FE
R

GLST

LSTBC

K=m=6, n=4
QoGST: G

m
=G

b
=3, g=2

GLST: g
m

=g
b

=3, G=2

QoGST

K=m=6, n=4
LSTBC: gm=gb=3, G=2

K=m=4, n=2
QoGST: G

m
=G

b
=2, g=2

GLST: g
m

=g
b

=2, G=2

K=m=6, n=4
QoGST: G

m
=G

b
=2, g=3

GLST: g
m

=g
b

=2, G=3

Fig. 3. FER vs. SNR for QoGST, GLST and LSTBC.
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optimal one. Actually, it is not always the same as the optimal
tradeoff. As Fig. 5 shows, when n increases to 3, the maximum
multiplexing gain rmax of the optimal one will increase to 3,
while rmax of the upper bound of QoGST is only 2. In this
case, the lower bound tradeoff of QoGST is even better than
the upper bound tradeoff of GLST, thus, indicating a more
significant gain.

Fig. 6 and Fig. 7 show the case of m = K = 6 and n = 4.
Since 6 symbols (antennas) can be divided into 2 groups with 3
symbols (antennas) in each group, or 3 groups with 2 symbols
(antennas) in each group, we consider both of these possible
partitions. In Fig. 6, the bit stream and transmit antennas are
assumed to be separated into 2 groups, i.e., gm = gb = g =
3 and G = Gm = Gb = 2. Recall that in QoGST, STBC
is adopted among the groups. Therefore, for a 2-symbol-2-
antenna transmission, only TQoGST = 2 time slots are needed.
However, for GLST, STBC is adopted inside the group. We
take the [3], [4], [3] STBC code given in [23] (pp. 2485,

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Spatial Multiplexing Gain: r

D
iv

er
si

ty
 G

ai
n:

 d

lower bound of GLST, d
lower−GLST

(r)   
upper bound of GLST, d

upper−GLST
(r)   

lower bound of QoGST, d
lower−QoGST

(r)
upper bound of QoGST, d

upper−QoGST
(r)

(m, n) optimal, d*(r)                          

Fig. 5. Diversity-multiplexing tradeoff curves of the upper and lower bounds
of GLST, the upper and lower bounds of QoGST and the optimal one when
when m = K = 4, n = 3. For GLST, G = 2, gm = gb = 2, and T = 2.
For QoGST, g = 2, Gm = Gb = 2, and T = 2.
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Eqn. (99)), and so TGLST = 4. As Fig. 6 shows, QoGST can
always get a much better diversity-multiplexing tradeoff than
GLST as its lower bound is always better than the upper bound
tradeoff of GLST. Besides, GLST can only get a maximum
multiplexing gain of 1.5, which is lower than that of QoGST.
This is because GLST needs more time slots to transmit all
K symbols.

Fig. 7 shows the latter partition, i.e., gm = gb = g = 2
and G = Gm = Gb = 3. Here GLST needs 2 time slots,
while QoGST needs 4 time slots. From Fig. 7, it can be seen
that in this case despite a much higher diversity gain, QoGST
has a smaller maximum multiplexing gain due to its lower
transmission rate. Nevertheless, if we compare the tradeoff of
QoGST with Gm = Gb = 3 and g = 2 to that of GLST
with gm = gb = 3 and G = 2, it is found that QoGST
can always achieve a better diversity gain while keeping the
same multiplexing gain as GLST. As Fig. 8 shows, the lower
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Fig. 7. Diversity-multiplexing tradeoff curves of the upper and lower bounds
of GLST, the upper and lower bounds of QoGST and the optimal one when
when m = K = 6, n = 4. For GLST, G = 3, gm = gb = 2, and T = 2.
For QoGST, g = 2, Gm = Gb = 3, and T = 4.

bound tradeoff curve of QoGST is always higher than the
upper bound tradeoff curve of GLST. The same conclusion
holds true for the comparison of QoGST with g = 3, Gm =
Gb = 2 and GLST with gm = gb = 2, G = 3. Therefore,
we can conclude that QoGST always has a better diversity-
multiplexing tradeoff than GLST.

V. FURTHER RESULTS AND DISCUSSIONS

We have shown that the proposed QoGST has a better
diversity-multiplexing tradeoff than GLST. In this section, we
further provide the FER performance of both schemes. For the
sake of comparison, we also present the FER performance of
LSTBC5 proposed in [15]. QPSK is assumed to be adopted.
As Fig. 3 shows, when m = 4 and n = 2, both QoGST
and GLST have 2 groups with group size 2. In this case,
QoGST can achieve a gain of 3 dB over GLST at a FER
of 10−3. Besides, in high-SNR conditions, the FER curve of
QoGST has a larger slope than that of GLST, which implies
that QoGST has a better diversity gain. Notice that these two
schemes have the same spectral efficiency. As a result, we can
conclude that QoGST achieves a better diversity-multiplexing
tradeoff, which is consistent with our analysis in Section IV.
Here we did not show the FER curve of LSTBC since it cannot
work in this case. Recall that in LSTBC, group detection is
performed before space-time decoding. Therefore, the group
detector is applied to an n × 1 receive signal vector, which
requires that n > m − gm. However, for GLST or QoGST,
recall that it is only required that Tn > m − gm since group
detection is performed after decoding. This implies that both
GLST and QoGST have a lower requirement on the number
of receive antennas than LSTBC.

When m = 6 and n = 4, the transmit antennas of both
QoGST and GLST can be divided into 2 or 3 groups. To
keep the same transmission rate, the group size of QoGST as
well as that of GLST and LSTBC is assumed to be 3 and

5In order to make a fair comparison, an equal group size is assumed in
LSTBC.
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2 (or 2 and 3), respectively. As Fig. 3 shows, for the case
of gQoGST = GGLST = 3, QoGST can achieve at least 4
dB gain at a FER of 10−3, and the FER curve of QoGST
is much steeper than that of GLST, which implies a much
better diversity gain. Again LSTBC cannot work in this case.
When gQoGST = GGLST = 2, QoGST will not achieve such
a significant gain as before. Nevertheless, a larger slope and
1 dB gain can be seen. LSTBC gets the worst performance.
At a FER of 10−3, 12 dB and 11 dB gains can be achieved
by QoGST and GLST, respectively. These observations clearly
validate our analysis on the diversity-multiplexing tradeoff.

VI. CONCLUSIONS

To achieve a good tradeoff between multiplexing gain and
diversity gain in MIMO systems, this paper proposed two
combined STC and LST architectures, which we refer to
as QoGST and GLST. In QoGST, the transmit stream is
divided into multiple groups and the different groups are
encoded together via a quasi-orthogonal inter-group STBC
coder. While in GLST, STBC is used inside each group
instead of among the groups. We analyzed their diversity-
multiplexing tradeoff functions and found that both QoGST
and GLST can achieve a good diversity-multiplexing tradeoff.
Besides, the lower bound tradeoff of QoGST is always higher
than the upper bound tradeoff of GLST, which indicates a
significant gain. The simulation results validated our analysis
and demonstrated that QoGST can always achieve much better
FER performance than GLST and both of them can achieve
substantial gains than the existent LSTBC scheme.

APPENDIX I
PROOF OF PROPOSITION 2

For an [m, T, K] STBC

Ox = [A1x + B1x∗,A2x + B2x∗, . . . ,ATx + BTx∗] ,
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we have

(Aj [ : , i])
′ · (Ak [ : , i]) = 0,

(Bj [ : , i])
′ · (Bk [ : , i]) = 0,

and (Aj [ : , i])
′
(Bk [ : , i]) = 0 (37)

for j, k = 1, . . . , T , j �= k, i = 1, . . . , Gb

Since Ãi
t = At [ : , i] ⊗ Ig , B̃i

t = Bt [ : , i] ⊗ Ig , for i =
1, . . . , Gb and t = 1, . . . , T , then from (37) it can be obtained
that (

Ãi
j

)′

· Ãi
k = 0g×g,

(
B̃i

j

)′

· B̃i
k = 0g×g,

and
(
Ãi

j

)′

· B̃i
k = 0g×g (38)

for j, k = 1, . . . , T , j �= k, i = 1, . . . , Gb.
Notice that b and b∗ will not appear in the same time

slot t. Therefore, by combining (26) and (38), it is obvious
that HGi

t = HÃi
t + H∗B̃i∗

t , t = 1, . . . , T , are independent
of each other. Furthermore, since the row vectors of HGi

t are
also independent, Proposition 2 can be obtained.

APPENDIX II
PROOF OF THEOREM 1

From (5) we know that Q−1
Gi

= H+
Gi

PGiHGi , where PGi is
an N ×N projection matrix given by (3). [20] has shown that
PGi has N − ∣∣Gi

∣∣ unit eigenvalues and
∣∣Gi

∣∣ zero eigenvalues.
By applying Singular Value Decomposition (SVD) to PGi , we
have

PGi = U+
Gi

ΛGiUGi , (39)

where UGi is an N ×N unitary matrix, and ΛGi is an N ×N
diagonal matrix whose elements are the descending ordered
eigenvalues of PGi . Therefore, we have

Q−1
Gi

= H+
Gi

PGiHGi = V+
Gi

ΛGiVGi =
N−m+|Gi|∑

i=1

v+
i vi,

(40)
where VGi = UGiHGi with the row vector vi, i = 1, . . . , N .

Notice that PGi is independent of HGi and the row vectors
of HGi are independent Gaussian distributed. Then, from [21]
(pp. 91, Lemma 7.2) we know that Q−1

Gi
is Wishart distributed

with N − m + |Gi| degrees of freedom. Therefore, the joint
pdf of {λj}j=1,...,|Gi| is given by (31) [22].

APPENDIX III
PROOF OF THEOREM 2

From [4], we know that the outage probability of the whole
channel is

Pout (R) .= P [I (b;y|H = H) < R] . (41)

Clearly, with GZF any group in outage will lead to the outage
event of the whole system. Therefore, we have

Pout (R) = 1 −
G∏

i=1

(1 − PGi,out (RGi)) . (42)

Furthermore, since PGi,out (R) .= SNR
−dGi,out(rGi

) ,
Pout (R) .= SNR−dout(r), where rGi = RGi/ log (SNR) is

the spatial multiplexing gain of group Gi and r =
G∑

i=1

rGi , we

obtain from (42) that

dout (r) =

{
min

i=1,...,G
{dGi,out (rGi)} ;

G∑
i=1

rGi

}
. (43)

Similar to [4], for a sufficiently long block length L ≥
N − ∣∣Gx

∣∣ + |Gi| − 1 (where Gx = arg max
i=1,...,G

|Gi|), and by

assuming an input to be i.i.d. Gaussian random code, we can
obtain the overall system tradeoff function as

d (r) = dout (r) =

{
min

i=1,...,G
{dGi,out (rGi)} ;

G∑
i=1

rGi

}
.

APPENDIX IV
PROOF OF THEOREM 3

We begin by considering the upper bound. From (3)
and (5), we know that Q−1

Gi
= H+

Gi
PGiHGi =

H+
Gi

(
In − HGi

(
H+

Gi
HGi

)−1

HGi

)
HGi = H+

Gi
HGi −ΦGi ,

where ΦGi = H+

Gi
HGi

(
H+

Gi
HGi

)−1

H+

Gi
HGi

. Obviously,

ΦGi is positive-definite Hermitian, i. e., ΦGi = H+
Gi

HGi −
Q−1

Gi
≥ 0 (only when

∣∣Gi

∣∣ = 0, i.e., G = 1, ΦGi = 0).
Therefore, we have det

(
Q−1

Gi

) ≤ det
(
H+

Gi
HGi

)
and for an

arbitrary R,

P
(
det

(
Q−1

Gi

)
< R

) ≥ P
(
det

(
H+

Gi
HGi

)
< R

)
. (44)

As shown in Section IV-A, the outage probability of any group
Gi is given by

PGi,out (RGi)
.= P

[
log det

(
I|Gi| + SNR ·Q−1

Gi

)
< RGi

]
≈ P

[
det

(
Q−1

Gi

)
< SNR−(gb−rGi)

]
. (45)

By combining (44) and (45), it can be obtained that

PGi,out (RGi) ≥ P
(
det

(
H+

Gi
HGi

)
< SNR−(gb−rGi)

)
.

(46)
From Proposition 1 in Section III A-2, we know that

det
(
H+

Gi
HGi

)
=

(
gm∑
l=1

h+
i,lhi,l

)gb

. Let x =
gm∑
l=1

h+
i,lhi,l.

Obviously, x is chi-squared distributed with dimension gmn.
Therefore,

P
(
det

(
H+

Gi
HGi

)
< SNR−(gb−rGi)

)
= P

(
x < SNR−(1−rGi

/gb)
)

= SNR−gmn(1−rGi
/gb).

(47)

Let P
(
det

(
H+

Gi
HGi

)
< SNR−(gb−rGi)

)
.= SNR−d∗(rGi).

From (46), we get

dGi,out (rGi) ≤ d∗ (rGi) = gmn (1 − rGi/gb) . (48)

Assume that equal rate allocation scheme is applied. By
applying Theorem 2 we have

d (r) ≤ d∗ (r) = gmn (1 − r/K) (49)

As stated in Section IV, GLST should have the same diversity
gain as an m-transmit Tn-receive system over a channel given
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by (14) with a GZF. However, in contrast to an (m, Tn)
system in which all the K symbols are transmitted simultane-
ously, T transmit time slots are needed in GLST. Therefore,
despite the same diversity gain, the multiplexing gain of GLST
should be 1/T of that of this (m, Tn) system. By substituting
Tr for r in (49), we have

dGLST (r) ≤ dupper_GLST (r) = gmn (1 − Tr/K) . (50)

The upper bound can be achieved when ΦGi = H+
Gi

HGi −
Q−1

Gi
= 0, i.e., G = 1.

Now consider the lower bound. From (14) it can be seen
that HGi is independent to HGj , for any i �= j. Therefore,
PGi is independent of HGi and from (40) we have

Q−1
Gi

=
Tn−K+gb∑

i=1

v+
i vi. (51)

Assume that HGi =
[
h̃+

1 ,h̃+
2 , . . . , h̃+

Tn

]
, where h̃i is the

ith row vector of HGi , i = 1, . . . , Tn. Obviously, only{
h̃i

}
i=1,...,j

are independent where j ≤ n. Therefore, let

x = min (n, Tn− K + gb) and Q̃−1
Gi

=
x∑

i=1

v+
i vi. Then for

an arbitrary R, clearly we have

P
(
det

(
Q−1

Gi

)
< R

) ≤ P
(
det

(
Q̃−1

Gi

)
< R

)
(52)

The outage probability of any group Gi of GLST is thus upper
bounded by

PGi,out (RGi) ≤ P ∗
Gi,out (RGi)

.= P
[
log det

(
I|Gi| + SNR · Q̃−1

Gi

)
< RGi

]
(53)

Considering that Q̃−1
Gi

is Wishart distributed with x degrees of
freedom, from Theorem 2 its corresponding tradeoff function
can be obtained as

d∗
(
rGi

)
=

(
x − rGi

) (
gb − rGi

)
. (54)

Likewise, by assuming equal rate allocation and substituting
Tr for r, we have

dGLST (r) ≥ dlower_GLST (r) = (x − Tr/G) (gb − Tr/G) .
(55)

where x = min (n, Tn− K + gb).
The lower bound can be achieved when x = Tn−K + gb.
By combining (50) and (55), (35) can be obtained.

APPENDIX V
PROOF OF THEOREM 4

We begin by considering the upper bound. Similar to
Appendix IV, for any group Gi,

Q−1
Gi

= H+
Gi

HGi − ΦGi ≤ H+
Gi

HGi (56)

where ΦGi = H+
Gi

HGi

(
H+

Gi
HGi

)−1

H+

Gi
HGi . It turns out

that ΦGi = 0 only when g = 1. In this case, QoGST is
reduced to the orthogonal design and no interference exists
among the groups. When g > 1, our scheme cannot eliminate
the inter-group interference entirely. HGi will be dependent to
HGi

, but not orthogonal to HGi
.

From Proposition 2 in Section III B-2, we know that
X = H+

Gi
HGi should be Wishart distributed with Gmn

degrees of freedom, which corresponds to a tradeoff function
d∗ (r) = (Gmn − r) (g − r). Therefore, by applying a similar
proof shown in Appendix IV, we can get

dGi,out (rGi) ≤ d∗ (rGi) = (Gmn − rGi) (g − rGi) . (57)

Assume equal rate in each group. Then, by substituting Tr/Gb

for rGi into (57), it can be obtained that

dQoGST (r) ≤ dupper_QoGST (r)
= (Gmn − Tr/Gb) (g − Tr/Gb) . (58)

The upper bound can be achieved when ΦGi = H+
Gi

HGi −
Q−1

Gi
= 0, i.e., g = 1.

Now, consider a Gmn × K Rayleigh channel H̃, whose
entries are all independent Gaussian random variables with
mean zero and unit variance. Next, let us separate it into Gb

groups; namely, H̃ =
[
H̃Gi , . . . , H̃GGb

]
, where H̃Gi is Gmn×

g, for i = 1, . . . , Gb. Then, we have

Q̃−1
Gi

= H̃+
Gi

H̃Gi − H̃+
Gi

H̃G
(
H̃+

G + H̃G
)−1

H̃+

G H̃Gi . (59)

By comparing to (56), it can be seen that H+
Gi

HGi and
H̃+

Gi
H̃Gi have the same distribution. Since HGi is quasi-

orthogonal to HGi
but H̃Gi is independent to H̃Gi

, it can
be expected that det

(
Q−1

Gi

)
should have a better cumulative

density function (cdf) than det
(
Q̃−1

Gi

)
. We resort to Monte

Carlo simulations to verify this conclusion. Fig. 9 shows the
pdf and cdf of X1 = det

(
Q−1

Gi

)
and X2 = det

(
Q̃−1

Gi

)
for

K = 4, n = 2 and Gm = g = 2. It can be seen that for an
arbitrary R, we always have

P (X1 < R) ≤ P (X2 < R) . (60)

Actually, the conclusion is the same for any other values. Due
to limited space, however, no further results are given.

Next, from (60), we have

PQoGST
Gi,out

RGi

.= P
[
det

(
Q−1

Gi

)
< SNR−(g−rGi)

]
≤ P (K,Gmn)GZF

Gi,out
(RGi)

.= P
(
det

(
Q̃−1

Gi

)
< SNR−(g−rGi)

)
(61)

We have proved that for a (K, Gmn) GZF, when equal
rate allocation is adopted, the diversity-multiplexing tradeoff
function of group Gi is given by

d(K,Gmn)GZF
Gi,out

(rGi) = (Gmn − m + g − rGi) (g − rGi) .
(62)

Therefore,

dQoGST
Gi,out

(rGi) ≥ d(K,Gmn)GZF
Gi,out

(rGi)

= (Gmn − m + g − rGi) (g − rGi) . (63)

Similarly, by substituting Tr/Gb for rGi into (63), we get

dQoGST (r) ≥ dlower_QoGST (r)
= (Gmn − m + g − Tr/Gb) (g − Tr/Gb) . (64)

By combining (58) and (64), (36) can be obtained.
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