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Abstract—Node cooperation is an emerging and powerful
solution that can overcome the limitation of wireless systems
as well as improve the capacity of the next generation wireless
networks. By forming a virtual antenna array, node cooperation
can achieve high antenna and diversity gains by using several
partners to relay the transmitted signals. There has been a
lot of work on improving the link performance in cooperative
networks by using advanced signal processing or power allocation
methods among a single source node and its relays. However,
the resource allocation among multiple nodes has not received
much attention yet. In this paper, we present a unified cross-
layer framework for resource allocation in cooperative networks,
which considers the physical and network layers jointly and
can be applied for any cooperative transmission scheme. It is
found that the fairness and energy constraint cannot be satisfied
simultaneously if each node uses a fixed set of relays. To solve
this problem, a multi-state cooperation methodology is proposed,
where the energy is allocated among the nodes state-by-state
via a geometric and network decomposition approach. Given the
energy allocation, the duration of each state is then optimized so
as to maximize the nodes utility. Numerical results will compare
the performance of cooperative networks with and without
resource allocation for cooperative beamforming and selection
relaying. It is shown that without resource allocation, cooperation
will result in a poor lifetime of the heavily-used nodes. In contrast,
the proposed framework will not only guarantee fairness, but
will also provide significant throughput and diversity gain over
conventional cooperation schemes.

Index Terms—Cooperative networks, cross-layer design, re-
source allocation, fairness, lifetime, convex optimization.

I. INTRODUCTION

M IMO (Multiple-Input Multiple-Output) systems, where
multiple antennas can be used at both the transmit and

receive ends, have recently been receiving significant attention
because they hold the promise of achieving huge capacity
increases and diversity gains over the harsh wireless link [1],
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[2]. As such, MIMO is currently considered as one of the main
candidates for meeting the stringent requirement and demand
of future wireless networks. Unfortunately, the use of MIMO
technology may not be practical in many wireless networks.
For instance, nodes in a sensor network are usually small,
inexpensive, and have typically severe energy constraints.
Cooperative networking or communications is one potential
solution that can overcome this limitation. The fundamental
idea behind cooperative networks is based on the fact that the
signals transmitted by a source node to its destination node
can be also received by other nodes in a wireless environment.
These nodes can then act as relays to process and re-transmit
the signals they receive in a distributed fashion, thereby,
creating a virtual antenna array through the use of the relays’
antennas without complicated signal design or adding more
antennas at the nodes [3-10].

Sendonaris et al firstly proposed the idea of cooperative
diversity for CDMA cellular networks [3-4]. Laneman et al
studied various cooperative diversity schemes such as fixed
relaying, selection relaying, and incremental relaying [5-6].
The work in [7] compared several cooperation protocols
and presented a space-time code design criteria for amplify-
and-forward relay channels. In order to increase the power
efficiency of ad-hoc networks such as sensor networks, coop-
erative beamforming via a virtual array was developed in [8-9].
[10] further studied the capacity of cooperative networks from
an information-theoretic perspective and showed the feasible
position of relays.

The above previous work mainly aimed at enhancing the
performance in the physical layer. However, cooperative com-
munication is inherently a network problem, as pointed out in
[3], [5-6]. It would be therefore fruitful to take into account
additional higher layer network issues. There have been some
efforts towards this such as combining node cooperation
with ARQ in the link layer [11], routing in the network
layer [12], or resource allocation in the MAC layer [13-14].
From a cross-layer perspective, fairness is especially important
in cooperative networks since some nodes may have more
chances to be relays, or consume more power in cooperative
transmissions so that their energy may be used up very fast.
In this scenario, not only the heavily-used nodes will suffer
from a short lifetime, but also the other nodes will not be
able to achieve the expected cooperative gain due to the
lack of available relays. More seriously, these self-interested
users or heavily-used terminals may refuse to cooperate in
order to save their energy. The fairness and lifetime issues
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have been considered in wireless networks with network
layer cooperation using packet forwarding rather than signal
forwarding [15-18]. It was demonstrated in [15] that an over-
consumption of some nodes may result in a short network
lifetime. In order to stimulate node cooperation and balance
energy consumption, both reputation-based and market-based
approaches were presented. Using a game-theoretic frame-
work, [16] proposed a generous tit-for-tat strategy for energy-
constrained ad-hoc networks. The market-based approach was
studied in [17] and [18], where a micro-economic framework
was used to maximize the node utility in a distributed fashion.
However, user cooperation in the physical layer was not
taken into account in these existing works. Most recently, we
applied a market-based approach for increasing the fairness
and efficiency of ad-hoc wireless networks using cooperative
beamforming [19]. In particular, a practical protocol was
presented in [19] to significantly increase the lifetime and
throughput of energy-constrained cooperative networks.

In this paper, our main objective is to develop an effec-
tive way to optimize the overall performance of cooperative
networks across multiple layers simultaneously. Specifically,
we consider energy-constrained networks where cooperative
transmission is adopted. A unified cross-layer framework for
resource allocation among multiple nodes is presented, where
fairness and efficiency are taken into consideration. Our objec-
tive is to guarantee that the lifetime of each node can be equal
to a target lifetime and that the energy used in transmitting
and/or relaying each node’s signal is equal to its total energy.
Moreover, each node can efficiently use the available energy
to optimize its performance such as throughput or outage
probability. To achieve this, we propose an energy allocation
method consisting of multiple cooperation states, where the
relay set of each node is not fixed. In particular, each state
corresponds to a set of nodes which run out of energy during
the previous states and will not cooperate anymore. In practice,
the state of a node corresponds to a particular relay set of
this node. In particular, a base station or a head node will
announce the set of nodes which do not have energy to serve
as relays in each state. A node will then ignore these nodes
when it searches its relays in a given state. We shall show
that at least one node will run out of its energy in each
state. Thus, the total number of states will not be greater than
the number of nodes. Based on the energy allocation results,
we allocate the node lifetime among the multiple states to
determine how long a particular set of relays can serve a node.
The proposed multi-state cooperation in which the heavily-
used nodes are not always forced to serve as relays is a natural
extension of the conventional cooperation protocols with fixed
sets of relays. The proposed framework will be applied into
cooperative beamforming and selection relaying. Numerical
results show that without an appropriate resource allocation,
unfair cooperation will result in a significant decrease in
the lifetime of heavily-used nodes. In contrast, the proposed
framework cannot only guarantee fairness, but also provide
significant throughput or diversity gain over the conventional
cooperation schemes.

The remainder of the paper is organized as follows. Section
II presents the system model. In Section III, a multi-state
cooperation methodology with its energy allocation scheme is

presented. Section IV investigates the efficient time allocation
over multiple states. Numerical results and some implementa-
tion issues will be discussed in Section V and VI, respectively.
Finally, concluding remarks are presented in Sections VII.

Throughout this paper, the following notations will be used.
The superscript T shall stand for the transpose of a matrix X
or a vector x. The inequality x � y implies that xi � yi

for any i. The geometric multiplicity of an eigenvalue λ(X)
is denoted by geomultX(λ(X))[20]. For a set X , the operator
|X | denotes the number of elements in the set. The operator \
denotes the difference of two sets. For an event ω, the indicator
function shall be denoted by I(ω), where I(ω) = 1 is ω is
true. Otherwise, I(ω) = 0. A vector with all of its elements
equal to 1 is denoted by 1. Finally, 0 shall denote the all zero
matrix/vector with the appropriate size.

II. SYSTEM MODEL

Consider a wireless network which consists of N
source/relay nodes. The source node set is denoted by S =
{1, . . . , N}. Each source node i transmits to its destination
node d(i), which may not belong to S. Let hij denote the
channel power gain between node i and j. In our work, both
static channels and time-varying channels can be taken into
account. For networks with time-varying channels, which we
shall refer to as time-varying networks, small-scale fading is
assumed to be Rayleigh so that the instantaneous channel gain
hij is a random variable with an exponential distribution with
mean value hij . For networks with static channels, which we
shall refer to as static networks, hij = hij . It is assumed that
hij = hji and the noise power at the receivers is denoted by
σ2.All nodes are assumed to be energy-constrained and the
total energy of each node is denoted by Etotal.

With user cooperation, each source node may employ some
nodes to serve as relays. Each cooperative transmission will
be assumed to occur over two timeslots, where the source
transmits to its relays in the first timeslot and relays re-transmit
the signal to the destination in the second timeslot. Since for a
particular source-destination (s-d) pair, some nodes may be far
away from both the source and the destination, only neighbors
are selected in order to increase power efficiency and avoid
error propagation. An average channel gain threshold gi is
assigned to each node i. Then, node i can only choose the
nodes j satisfying hij � gi to serve as its relays. The set
of potential relays for node i is denoted by Ri. Intuitively,
gi should be an increasing function of node i’s average s-d
channel gain. This is because the worse an s-d channel is,
the more relays the source node will need. In networks where
the s-d distances are approximately the same, we can simply
assign the same threshold to each node. In this paper, we
assume that the source node itself can act as a relay in the
second timeslot. That is, i ∈ Ri. Assume that all relay nodes
are chosen from the source node set S. Hence, Ri ⊆ S for any
i ∈ S. In the MAC layer, each source node with its relays can
employ an orthogonal channel to avoid multi-user interference.
Without loss of generality, FDMA is assumed throughout this
paper. Furthermore, each node is assumed to have a saturated
queue with always packet availability.

In this paper, two typical cooperation schemes are consid-
ered: cooperative beamforming and selection relaying. The
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TABLE I
COOPERATION MATRIX

Cooperation Matrix

Cooperative Beamforming aij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gjhid(j)+

(∑
n∈Rj

hnd(j)

)2

I{i=j}(
gj+

∑
n∈Rj

hnd(j)

)∑
n∈Rj

hnd(j)

i ∈ Rj

0 i /∈ Rj

Selection relaying aij =

⎧⎨⎩
Pr{hji≥ξj}∑

n∈Rj
Pr{hjn≥ξj} i ∈ Rj

0 i /∈ Rj

cooperative beamforming is a rate-optimal cooperation scheme
adopted in static networks. In this case, the virtual antenna
array formed by the relays will re-transmit the signals with
beamforming in order to achieve the highest throughput.
Selection relaying, on the other hand, is adopted in time-
varying networks [5]. As selection relaying is adopted, only
the relays which can decode the source information correctly
will retransmit. The set of nodes that decode correctly in a
timeslot is often referred to as the decoding set D.

We denote the energy that node j consumed in transmit-
ting/relaying signals of node i to be E

(i)
j . In wireless networks,

all the nodes are expected to have the same lifetime T ∗.
As a result, each node should consume all of its energy,
Etotal, simultaneously at the end of the target node lifetime
interval [0, T ∗]. No nodes are allowed to have residual energy
after T ∗. Otherwise, its lifetime can be longer than T ∗. On
the other hand, the energy utilized in transmitting and/or
relaying each node’s information should be equal in order to
guarantee fairness. In non-cooperative networks where nodes
transmit directly without employing relays, this can be easily
satisfied since each node’s energy consumed is utilized to
transmit its own information. In cooperative networks, this
is not naturally achieved and hence an appropriate resource
allocation is desired.

III. ENERGY ALLOCATION IN COOPERATIVE NETWORKS

In this section, we address the energy allocation problem
in cooperative networks. Two basic constraints for energy
allocation as well as a linear relationship between the energy
allocated and energy consumed are presented. In order to
satisfy the two constraints, a multi-state cooperation method-
ology is proposed. We then provide a geometrical approach
to allocate the energy state-by-state via a finite-step iteration
algorithm. In each state, the energy allocation is obtained by
solving a linear equation.

A. Energy Allocation Vector and Consumption Vector: Con-
straints and Relationship

Let us denote the energy consumption vector eC =
[eC

1 , . . . , eC
N ]T , where the ith element eC

i =
∑n

j=1 E
(j)
i is

the total energy consumed by node i. Note that the energy
allocated to a node is the total energy utilized in transmitting
and relaying this node’s information. We denote the energy
allocation vector eA = [eA

1 , . . . , eA
N ]T , where the ith element

eA
i =

∑n
j=1 E

(i)
j . Since the node is energy-constrained and all

nodes should consume all of their energy within their target
lifetime, the energy constraint is written as

eC = Emax1 (1)

Due to the fairness requirements, eA
i should be equal for

each node i. Since the total energy consumed by all nodes is∑N
n=1 Emax = NEmax, the fair allocation constraint should

guarantee that eA
i = NEmax/N . Therefore, such constraint

is given by
eA = Emax1. (2)

In a non-cooperative network, the two constraints (1)-(2) are
naturally satisfied since E

(i)
j = 0 for i �= j. As cooperative

transmission is adopted, eA and eC will be shown to be
linearly related. In order to derive such a relationship, a
cooperation matrix is defined as follows.

Definition 1 (Cooperation Matrix): The cooperation ma-
trix is defined to be a matrix A = [aij ]N×N , where the
element aij denotes the energy ratio that node i contributes
to node j. That is,

aij =
E

(j)
i∑N

n=1 E
(j)
n

. (3)

Note that the cooperation matrix A is determined by
the cooperation scheme and the relay sets Ri , for i =
1, . . . , N .Since

∑N
i=1 aij = 1 , AT is a stochastic matrix

[20].1 The cooperation matrices of two cooperation schemes
are given in Table I, with the detailed derivation given in
Appendix I.

According to (3), the energy that node i consumes for
transmitting/relaying the signal of node j can be presented as
E

(j)
i = aije

A
j . Hence, the total energy consumption of node

i is obtained as eC
i =

∑N
j=1 aije

A
j . As a result, the energy

allocation and consumption can be related by

AeA = eC . (4)

By substituting (1) and (2) into (4), we have

AEmax1 = Emax1. (5)

According to Definition 1 and (5), the cooperation matrix A
should be a doubly-stochastic matrix in order to satisfy both
(1) and (2). Unfortunately, A cannot satisfy (5) in general
because it cannot be doubly-stochastic for networks with
randomly-located nodes.

1As defined in [20], a stochastic matrix is a nonnegative matrix in which
each row sum is equal to 1. In addition, a doubly-stochastic matrix is a
nonnegative matrix in which each row sum as well as each column sum is
equal to 1.
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B. Multi-state Cooperation: To Cooperate or Not to Cooper-
ate

Since the energy constraint (1) and the fairness constraint
(2) cannot be satisfied simultaneously as relay sets are fixed,
each node should be allowed to use a different relay set
in a different cooperation state in order to satisfy (1)-(2).
This motivates us to develop a resource allocation framework
consisting of multiple cooperation states, which we shall refer
to as multi-state cooperation. In each state k, the relay set
Ri(k) for any node i is fixed. Therefore, the cooperation
state is given by the set of all relay sets. Let eA(k) denote
the energy allocation vector in state k, where the ith element
is the total energy utilized in transmitting and relaying node
i’s information in state k. Also let eC(k) denote the energy
consumption vector in state k, where the ith element is the
total energy consumed by node i in state k. For a multi-
state cooperation, the energy allocation eA(k), k = 1, . . . , K ,
should satisfy the energy and fairness constraints given by

{ ∑K
k=1 eC(k) =

∑K
k=1 A(k)eA(k) = Emax1∑K

k=1 eA(k) = Emax1,
(6)

where K is the total number of states and A(k) is the
cooperation matrix associated with state k. In order to obtain
eA(k) that satisfies (6), a state-by-state energy allocation
methodology is presented. In each state, the energy allocation
should satisfy the constraint

eA(k) = eC(k), (7)

which can always be satisfied by the method described next in
Section III-C. However, eC

i (k) may not be equal to eC
j (k) for

any j �= i in general. Therefore, some nodes will consume
all of their energy in state k while others may still have
residual energy to be allocated and consume in the following
states. In each state, only the nodes that have residual energy
can transmit and serve as relay for others. Iteratively, we can
allocate the residual or remaining energy state-by-state until
all of the energy is allocated in the final state.

Let emax(k) denote the residual energy vector, where the
ith element emax

i (k) is the node i’s residual energy in state
k. In the initial state 1, emax(1) = Emax1. After energy
allocation in state k, the residual energy emax(k + 1) of the
next state is given by

emax(k + 1) = emax(k) − eA(k). (8)

Constrained by emax
i (k), the relay set of node i in state k,

Ri(k), is given by

Ri(k) ={ {
i : hij ≤ gi, e

max
j (k) > 0, j ∈ S

}
emax

i (k) > 0{
i
}

emax
i (k) = 0

(9)
In Section III-C, we will present an energy allocation

method, where at least one node will run out of energy in
each state. Therefore, all of the energy can be allocated within
K < N states so that the residual energy vector in the final
state K satisfies

emax(k + 1) = 0. (10)

According to (7), (8), and (10), (6) is satisfied in a K-state
cooperation.

C. Energy Allocation in One State

In this part, the analytical result for energy allocation in
one state is presented. For a particular state k, the cooperation
matrix A(k) is determined by the relay sets given by (9). Thus,
by substituting (4) into (7), it follows that eA(k) should be a
nonnegative solution to the following equation

A(k)eA(k) = eA(k). (11)

and satisfy the residual energy constraint in state k, which is
given by

eA(k) � emax(k). (12)

Since AT (k) is a stochastic matrix, there must be an
eigenvalue λ(A(k)) = λ(AT (k)) = 1 [20]. Thus, Eqn.
(11) must have nontrivial solutions. The solution space is the
eigenspace of A(k) with respect to λ(A(k)) = 1. In order to
obtain eA(k), a network decomposition methodology is first
introduced in order to find an orthogonal basis set of the
solution space. We shall show that each basis characterizes
the fair energy allocation of a sub-network. For convenience,
we can ignore the index k in this part since we are considering
energy allocation of a particular state.

In each state, the cooperative network can be decomposed
into disjoint sub-networks, where the nodes in different sub-
networks do not cooperate with each other.2 Intuitively, the
energy allocations in each sub-network are independent. Math-
ematically, for a given cooperation matrix A, the whole
network S can be decomposed into M disjoint sub-networks
S(m) = {n(m)

1 , . . . , n
(m)

|S(m)|}, for m = 1, . . . , M , which satisfy
the following
(1) S =

⋃M
m=1 S(m), with S(m)

⋂
S(n) = ∅, ∀ m �= n.

(2) aij = aji = 0, ∀ i ∈ S(m), j ∈ S(n), m �= n.
(3) Each sub-network S(m) cannot be decomposed into mul-
tiple disjoint subsets satisfying properties (1) and (2).

For a given A, the whole network S can be decomposed
into S(m) satisfying the above three properties by using a
graph-theoretic algorithm as shown in Appendix II. It is noted
that each sub-network S(m) will have its own cooperation
matrix A(m). Let P denote the permutation matrix with
elements puv = I

{(
u = n

(m)
i , v = i +

∑m−1
r=1 |S(r)|

) }
.

Then, A(m) is the mth diagonal block in the diagonal block
matrix

PTAP =

⎡⎢⎣ A(1)

. . .
A(m)

⎤⎥⎦ . (13)

Having established the network decomposition methodology,
we shall present the optimal energy allocation in one state in
the following theorem.

2In the first state, a network may consist of only one sub-network if its
topology is not clustered. Due to the reshaping of the relay sets, some nodes
will not cooperate with others and be isolated in the following states. In
this case, however, a network must be decomposed into more than one sub-
network.
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Fig. 1. Geometrical representation of multi-state energy allocation

Theorem 1: The optimum energy allocation vector that
satisfies (11)-(12) is obtained by

eA =
M∑

m=1

[
min

i∈S(m)

(
emax

i

b
(m)
i

)
b(m)

]
, (14)

where the orthogonal basis b(m) = [b(m)
1 , . . . , b

(m)
N ]T , for

m = 1, . . . , M, are non-negative. They are given by

b(m) = P ×

⎡⎢⎢⎢⎢⎣
0(∑m−1

r=1 |S(r)|
)
×1[

1 . . . 1
A(m)

]−1
[

1
0(|S(m)−1|

)
×1

]
0(∑M

r=m+1 |S(r)|
)
×1

⎤⎥⎥⎥⎥⎦ .

(15)
where A(m) is a |S(m) − 1|-by-|S(m)| matrix obtained by
deleting an arbitrary one row of |A(m) − I|.

D. Energy Allocation in Multiple Cooperation States

Having obtained the energy allocation in one state, our
proposed multi-state energy allocation algorithm can be
presented as follows.

Multi-state Energy Allocation Algorithm
Step 0: Initialize k = 1, and set emax(1) = Emax1;
Step 1: Generate Ri(k) for i = 1, . . . , N , by (9) and

A(k) by (3);
Step 2: Decompose the network into S(m), m = 1, . . . ,

M , using the network decomposition algorithm;
Step 3: Obtain the energy allocation vector eA(k) by

(13)-(15);
Step 4: Calculate the residual energy vector

emax(k + 1) by (8);
Step 5: k = k + 1;
Step 6: If emax(k) > 0, go to Step 1;
End

It must be noted here that Theorem 1 shows that the energy
allocation is always feasible since the solution is nonnegative.
One can easily see that Eqn. (11)’s solution space charac-
terized by b(m), m = 1, . . . , M , contains infinite number of

Fig. 2. Multi-State Cooperation in the Time Domain

energy allocation vectors satisfying (12). The optimum energy
allocation presented in Theorem 1 chooses the solution vector
with the maximum 1-norm. The optimality of choosing such
an energy allocation vector can be explained as follows. From
(9), it can be seen that the number of each node’s relays
decreases as the state index k increases. Notice that the energy
efficiency is higher as more relays are used. Clearly with an
increasing state index k the energy efficiency will go down.
Therefore, as much as possible energy should be allocated in
each state during the iteration. This is why we choose the
energy allocation vector with the maximum 1-norm.

From (14) it can be also seen that with the proposed energy
allocation, at least one node in each S(m) satisfies eA

i (k) =
emax

i (k). This implies that at least one node runs out of energy
in each state. Therefore, (10) can be satisfied by a K-state
(K ≤ N ) energy allocation. From a geometrical perspective,
the multi-state energy allocation can be characterized by a K-
part curve in R

N starting from the origin point 0 to Emax1.
The kth part of the curve, eA(k), belongs to the eigenspace of
A(k) with respect to λ(A(k)) = 1, and the cumulative energy
allocation vector is bounded by the super-cube characterized
by Emax1. For instance, Fig. 1 shows an energy allocation in
a three node network. In this case, node 2 is allocated all of
its energy in state 1, while nodes 1 and 3 still have residual
energy. Next, node 1 is allocated all of its residual energy
in state 2. Finally, node 3 runs out of its energy in the last
state. Given the above energy allocation outcome, node 2 will
always transmit with its state 1’s relay set R2(1)={1, 2, 3}
throughout its entire lifetime. Node 1, however, will use its
state 1’s relay set, R1(1)={1, 2, 3} and state 2’s relay set,
R1(2)={1, 3}, in a time sharing manner. Node 3 will have
three different relay sets, namely, {1, 2, 3}, {1, 3}, and {3},
which are used in disjoint time durations. Fig. 2 shows how
multi-state cooperation evolves in the time domain, where one
can see that all nodes will have the same lifetime. How to
determine the optimal state duration will be addressed in the
next Section.

IV. OPTIMAL STATE DURATION FOR MULTI-STATE

COOPERATION

In this section, we investigate how long the set of nodes
Ri(k) can serve as the relay set of node i. Given a target
lifetime, we shall allocate the whole lifetime over the multiple
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TABLE II
UTILITY FUNCTIONS

Utility Function

Cooperative Beamforming Ui,k

(
eA

i (k)

ti(k)

)
= 1

2
log

(
1 + ci(k)

eA
i (k)

ti(k)

)
, ci(k) =

⎧⎨⎩
gi
∑

j∈Ri(k) hjd(i)

(gi+
∑

j∈Ri(k) hjd(i))σ
2 |Ri(k)| ≥ 2

2hid(i)/σ2 |Ri(k)| = 1

Selection Relaying Ui,k

(
eA

i (k)

ti(k)

)
=
∑

D∈Ri(k)

⎧⎪⎪⎨⎪⎪⎩
[∑

j∈D exp

(
− (22ri−1)σ2∑

j∈Ri(k) exp(−ξi/hij)

2hjd(i)eA
i (k)/ti(k)

)∏
n�=j

hjd(i)

hjd(i)−hnd(i)

]
×∏j∈D exp

(
− ξi

hij

)∏
j /∈D

[
1 − exp

(
− ξi

hij

)]
⎫⎪⎪⎬⎪⎪⎭

states of a node. The optimal state duration, which determines
the number of time each state would exist or how long Ri(k)
can serve as the relay set of node i, will maximize the node’s
utility such as throughput or outage probability. A unified
utility maximization problem is then formulated for each node.

Assume that Ri(k) serves as a relay set of node i for ti(k)
seconds. Here, ti(k) denotes the duration of state k. Subject
to the target lifetime T ∗, the lifetime constraint for each node
i is presented by

K∑
k=1

ti(k) = T ∗. (16)

The node i’s utility in state k is denoted by ui(k), which
can be represented as a function of the average power in state
k. Note that the average power in state k is proportional to
the energy allocated to this state and the inverse of the state
duration. Thus, we have,

ui(k) = Ui,k

(eA
i (k)
ti(k)

)
, (17)

where the utility function Ui,k(x) is an increasing function
of x satisfying Ui,k(0) = 0 and U ′

i,k(x) ≥ 0. In static
networks, cooperative beamforming is adopted to maximize
the s-d throughput. Hence, we shall use the s-d throughput to
measure the utility of each node in this case. In time-varying
networks, selection relaying is adopted to reduce the outage
probability. Therefore, the probability that outage does not
occur, 1−Pout, is adopted to measure the utility of each node.
The utility functions are given in Table II with the detailed
derivation shown in Appendix IV.

Given the above, the state duration optimization problem
for node i can then be formulated as

Maximize
∑K

k=1
ti(k)
T∗ Ui,k

(
eA

i (k)
ti(k)

)
Subject to

{ ∑K
k=1 ti(k) = T ∗

ti(k) ≥ 0,

(18)

where the objective function is the average utility, which
represents the energy efficiency of node i. It is also guaranteed,
mathematically, that each node can achieve a target lifetime
by the constraints.

From Section III, node i is not allocated any energy in state
k if eA

i (k) = 0. Thus, t∗i (k) = 0 as eA
i (k) = 0. In Appendix

III, we show that Ui,k(x) in Table II is a concave function
satisfying U ′′

i,k(x) ≤ 0. Then, by differentiating the objective
function of (18), we get

∂2

∂ti(k)2

[
ti(k)
T ∗ Ui,k

(
eA

i (k)
ti(k)

)]
=

[eA
i (k)]2

T ∗t3i (k)
U ′′

i,k

(
eA

i (k)
ti(k)

)
.

Clearly (18) is a convex optimization problem and as a
result, the Kurash-Kuhn-Tucker (KKT) condition is a nec-
essary and sufficient condition for optimality. By using the
KKT condition, the analytical optimal solution for cooperative
beamforming is given by

t∗i (k) =
T ∗ci(k)eA

i (k)∑K
l=1 ci(l)eA

i (l)
. (19)

In the case where the KKT condition does not have an
analytical solution, with the decomposition principle [pp. 285-
288, 21], the optimal solution of (18) will be given by

t∗i (k) = max
{
0, f−1

i,k (y)
}
. (20)

where f−1
i,k (y) denotes the inverse function of fi,k(x) =

d
dx

[
x

T∗ Ui,k

(
eA

i (k)
x

)]
, and y is the optimal solution to the

following unconstrained problem

Maximize y +
K∑

k=1

max

{
0,

f−1
i,k (y)
T ∗ Ui,k

eA
i (k)

f−1
i,k (y)

−yf−1
i,k (y)

}
.

(21)
By (20)-(21), (18) can be reduced into a one-dimensional
optimization problem so that the complexity will be greatly
decreased.

V. NUMERICAL RESULTS

In this section, numerical results are presented to compare
the performance of cooperative networks with and without
resource allocation. Both static networks with cooperative
beamforming and time-varying networks with selection re-
laying are considered. For the sake of fair comparison, di-
rect transmission where nodes do not use any relay is also
considered. This provides a baseline reference to compare
cooperation gains. As cooperation without resource allocation
is adopted, the power consumed for transmitting/relaying each
node’s signal is equal to the transmission power of direct
transmission. This kind of cooperation shall be referred to
as full cooperation. The path-loss factor is assumed to be 4
throughout Section V. Let Dij denotes the distance between
node i and node j, then hij = D−4

ij . 3 Finally, the noise power
at the receiver is assumed to be σ2 = 1.4

3Here, we do not normalize the channel gain since it can be scaled by the
transmission power.

4Here, we drop the unit in the following text.
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TABLE III
SYSTEM PARAMETERS FOR NUMERICAL RESULTS

Static Network with Cooperative Beamforming

s-d Node coordinates (Topology) Relay Selection

pair source destination Threshold

1 (0,1) (5,0)

2 (1,0) (5,0) 0.25

3 (0.8,0) (5,0)

4 (0.5,-
√

3/2) (5,0)

Time-varying Network with Selection Relaying

s-d Node coordinates (Topology) Relay Selection

pair source destination Threshold

1 (-0.5,
√

3/2) (0.5,
√

3/2)

2 (0,0.1) (-1,0.1) 0.5

3 (0,-0.1) (-1,-0.1)

4 (-0.5,-
√

3/2) (0.5,-
√

3/2)

Fig. 3. Throughput curves of direct transmission, cooperative beamforming
with full cooperation and multi-sate cooperation. The state durations of node
4, which are also given in Table IV, are presented.

A. Static Network with Cooperative Beamforming

Consider a static network with four source nodes 1-4,
randomly located in a unit circle. All the source nodes transmit
to a common destination node. The coordinates of all source
and destination nodes as well as the relay selection threshold
are given in Table III. In static networks, the channel gain
is given by hij = hij . Note that gi = 0.25 for i = 1, . . . , 4.
Thus, nodes 1 and 4 will not serve as relay for each other while
nodes 2 and 3 serve all source nodes 1-4. Besides, nodes 2 and
3 will consume more power than others in each cooperative
transmission since their links to the destination node are better.
Assume that Etotal = 1000. As direct transmission is adopted,
the transmission power of each node is 1000 and therefore the
lifetime of each node is 1. As full cooperation is adopted, it
can be obtained that the maximum node lifetime is 2.0434.
For the sake of fair comparison, we set the target lifetime of
multi-state cooperation to be 2.0434. By using the multi-state
energy allocation algorithm and (19), we obtain the energy
and time allocation results shown in Table IV.

Fig. 3 presents the aggregate throughput curves with direct
transmission, full cooperation, and multi-state cooperation. It
can be seen that full cooperation achieves the highest total rate

TABLE IV
ENERGY AND TIME ALLOCATION FOR COOPERATIVE BEAMFORMING

State 1 State 2 State 3

Node 1 eA
1 297.1 54.5 648.4

t∗1 1.3713 0.1395 0.5326

Node 2 eA
2 1000 0 0

t∗2 2.4034 0 0

Node 3 eA
3 882.7 177.3 0

t∗3 1.7922 0.2512 0

Node 4 eA
4 498.6 97.9 403.5

t∗4 1.5489 0.1804 0.3141

of all nodes before node 2 runs out of its energy in t = 0.6366.
However, nodes 2 and 3 run out of their energy very quickly
due to higher power consumption compared to that of direct
transmission. After that, nodes 1 and 4 cannot find a relay
and have to transmit directly for over 63% of their lifetime.
In this scenario, their power efficiency is very poor. With the
proposed multi-state cooperation, however, each node i can
use all nodes j satisfying hij = gi as relays for at least 67% of
their lifetime, as shown in Table IV. Although the transmission
power of each node is lower than that of full cooperation at
the beginning, all nodes can benefit from the beamforming
gain much longer. As a result, the energy efficiency increases.
For instance, the aggregate throughput of direct transmission,
full cooperation and multi-state cooperation is 7.38 bit/Hz,
9.46 bit/Hz, and 12.50 bit/Hz, respectively. About 69.3% and
32.1% gains are obtained by multi-state cooperation over
direct transmission and full cooperation, respectively.

Next, we compare the fairness of the full cooperation and
multi-state cooperation. Here, the fairness of cooperation is
characterized by two parameters: Increase in lifetime and
increase in throughput compared to direct transmission. As
shown in Table V, the heavily-used nodes 2 and 3 suffer from
a shorter lifetime since their power consumption is increased
compared to direct transmission. More seriously, since they
run out of energy very soon, their throughput is also reduced
compared to direct transmission. Hence, nodes 2 and 3 do
not benefit from cooperation indeed. The proposed multi-state
cooperation, however, can guarantee that all nodes’ lifetime
is equal to the target lifetime. Moreover, the increase in
throughput of all nodes is approximately equal. In particular,
note that node 1 achieves the highest increase in throughput.
This is simply due to the fact that node 1’s throughput is the
smallest without cooperation.

B. Time-varying Networks with Selection Relaying

Consider a time-varying network with four s-d pairs sat-
isfying hij = 1 for i = 1, . . . , 4, where the coordinates of
the source and destination nodes are given in Table III. The
target rate of each s-d pair is 1 bit/s/Hz. Here assume that
the thresholds hi = 0.5, i = 1, . . . , 4. It can be seen that
nodes 1 and 4 are far away from each other so that they will
not use each other as a relay. In addition, such a network
topology is symmetric with respect to the x-axis. Therefore,
the performance of nodes 1 and 4 is the same, as well as that
of nodes 2 and 3. We shall use the average Signal-to-Noise
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TABLE V
INCREASE IN LIFETIME AND INCREASE IN THROUGHPUT OF COOPERATIVE BEAMFORMING WITH FULL COOPERATION AND MULTI-STATE COOPERATION

Node 1 Node 2 Node 3 Node 4

Increase in lifetime Full cooperation 104% -36% -26% 74%

thanks to cooperation Multi-state cooperation 104% 104% 104% 104%

Increase in throughput Full cooperation 144% -38% -22% 90%

thanks to cooperation Multi-state cooperation 87% 55% 67% 76%
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Fig. 4. Increase in node lifetime with direct transmission, selection relaying
with full cooperation and multi-state cooperation

Ratio (SNR) of direct transmission given by Etotal/(T ∗σ2)
to characterize the SNR of the network. The performance will
be compared for various SNR values from 0 dB to 40 dB.
Without loss of generality, we can normalize lifetime so that
T ∗ = 1 and therefore, Etotal can be determined by the given
SNR. As selection relaying is adopted, we assume that the
transmission power of the source nodes in the first timeslot is
Etotal/(2T ∗). Then, with full cooperation, the average total
power of the relays of each node should be 3Etotal/(2T ∗).
Due to space limitation, we omit the results for energy and
time allocation of multi-state cooperation.

Fig. 4 presents the increase in lifetime compared to T ∗ with
direct transmission, full cooperation and multi-state coopera-
tion. With the direct transmission and multi-state cooperation,
the lifetime of each node is equal to T ∗. With full cooperation,
however, the lifetime of nodes 1 and 4 is increased by about
11% T ∗, while the lifetime of nodes 2 and 3 is decreased by
about 11% T ∗ in the high SNR region. It can be seen that the
gap between the maximum and minimum lifetime increases
with SNR. This is because the probability that a relay can
decode correctly increases with SNR. By serving more nodes,
nodes 2 and 3 will consume a larger number of power in the
high SNR region. When SNR is sufficiently high, (e.g. SNR
10 dB), the probability that a relay can decode correctly is
approximately equal to 1. Hence, the increase in lifetime will
remain constant in the high SNR region.

Fig. 5 presents the outage probability averaged over the
lifetime of each node with direct transmission, full cooperation
and multi-state cooperation. Since direct transmission cannot
achieve diversity gain, the outage probability of all nodes
approximately decays as 1/SNR [2]. With full cooperation, the
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Fig. 5. Outage probability averaged over the lifetime of each node with
direct transmission, selection relaying with full cooperation and multi-state
cooperation
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Fig. 6. Outage probability averaged over all nodes of direct transmission,
selection relaying with full cooperation and multi-state cooperation

outage probability of nodes 1 and 4 decays as 0.2/SNR. This
is because, as shown in Fig. 4, they transmit directly without
relay for 20% of their lifetime, when the outage probability is
approximately equal to 1/SNR. Since our proposed framework
can efficiently allocate time among the states, nodes 1 and
4 can transmit with relays much longer while transmitting
directly for only a very short time with much higher transmis-
sion power. Although the power of relays is lower compared
to full cooperation, multi-state cooperation can benefit from
the longer node lifetime when the spatial diversity gain of
3 is achieved. A closer observation shows that node 2 or
3’s outage probability with full cooperation is equal to that
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with multi-state cooperation. This is simply due to the fact
that with multi-state cooperation, the average total power of
node 2 or 3’ relays is also equal to 3Etotal/(2T ∗). Fig. 6
presents the outage probability averaged over all nodes. The
average outage probability of full cooperation is approximately
equal to 0.1/SNR, while that of our proposed framework is
1/SNR2.5.

VI. IMPLEMENTATION ISSUES

So far, we have presented, mathematically, a unified frame-
work for fair and efficient resource allocation in cooperative
networks. In this Section, we will turn our attention to some
implementation issues of the proposed framework.

A. Half-decentralized Implementation

The whole resource allocation scheme proposed in Sec-
tions III and IV can be implemented by a half-decentralized
protocol, which consists of two steps, namely, centralized
multi-state energy allocation and distributed state duration
optimization.

To perform multi-state energy allocation, a control node,
which can be a base station, an access point or simply an
elected head node, needs to collect each node’s local informa-
tion of the average source-relay (s-r) and/or relay-destination
(r-d) channel gains, which can be obtained locally via 1) the
average power gain estimation based on pilot energy; or 2)
Global Positioning System (GPS). By using the multi-state
energy allocation algorithm, the control node will determine
the energy allocation vectors, and then broadcast them over
the whole network.

Based on the energy allocation results, each node can locally
formulate and solve its own state duration optimization prob-
lem (18), which only requires local parameters information
such as the s-r and r-d channel information. No information
exchange is needed among nodes in this stage.

Note that many wireless systems, such as cellular networks
or WLANs, have centralized controllers. The control node
only needs to collect the average channel gain information
and broadcast the energy allocation results during the initial
network configuration. As such, the proposed framework will
not induce much overhead in practice.

B. Distributed Implementation

In some networks, having a centralized controller might
be impractical. Thus, a fully distributed implementation will
be highly desired in this case. A market-based distributed
protocol is presented in this part to achieve an approximately
fair cooperation.

By jointly considering (1) and (2), we have

N∑
j=1, j �=i

E
(j)
i =

N∑
j=1, j �=i

E
(i)
j , i = 1, . . . , N. (22)

The above equality implies a market rule, namely, that the
energy a node contributes to others should be equal to what
others contribute to this node. Based on this market rule, a
local parameter referred to as the energy reward is introduced
for each node. In the distributed protocol, the energy reward

of a node increases when the node helps others and decreases
when the node uses others as relays. When a given node
requires cooperation, the relays’ energy that it can use will
depend on its current energy reward. In this way, fairness
is guaranteed and over-using the heavily-loaded nodes is
avoided, both in distributed manners. A similar method has
been proposed in [19] to engineer a distributed fair cooperation
protocol in practice.

Finally, it should be pointed out that distributed fair cooper-
ation is still an open problem. The proposed framework, how-
ever, provides a performance upper-bound for the distributed
solutions.

VII. CONCLUSION

In this paper, we presented a unified cross-layer frame-
work for fair and efficient resource allocation in cooperative
networks. Using the proposed framework, all nodes can run
out of energy simultaneously and each node is allocated
an equal number of energy so that fairness is guaranteed.
The proposed approach is based on the use of a multi-state
cooperation methodology where the total energy is allocated
among the nodes state-by-state via a geometric and network
decomposition approach. Given the energy allocation results,
the optimal state duration of each node is found so as to
maximize each node’s utility such as throughput or outage
probability. By deriving the cooperation matrices and utility
functions, we applied the proposed framework into cooperative
beamforming and selection relaying. The performance of
cooperation networks with and without resource allocation
was also compared. It was demonstrated that the proposed
framework guarantees an equal lifetime of all nodes. This
is in contrast to the unfair cooperation which will result in
a significant decrease in the lifetime of heavily-used nodes.
For instance, the decrease in lifetime of heavily-used nodes
is 36% for cooperative beamforming and 11% for selection
relaying with full cooperation. Furthermore, the proposed
framework can achieve 32% throughput gain over full co-
operative beamforming. For selection relaying, the proposed
framework can guarantee a diversity gain greater than 2 on
average compared to full cooperation, which achieves only a
diversity gain of 1 on average. In particular, due to the lack of
fairness, full cooperation will result in a short lifetime of those
heavily-loaded nodes. As a result, other nodes have to transmit
directly without relay assistance. Thus, the diversity gain of
full cooperation is lower than that of multi-state cooperation.

APPENDIX A
ENERGY CONSTRAINTS AND COOPERATION MATRICES

DERIVATION

A. Cooperative beamforming

Note that hjn ≥ gj for any n ∈ Rj . As cooperative
beamforming is adopted, a source node can transmit to its
relays in the first timeslot, with reliable transmission rate given
by

Cs→r
j = log

(
1 + gjP

s
j /σ2

)
, (23)

where P s
j denotes the power of node j in the first timeslot. In

the second timeslot, the source as well as its relays transmit
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to the destination node in a beamforming manner. From the
beamforming capacity formula for MISO channel [1], the
capacity of the r-d channel can be obtained by

Cr→d
j = log

(
1 + PΣ

j

∑
n∈Rj

hnd(j)/σ2
)
, (24)

where PΣ
j denotes the total power of relays in the second

timeslot. According to the max-flow-min-cut theorem, the reli-
able transmission rate should be the minimum of the s-r and r-
d channel capacities. By taking two timeslots per transmission,
the capacity of cooperative beamforming is given by

CCB
j = 1

2 min

{
log
(
1 + gjP

s
j /σ2

)
,

log
(
1 + PΣ

j

∑
n∈Rj

hnd(j)/σ2
)}

,

(25)

Hence, we have P s
j gj = PΣ

j

∑
n∈Rj

hnd(j) in order to
maximize the power efficiency. Since the energy consumption
in both timeslots are constrained, the resource allocation takes
both timeslots into account so that the total energy constraint
is Emax = Etotal.

Consider node j using the relay set Rj for time
duration tj . With beamforming, the power that node
i ∈ Rj consumes in relaying node j’s signal is
P

r→d(j)
i = PΣ

j hid(j)/
∑

n∈Rj
hnd(j). Note that the en-

ergy consumed by a node is the result of multiplying
this node’s transmission power and its transmission time.
Since the relays only transmit in the second timeslot, we
have E

(j)
i =P

r→d(j)
i ti/2=tjP

Σ
j hid(j)/

(
2
∑

n∈Rj
hnd(j)

)
. The

source node j itself transmits in both timeslots, with power P s
j

in the first timeslot and power P
r→d(j)
i in the second timeslot.

Therefore, we have E
(j)
j = tjP

Σ
j

(
hjd(j)/

∑
n∈Rj

hnd(i) +∑
n∈Rj

hnd(i)/gj

)
/2 . One can easily see that E

(j)
i = 0, if

i /∈ Rj for any cooperation schemes. By substituting into (3),
the results in Table I can be obtained accordingly.

B. Selection Relaying

As selection relaying is adopted, the power that a source
node transmits to relays is fixed to be P s so that the relays
may know the decoding threshold of the s-r channel gain
[5], ξj = (22rj − 1)σ2/P s, where rj is the target rate
of node j. As a result, only the even timeslot is consid-
ered by the resource allocation and the energy constraint is
Emax = Etotal − P sT ∗/2. Similar to Appendix I-A, the
energy consumed by a node is determined by multiplying
this node’s transmission power and its transmission time. With
selection relaying, the total time that node i ∈ Rj serves as
relay for node j is tj Pr{i ∈ D} = tj Pr{hji ≥ ξj}/2.5 Since
the nodes in D transmit with equal power P r→d(j), it follows
that E

(j)
i = P r→d(j) Pr{hji ≥ ξj}/2. By substituting into

(3), the results in Table I can be obtained accordingly.

5Note that Pr{hjj ≥ ξi} = 1. With selection relaying, a node can always
retransmit its own message in the second timeslot.

APPENDIX B
NETWORK DECOMPOSITION

Network Decomposition Algorithm
Step 0: Initialize M = 1, and S(1) = ∅;
Step 1: If

⋃M
m=1 S(m) = S, go to End;

Step 2: Choose one node s such that s /∈
⋃M

m=1 S(m).
Let T = {s} and S(M+1) = {s};

Step 3: If T = ∅, go to Step 6;
Step 4: T = {n : anp + apn > 0, p ∈ S(M+1),

n /∈ S(M+1)};
Step 5: S(M+1) = S(M+1) ∪ T , go to Step 3;
Step 6: M = M + 1, go to Step 1.
End

APPENDIX C
PROOF OF THEOREM 1

We begin by providing the following lemma.
Lemma 1: The dimension of the solution space to

A(m)e(m) = e(m) is 1 with the solution particularly being
a nonnegative vector.

Proof: Since aij = 0 for j ∈ S(n) and i /∈ S(m),
it follows that

∑
i∈S(m) a

(m)
ij =

∑N
i=1 aij = 1. Therefore,

A(m)T is a stochastic matrix. Thus, there exists an eigenvalue
λ(A(m)) = 1. By the Gersgorin disk theorem [20], the spectral
radius of A(m) is ρ(A(m)) = 1. Let U denote the set satisfying
U ⊂ S(m) and aij = 0 for i ∈ U , j ∈ S(m)/U . If U = ∅, the
matrix A(m) is irreducible. Since a

(m)
ii > 0 for any i, A(m)

is a primitive matrix. By the Perron-Frobenius theorem [20],
geomultA(m)(1) = 1 and there must exist a positive vector
e(m) satisfying A(m)e(m) = e(m). If U �= ∅, there must be a
permutation matrix Q satisfying

QTA(m)Q =[
B(|S(m)|−|U|)×(|S(m)|−|U|) C(|S(m)|−|U|)×|U|
0|U|×(|S(m)|−|U|) D|U|×|U|

]
(26)

where B, C, and D are matrix blocks with the appropri-
ate size. Since Q−1 = QT , it follows that A(m)Qx =
QQTA(m)Qx = Qx. Therefore, the solution to A(m)e(m) =
e(m) can be obtained by , where x is the solution to
QTA(m)Qx = x. In the partitioned form, this equation is
presented by [

B C
0 D

] [
x1

x2

]
=
[

x1

x2

]
. (27)

According to condition (3) of the network decomposition
properties, the matrix C cannot contain the all-zero column.
Otherwise, the sub-network S(m) can be decomposed. By the
Gersgorin disk theorem, the spectral radius of D is bounded

by ρ(D) ≤ max
∑|U|

i=1 Dij = max
(
1−
∑|S(m)|−|U|

i=1 Cij

)
< 1.

As a result, the solution to Dx2 = x2 much be x2 = 0. By
substituting x2 = 0 into (22), we have Bx1 = x1. Since B is
primitive and ρ(B) = 1, it follows that geomultB(1) = 1 and
x1 can be a positive vector. Since Q is a permutation matrix
satisfying (26) amd e(m) = Qx, it follows that e

(m)
i = 0 for

i ∈ U and e
(m)
i > 0, for i ∈ S(m)/U .

Having established Lemma 1, we now prove Theorem 1.
Proof: From Lemma 1, we know that geomultA(m)(1) =

1 and rank(A(m) − I) = |S(m)| − 1. Since 0 ≤ a
(m)
ij ≤ 1,
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1T does not belong to the space spanned by all the rows of
(A(m) − I). As a result,{

1Te(m) = 1
A(m)e(m) = e(m)

has a unique solution e(m),6 which is given by

e(m) =
[

1 . . . 1
A(m)

]−1
[

1
0(|S(m)−1|

)
×1

]
. (28)

Since 1Te(m) = 1, e(m) is nonnegative . Next, by noting that
a permutation matrix satisfies P−1 = PT , we have

Ab(m) = PPTAP

⎡⎢⎢⎣
0(∑m−1

r=1 |S(r)|
)
×1

e(m)

0(∑M
r=m+1 |S(r)|

)
×1

⎤⎥⎥⎦
= P

⎡⎢⎣ A(1)

. . .
A(M)

⎤⎥⎦
= P

⎡⎣ 0
A(m)e(m)

0

⎤⎦
= P

⎡⎣ 0
e(m)

0

⎤⎦ = b(m).

(29)

Hence, b(m) belongs to the solution space of (11). From (15),
we have b

(m)
i b

(n)
i = 0, for m �= n. Therefore, the b(m) are

orthogonal. That is, 〈b(m),b(n)〉 = 0.
Finally, we show that the basis vectors are complete.

According to (13) and since P−1 = PT , we have A =
Pdiag(A(1), . . . ,A(M))PT . Since

det
(
A − λI

)
= det(P) det

(
diag(A(1), . . . ,A(M)) det(PT )

=
∏M

m=1 det
(
A(m) − λI

)
,

(30)

it follows that geomultA(1) =
∑M

m=1 geomultA(m)(1) = M .
Therefore, the dimension of the solution space of (11) is M.
Thus, the solution space can be spanned by the basis b(m),
m = 1, . . . , M . The energy allocation vector can be given by

eA =
M∑

m=1

μ(m)b(m). (31)

In order to increase the energy efficiency, as much as
possible energy should be allocated in each state during
iteration. Note that eA(k) is always a nonnegative vector. The
1-norm of eA(k) is given by

||eA(k)||1 =
N∑

i=1

|eA
i (k)| =

N∑
i=1

eA
i (k)

As a result, maximizing the 1-norm of eA(k) is equivalent
to maximizing the energy allocated in state k. Constrained

6As U = ∅, e(m) is the so-called Perron vector of A(m) [22].

by (12), μ(m), m = 1, . . . , M , are chosen to maximize the
1-norm of (31), which can be obtained as

μ(m) = min
i∈S(m)

emax
i

b
(m)
i

. (32)

Here, (32) can be proved as follows. Since b
(m)
i b

(n)
i = 0 for

m �= n, b(m) are orthogonal basis for the solution space of
(11) and are nonnegative. If there exists a solution ẽA to (11),
satisfying ||ẽA||1 > ||eA||1, then there must be m, satisfying
μ̃m > μm. From (32), we have

μ̃(m) > min
i∈S(m)

(
emax

i /b
(m)
i

)
. (33)

Let j = argmini∈S(m)

(
emax

i /b
(m)
i

)
. Clearly, we have

eA
j > μ̃mb

(m)
j > emax

i . (34)

This contradicts constraint (12). As a result, it follows that μm

maximize the 1-norm of eA.

APPENDIX D
DERIVATION OF UTILITY FUNCTIONS

A. Cooperative Beamforming

As |Ri(k)| ≥ 2, the capacity is determined by the total
power of the virtual array. Since P s

j gj = PΣ
j

∑
n∈Rj

hnd(j),
the energy used by the virtual array is eA

i (k)gi/
(
gi +∑

j∈Ri(k) hjd(i)

)
. Since the virtual antenna array only trans-

mits in even timeslots, the capacity of node i in state k is
given by

Ui,k

(
eA

i (k)
ti(k)

)
= 1

2×

log
(

1 +
2gi

∑
j∈Ri(k) hjd(i)(

gi+
∑

j∈Ri(k) hjd(i)

)
σ2

eA
i (k)
ti(k)

)
.

(35)

As |Ri(k)| = 1, we assume that the source repeats its
transmission in the second timeslot.7 Hence, the capacity is
obtained by

Ui,k

(
eA

i (k)
ti(k)

)
=

1
2

log

(
1 +

2hid(i)

σ2

eA
i (k)
ti(k)

)
. (36)

By differentiating the utility function twice, we have

U
′′
i,k(x) = − c2

i (k)
2[1 + ci(k)x]2

≤ 0. (37)

Hence, U(x) is a concave function.

B. Selective Relaying

Using the methods in Appendix I-B and the Rayleigh fading
assumption, we know that the each relay’s transmission power,
P r→d(i), is given by P r→d(i)= 2eA

i (k)

ti(k)
∑

j∈Ri(k) exp(−ξi/hij)
.

From [5], the outage threshold is ηi = (22ri−1)σ2

P r→d(i) . By
substituting P r→d(i) into the formula of ηi, we get

ηi(k) =
(22ri − 1)σ2

∑
j∈Ri(k) exp(−ξi/hij)

2eA
i (k)/ti(k)

. (38)

7In fact, repetition coding is not rate-optimal compared with direct with
direct transmission in each timeslot. In low SNR regime, however, it is near
optimal.
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Using the method of conditional probability, the outage prob-
ability can be given by

Pout,i(k) =
∑

D∈Ri(k)

Pr

⎧⎨⎩∑
j∈D

hjd(i) < ηi(k)

∣∣∣∣∣D
⎫⎬⎭Pr{D} ,

(39)
where the probability of a particular D can be obtained by

Pr{D} =
∏
j∈D

exp
(
− ξi

hij

)∏
i/∈D

[
1 − exp

(
ξ

hij

)]
. (40)

By using the generating function [13], [22], the conditioned
outage probability is calculated as8

Pr

⎧⎨⎩∑
j∈D

hjd(i) < ηi(k)

∣∣∣∣∣D
⎫⎬⎭ =

∑
j∈D

[
1 − exp

(
− ηi(k)

hjd(i)

)]

×
∏
n�=j

hjd(i)

hjd(i) − hnd(i)

. (41)

By substituting (39)-(41) into ui(k) = 1−Pout,i(k), the results
in Table II can be obtained.

Next, we shall show that the utility function of selection
relaying is convex in the high SNR regime, which denotes
the regime of interest for outage probability. From [5], the
conditional outage probability can be approximated by a power
function of x = eA

i (k)
ti(k) in the high SNR regime. That is

Pr

⎧⎨⎩∑
j∈D

hjd(i) < ηi(k)

∣∣∣∣∣D
⎫⎬⎭ ∼ 1

|D|!
(si

x

)|D| ∏
j∈D

1
hjd(i)

,

(42)
where si(k) = (22ri−1)σ2

2

∑
j∈Ri(k) exp

(
− ξ

hij

)
. It follows

that the utility function can be approximately given by

Ui,k(x) ∼ 1 −
∑

D∈Ri(k)

Pr{D}
|D|!

(si

x

)|D| ∏
j∈D

1
hjd(i)

(43)

By differentiating it twice, we have

U
′′
i,k(x) ∼ −

∑
D∈Ri(k)

Pr{D}(|D| + 1)
(|D| − 1)!

s
|D|
i

x|D|+2

∏
j∈D

1
hjd(i)

≤ 0. (44)

Thus, it follows that the utility function of selection relaying
is concave in the important high SNR regime.
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