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Abstract—This paper provides a comparative study of the 
distributed antenna system (DAS) and the conventional co-
located antenna system (CAS) in the multi-user scenario. It is 
demonstrated that thanks to the decrease of the maximum 
minimum access distance, a tremendous transmission power gain 
can be achieved by DASs. Besides, the DAS has great potentials 
to outperform the CAS in terms of multi-user capacity when 
channel-aware scheduling is adopted. It is proved that the 
variance of the received power of any given user in a DAS is 
always larger than that in a CAS, which indicates a higher 
selective gain. The DAS also has much better interference 
suppression ability when multiple users are scheduled 
simultaneously. Substantial capacity gains are shown to be 
achieved by a DAS over a CAS. 

Keywords- Distributed Antenna Systems, Capacity, Channel-
aware Scheduling, Opportunistic Transmission.  

I.  INTRODUCTION 
The distributed antenna system (DAS) has emerged as a 

promising candidate for the future beyond 3G or 4G mobile 
communications thanks to its open architecture and flexible 
resource management. In DASs, many remote antenna ports 
are distributed over a large area and connected to a central 
processor by fiber, coax cable, or microwave link [1]. Recent 
work has shown that other than a better coverage and lower 
operation and maintenance costs, the DAS has many attractive 
advantages over the conventional co-located antenna system 
(CAS) in terms of system capacity and power efficiency [2-
10].  

Although it is becoming a common belief that the 
distributed characteristic of antennas provides a more efficient 
utilization of space resources, the optimal antenna placement 
remains unknown. Besides, most of the analytical work is 
based on the single-user scenario (with multiple antennas at 
both the transmitter and receiver sides) [5-10]. [2-4] presents 
the SINR analysis in cellular DASs with no channel-aware 
scheduling.  

In this paper, a comprehensive comparative study of the 
CAS and the DAS is presented in the multi-user scenario. For 
a fair comparison, it is assumed that transmission power 
control is performed so that the mean received power of any 
user is a constant. It is demonstrated that due to the decrease 
of the access distance, a huge transmission power gain can be 
achieved by DASs. This gain, however, is determined by the 
maximum minimum access distance, which implies that the 

optimal antenna placement should be as symmetrical and even 
as possible. In this paper, the QAM constellation is used as the 
antenna topology. It is shown that with 16 distributed antennas, 
the sum transmission power of a DAS is less than 5 percent of 
that consumed by a CAS. Clearly a tremendous transmission 
power saving is brought by DASs. 

Channel-aware scheduling, or opportunistic transmission, 
was proposed in [11], where the user with the highest 
instantaneous channel gain is selected for transmission. 
Because users are expected to experience independent fading, 
channel-aware scheduling can adaptively exploit the time-
varying channel conditions of users and achieve the multi-user 
diversity gain; the capacity will increase with the number of 
users [12]. 

In this paper, the capacity with channel-aware scheduling 
in CASs and DASs is investigated. It is proved that the 
variance of the received power of any given user in a DAS is 
always larger than that in a CAS. This indicates a better 
selective gain which leads to a higher capacity when single-
user scheduling, i.e., the best user is selected for transmission 
in each time slot, is adopted. The capacity gap is further 
enlarged when multiple users are scheduled simultaneously. 
Compared to the single-user scheduling case, although a 
significant capacity increase can be observed in both the CAS 
and the DAS, the DAS can better exploit the degrees of 
freedom via scheduling multiple orthogonal users at the same 
time. This orthogonality among the selected channel vectors 
makes it feasible that the selection is performed in a per-
antenna manner. A low-complexity selection algorithm for 
DAS (LS-DAS) is further proposed and the simulation results 
show that it can indeed achieve the optimal performance. 

This paper is organized as follows. The system model is 
provided in Section II. Section III presents the analysis on the 
sum transmission power of a DAS and a CAS. The capacity 
comparison with channel-aware scheduling is shown in Section 
IV. Finally, Section V summarizes and concludes this paper. 

II. SYSTEM MODEL 
As shown in Fig. 1, consider a DAS with L remote antennas 

distributed in a circular area with radius R. Assume each user is 
equipped with one antenna and all the users are uniformly 
distributed in the whole area with a density φ . Consider the 
uplink transmission. Assume transmission power control is 
performed so that for any user, at any location, the mean 
received power at the remote antennas is a constant c. That is, 
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where 
,
D

r kP  and ,
D

t kP  represent the received and transmission 
power of user k, respectively.  is the distance from user k to 
the i-th antenna and 

ikd
α  is the path loss exponent. In this paper, 

the effect of shadowing fading is ignored. ikh  represents the 
small-scale channel coefficient, which is assumed to be a 
complex Gaussian random variable with zero-mean and unit 
variance. Under the power constraint of (1), the received power 
for user k is then given by 
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where 
1

/ L
ik ik jkj

d α αβ −
=

= ∑ − . Obviously we have 
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β
=

=∑ , 

k=1,…,K.  
     In a CAS, all the antennas are placed together, which 
implies that = , i=1,…, L. Therefore, similar to (1), we 
have  

ikd kd

{ }, ,
C C

r k t k kE P LP d α−= = c        (3) 

where  and 
,
C

r kP ,
C

t kP  are the received and transmission power of 
user k.  

 
Fig. 1: In DASs, antennas are spread out in the whole area. 

III. SUM TRANSMISSION POWER 

In this section, the sum transmission power of both systems 
will be analyzed and a huge power saving will be shown to be 
achieved by the DAS.  

Theorem 1. The sum transmission power of a CAS is 
minimized when all the antennas are placed at the center, and 
the minimum power is .  22 / (R c Lαπ φ α+ + 2)

Sketch of proof: Assume the antennas are located at 
0 0( , )ρ θ . The sum transmission power is then given by 

2 2 2 2 /2
, 0 0 00 0 0 0

( 2 cos( ))
R RC C

t t k
cP P d d d
L

π π α dφφ ρ ρ θ ρ ρ ρρ θ θ ρ ρ θ= = + − −∫ ∫ ∫ ∫  (4) 

Let 2
0a 2ρ ρ= + , and 02b ρρ= − . Then we have 

0

0

2 22 2 / 2 / 2
0 0 00

( 2 cos( )) ( cos )d a b
π π θα α

θ
dρ ρ ρρ θ θ θ θ

−

−
+ − − = +∫ ∫ θ  (5) 

It can be easily proved that for any given ρ , (5) is minimized 
when 0ρ =0. Therefore,  
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Theorem 2. The sum transmission power of a DAS is upper 
bounded by 2

02 /(d cαπ φ α+ +  , where  is the maximum 
minimum access distance. 

0d

Sketch of proof: Assume L antennas are located at ( , )i iρ θ , 
i=1,…, L. Then we have 
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where ( , , , )i id ρ θ ρ θ  represents the distance from ( , )ρ θ  to 
antenna ( , )i iρ θ , and * *

0 0 1,...,
( , ) arg min ( , , , )i ii L

dρ θ ρ θ
=

= ρ θ , for each 

( , )ρ θ . Let  represent the maximum minimum access 
distance, i.e., 

0d
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ρ θ 0 0ρ θ ρ θ= . From (6), approximately 

we have  
02 2

00 0
2 /(

dD
tP c d d d c

π α αφ ρ ρ ρ θ π φ α+ 2)≤ = +∫ ∫ .        ■ 

From Theorem 1 and Theorem 2, it can be seen that the 
sum transmission power ratio of a DAS and a CAS is upper 
bounded by ( ) 2

0 /L d R
α+

⋅ . Therefore, the decrease of the 

access distance can bring a significant transmission power 
saving. For example, assume L=4 and let / 2i Rρ = , 

/ 4 ( 1) / 2i iθ π π= + − , i=1,…,4. Clearly we have 0 2 / 2d R= . 

In this case, ( ) 2
/ 2 /D C

t tP P L
α+

≤ ⋅ 2 . When α =3, 2
2

D C
t tP P≤ . 

It is further decreased to  when / 2C
tP α =4. 

This huge transmission power saving, however, is 
dependent on the location of the antennas. So a natural 
question is, with L antennas, how should we place them so that 
the maximum minimum access distance, , is minimized? 
Intuitively, to decrease , the antennas should be spread out 
as evenly as possible. Therefore, the QAM constellation can be 
used as the antenna topology. As shown in Fig. 2, when L=4 
and 16, QPSK and 16QAM will lead to a  of 

0d

0d

0d 2 / 2R  and 
2(1 2 / 2) ( 2 / 6) R− + 2 , respectively. In the latter case, 

0.045D C
tP ≤ tP  when α =4, implying a tremendous 

transmission power saving brought by the DAS. 
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(a)        (b) 

Fig. 2: Distributed antenna placement when (a) L=4; and (b) L=16. 
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IV. CAPACITY WITH CHANNEL-AWARE SCHEDULING 
In Sec. III, it has been demonstrated that the sum 

transmission power in a DAS is much lower than that in a CAS. 
In this section, it will be further shown that significant capacity 
gains can be achieved by the DAS, when channel-aware 
scheduling is adopted.  

A. Single-user Scheduling 
Assume there are totally K active users and in each time 

slot the user with the largest received power is selected for 
transmission. We provide the following lemmas before the 
capacity comparison. 

Lemma 1. For any given user, the variance of the received 
power in a DAS is no smaller than that in a CAS. 

Proof: From (2) it is clear that  
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From (7) it can be further seen that with an increase of L, 
the variance of the received power in CASs will decrease, 
which is not true in DASs. For example, Fig. 3 shows the 
variance of the received power for user 0 with the location of 
( 2 /2, 0) in CASs and DASs when L=4 or 16 and c=1. 1  
Clearly in both cases the DAS has a higher variance. When L 
increases to 16, the variance in CASs is significantly reduced 
while in DASs it keeps almost unchanged. Therefore, the gap is 
further enlarged when L=16. It should be also pointed out that 
in DASs, the variance of the received power of each user is 
dependent on its location, which is different from the CAS case. 
The variance is maximized when the user is close to some 
distributed antenna, i.e., 1lkβ = , and 0ikβ = , i=1,…, L when 

. i l≠
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Fig. 3: Channel fluctuations in a CAS and a DAS when (a) L=4; and (b) L=16. 

Lemma 2. Let 
1,kx , k=1,…, K, be i.i.d positive random 

variables with mean 1μ  and variance 2
1σ . Similarly, 

2,kx , 
k=1,…, K, are i.i.d positive random variables with mean 2μ  
and variance 2

2σ . Assume 1 2μ μ= , and 2
1

2
2σ σ≥ . Let 

,( ) ,1,...,
max ( )i K i kk K

x x
=

=  , i=1, 2. Then { } {1,( ) 2,( )K KE x E x≥ }

                                                          

. 

 
1 In the rest of the paper, we always assume the pass loss exponent α is 4. 
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in [u
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Lemma 3. Let 
1,kx , k=1,…, K, be independent positive 

random variables with mean 1μ  and variance 2
kσ , k=1,…, K. 

Assume 2 2
0 1,...,

min kk K
σ σ

=
= , and 

2,kx , k=1,…, K, are i.i.d positive 

random variables with mean 1μ  and variance 2
0σ . Then 

{ } { }1,( ) 2,( )KE x E x≥ K
, where 

,( ) ,1,...,
max ( )i K i kk K

x x
=

=  , i=1, 2. 

Lemma 3 can be easily proved according to Lemma 2. 
Therefore, we omit the proof here. 

Let DC  represent the capacity of a DAS. Then we have 

{ } { }{ }2 2
2 , 2 ,1,..., 1,...,

max log (1 / ) log 1 max /D D
r k n r k nk K k K

C E P E PDσ σ
= =

= + ≤ +  (8) 

where 2
nσ  is the variance of Gaussian white noise. From 

Lemmas 1 and 3, it is clear that 
 { }{ } { }{ }2 2

2 , 2 ,1,..., 1,...,
log 1 max / log 1 max /D C C

r k n r k nk K k K
E P E Pσ σ

= =
+ ≥ + ≥C (9) 

Fig. 4 provides both the upperbound 

{ }{ }2
2 ,1,...,

log 1 max /D
r k nk K

E P σ
=

+  and the exact capacity curves of a 

DAS and a CAS under different values of the average received 
SNR 2

0 / ncγ σ=  when L=4 and K=50. Clearly the upperbound 
can be used as a good approximation of the capacity. Besides, 
it can be seen that the DAS achieves a much higher capacity 
than the CAS thanks to a larger variance of the received power.  

Even more capacity gains can be obtained when L increases 
to 16. As shown in Fig. 5, a 1.5 bit/s/Hz capacity gain can be 
achieved by the DAS over the CAS when K=200. This 
enlarged capacity gap, however, comes from the decrease of 
the CAS capacity (which is due to a reduced variance of the 
received power), rather than the increase of the DAS capacity. 
From Fig. 5 it can be seen that the capacity of the DAS keeps 
almost the same when L increases to 16 from 4. Actually it can 
be proved that with a large K, the capacity of a DAS with 
single-user scheduling is given by the following theorem. 
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Theorem 3. The capacity of a DAS with single-user 
channel-aware scheduling is given by 2 0log (1 ln( ))Kγ+ , where 
K is the number of users. 

Sketch of proof: With a large K, the capacity is determined 
by those users close to some distributed antenna, i.e., 1lkβ = , 
and 0ikβ = , i=1,…, L when i , as they have the maximum 
variance of the received power. It can be proved that in that 
case the capacity is given by 

l≠

2 0log (1 ln( ))Kγ+ .               ■ 
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Fig. 4: Capacity vs. γ0 in a CAS and a DAS with single-user channel-

aware scheduling when L=4 and K=50. 
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Fig. 5: Capacity vs. the number of users K in a CAS and a DAS with 

single-user channel-aware scheduling when γ0 =10dB. 
A good match of the theoretic and simulation results can be 

observed in Fig. 5. Theorem 3 indicates that no capacity gain 
can be achieved when L increases. This conclusion, however, is 
drawn based on the assumption that only ONE user is 
scheduled in each time slot. In the following we will show that 
if the best L, instead of 1, users are selected for transmission in 
each time slot, the capacity will increase with L dramatically in 
DASs. 

B. Multi-user Scheduling 
In Sec. IV. A, it has been shown that an increase of L does 

not improve the capacity when the best user is scheduled in 
each time slot. This is because only one degree of freedom is 
used in each transmission whatever L is. To fully exploit the 

degrees of freedom provided by L distributed antennas, L users 
should be scheduled simultaneously. Therefore, in this 
subsection we will further investigate the optimal multi-user 
scheduling strategy, i.e., the best L users are selected for 
transmission in each time slot. 

From (2) it can be seen that for each user k, the channel 
vector is given by 

1 1[ ,..., ]T
k k k Lk Lh hβ β=h k

. Let Ω  represent 
the active user set with size K, and K  is an arbitrary subset 
with size L. H  denotes the channel matrix which is composed 
by , 

K

kh k ∈K . We aim at finding the optimal ∗K  which 
achieves the maximum capacity. With a high 0γ ,  ∗K  is 
approximately given by 

 ( )†arg max det∗

⊂
=

Ω
H HK KK

K .  (10) 

and the maximum capacity is ( )†
2 0log det γ ∗ ∗H H

K K
. 

     In a CAS, 1/ik Lβ = , i=1,…, L, for any user k. While in a 
DAS,  each user has a different βk. The difference between the 
elements of a βk will lead to a much larger variance of the 
received power than that of a CAS, as we have shown in Sec. 
IV. A. The difference between βk’s, however, can greatly 
reduce the interference among users, which indicates a 
significant capacity gain.  

Fig. 6 provides the capacity curves of a CAS and a DAS 
with multi-user scheduling when γ0=10dB and L=4. It can be 
seen that a much higher capacity is achieved by the DAS, and 
the capacity gain becomes even larger when K increases. 
Actually in DASs, with a large K, it is very likely that βk’s of 
the optimally selected users are mutually orthogonal. That is 
why substantial capacity gains can be observed in the DAS 
case. We also provide the capacity curves of DASs and CASs 
with single-user scheduling. Clearly much more multi-user 
diversity gain can be achieved by both the CAS and the DAS in 
the multi-user scheduling case. 
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Fig. 6: Capacity vs. the number of users K in a CAS and a DAS with multi-user 

channel-aware scheduling and single-user channel-aware scheduling when γ0 
=10dB and L=4. 

In a CAS, to find the optimal , an exhaustive search has 
to be performed, which leads to a prohibitively high 
complexity level with a large K ( when K=100 and L=4, 

∗K

L
KC = 
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3921225 comparisons on the determinant of an L by L matrix 
are required for each channel realization). In a DAS, however, 
orthogonality among the selected βk’s makes it feasible that 
the selection is performed in a per-antenna manner. A low-
complexity selection algorithm for DASs (which is referred to 
as LS-DAS) is proposed and described as follows. 

Initialization: k=L; .  is an L by L matrix with zero 
elements. 

=H H sH

1. Find the maximal element h* of H : * max || ||ijh h= . Let 
. * *

1... , 1...
( , ) arg max iji L j K
i j h

= =
=

2. . * *(:, ) (:, )i j=sH H
3. Set all the elements on the i*-th row and the j*-th column 

of  to zero, i.e.,  and H *( ,:) (1, )i zeros K=H
*(:, ) ( ,1)j zeros L=H . 

4. k=k-1. If k>0, repeat steps 1-4; Otherwise, output . sH

Clearly with LS-DAS, the complexity can be greatly 
reduced. Only O(L2K) element-wise comparisons are needed. 
Fig. 7 shows the superior performance of the proposed 
algorithm. It can be seen that LS-DAS can indeed achieve the 
optimal performance. 
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Fig. 7: Capacity of a DAS with the optimal selection and that with LS-

DAS when L=4. 

Fig. 8 presents the capacity curves of a DAS with multi-
user scheduling under different values of L. In contrast to the 
single-user scheduling case, tremendous capacity gains can be 
brought when L increases. Actually it can be proved that with 
a sufficiently large K, the capacity will increase linearly with L. 
Even with a moderate K, substantial capacity gains can be 
observed. For example, as shown in Fig. 8, with 500 users, the 
capacity is doubled when L increases to 4 from 1. Additional 
250% gain can be achieved when L further increases to 16. 

V. CONCLUSIONS 
In this paper, we investigated the performance of a DAS in 

the multi-user scenario and compared to that of a CAS. It was 
shown that in addition to a tremendous transmission power 
saving, substantial capacity gains can be achieved by the DAS 
when channel-aware scheduling is adopted. The analysis 

demonstrated that the distributed characteristic of antennas 
actually amplifies the channel fluctuations, which leads to a 
higher capacity when the best user is selected for transmission 
in each time slot. This gain, however, cannot be further 
improved by increasing the number of distributed antennas, L, 
because only one degree of freedom is exploited with single-
user scheduling whatever L is. Therefore, multi-user 
scheduling was further proposed, where the best L users are 
selected for transmission simultaneously.  Huge capacity gains 
were shown to be achieved by the DAS thanks to its better 
interference suppression ability. Besides, LS-DAS was 
proposed for DASs and the simulation results showed that it 
can indeed achieve the optimal performance at a much lower 
complexity cost. 
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Fig. 8: Capacity vs. the number of users K in a DAS when γ0 =10dB. 
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