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Abstract—It is well known that multiple-input multiple-output
(MIMO) systems provide two types of gains: diversity gains and
spatial multiplexing gains. Recently, a tradeoff function of these two
gains has been derived for a point-to-point MIMO system when
optimal detection is used. In this paper, we extend the previous
work to a more general MIMO system, where the transmitted
data is coded in groups. Group detection is applied at the receiver
to retrieve the data. It consists of a zero-forcing decorrelation that
separates the groups, followed by a joint detection for each of
the groups. Two receiver structures are considered in this paper;
namely, group zero forcing (GZF) and group successive inter-
ference cancellation (GSIC). We assess the diversity-multiplexing
tradeoff function of each of these receivers over a richly scattered
Rayleigh fading channel. Three rate-allocation algorithms will
be considered here; namely, equal rate, group-size proportional
rate, and optimal-rate allocation. An explicit expression of the
system tradeoff will be derived for both receivers with these
three rate allocations. The obtained results will first be optimized
over all possible group partitions for a given number of groups.
Next, the number of groups will be varied to further optimize the
system-tradeoff performance. An overall optimum tradeoff for a
general MIMO system with group detection will then be obtained.
Numerical results will indicate that optimum performance can be
approached with very-low-complexity schemes for a wide range
of data rates. It will be also demonstrated that group detection
bridges the gap between the traditional decorrelator and the
optimal receiver tradeoff performances.

Index Terms—Channel capacity, channel multivariate statistics
distribution, diversity-multiplexing tradeoff, group detection, mul-
tiple-input multiple-output (MIMO) systems, rate allocation.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) systems
have been shown to provide significant performance

gains over traditional single-antenna systems [1]. These gains
fall into two categories; namely, diversity and spatial multi-
plexing [2]. Most of the previously designed MIMO systems
have focused on the maximization of either type of gain, and
have been categorized as either diversity— type systems or
high-(data)-rate ones. For example, space–time codes (STCs)
[3] and orthogonal designs (ODs) [4], [5] are regarded as
diversity-type schemes, and Vertical Bell Layered Space–Time
(V-BLAST) schemes [6], [7] as data-rate ones. By exclusively
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maximizing one type of gain, these schemes unfortunately
sacrifice the other type, such as the system capacity with STC
[2], [8], [9], and diversity with V-BLAST [2]. Recently, group
detection was shown to play a key role in designing schemes
that achieve higher diversity gains and data rates than the
previously mentioned ones. Proposed systems in [10] and [11]
are some examples. In these schemes, signals are arranged in
groups and each group is allocated one STC/OD component
code [10], [11]. The overall data rate is also shared between
these groups, as in V-BLAST. By doing so, group detection
allows the proper integration of the diversity-type schemes with
high-data-rates ones. A fair comparison of all of these schemes
and how much performance improvement group detection
provides is obviously of fundamental importance, and is yet an
open problem.

Recently and in contrast to common conclusions, [2] has
demonstrated that diversity gains and spatial-multiplexing
gains are not exclusive. They can still be achieved at the same
time with a fundamental tradeoff function that determines the
amount of these gains. In particular, the overall performance of
any scheme can be assessed according to a unified measure, the
tradeoff function, and a fair comparison of different schemes
is then possible. The case of OD as well as V-BLAST have
both already been treated as examples in [2] in a point-to-point
communication context. However, existent studies fall short
of the derivation of the tradeoff performance achieved with
group detection. Such performance is important not only to
determine how much gain group detection can provide, but also
to serve as comparison benchmark for any system using group
detection [10], [11]. Hence, this paper will evaluate the optimal
diversity-multiplexing tradeoff achieved with group detection
over a richly scattered Rayleigh-fading narrowband-MIMO
channel.

We consider two receiver structures for group detection;
namely, group zero forcing (GZF) and group successive
interference cancellation (GSIC). With the first receiver, a
zero-forcing decorrelator is used to separate the various groups
of data. Maximum-likelihood (ML) detection is next simulta-
neously applied to jointly detect each group of data. As for the
second receiver, groups are detected successively in stages. At
each stage, one group is detected using ML after canceling the
interference of the already detected groups in previous stages.
This paper will evaluate the diversity-multiplexing tradeoff
functions of these two receivers. We shall note here that when
the number of groups is reduced to one, both GZF and GSIC
become equivalent to a traditional ML receiver. In addition,
when each transmitted signal is regarded as one group by itself,
both receivers become equivalent to a traditional decorrelator.
The tradeoff functions in these two particular cases have been
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already evaluated in [2]. In this paper and in contrast to previous
work, we deal with the evaluation of the system-tradeoff perfor-
mance for a general number of groups. To do so, we first derive
the exact distribution of each of the group’s outage probability.
The latter is defined as the probability that a group does not
meet its required allocated data rate. We will then deduce the
diversity-multiplexing tradeoff performance function for each
of the active groups. It is then demonstrated that the overall
system performance is limited by the worst group performance.
We will also show that it depends on the number of groups,
the group partition in use, and the rate allocated to each of the
groups.

Three rate-allocation algorithms are considered throughout
this paper; namely, the equal rate, the group-size proportional
rate, and the optimal-rate allocation. The first allocation con-
sists of equally splitting the total rate among all the groups.
The second one enables groups to transmit with rates that are
proportional to the number of signals that they regroup. Finally,
the optimal algorithm consists of allocating different rates to
different groups with an objective function that maximizes
the overall system-tradeoff performance. Both GZF and GSIC
tradeoff functions are then explicitly evaluated according to
these three rate-allocations schemes. Results will indicate that
the group-size proportional allocation scheme outperforms
by far the equal-rate one. Moreover, it will be shown that it
approaches the optimal allocation performance at high values
of multiplexing rates.

As mentioned earlier, the system-tradeoff performance de-
pends on the number of groups, as well as the group partition.
Hence, in a first step, we will fix the number of groups to , and
vary the group partition so as to optimize the overall tradeoff ob-
tained earlier with the three rate-allocation algorithms. Signif-
icant diversity gains are demonstrated with such an optimiza-
tion. Particularly, it will be shown that the GZF tradeoff outper-
forms the GSIC one for some multiplexing rates, in contrast to
most of the existent traditional performance comparison results.
As a result, receiver designs that aim to reduce the computa-
tional complexity will benefit tremendously from the obtained
results. Finally, the number of groups is varied, and the previ-
ously derived performance functions are assessed accordingly.
It is found that the system-tradeoff performance is further op-
timized when is smaller. Results will also demonstrate that
group detection bridges the performance gap between the tradi-
tional decorrelator and the optimal receiver effectively [2].

This paper is organized as follows. Section II describes the
adopted system model, as well as the different notations used
throughout the paper. In Section III, the overall system tradeoff
is evaluated as a function of the tradeoff of each group. The
latter will be fully evaluated in Section IV. In Section V, dif-
ferent rate-allocation schemes are considered, and the overall
system-tradeoff function is derived for each. Simulations results
are provided in Section VI, and our conclusions are given in Sec-
tion VII.

II. SYSTEM MODEL AND GROUP DETECTION

We consider a richly scattered, multiple-access, Rayleigh-
fading channel with active antennas transmitting different
signals, and receive antennas, as shown in Fig. 1. The channel

Fig. 1. General system block diagram.

matrix is written as an matrix , is assumed to be known
at the receiver side only, and remains constant within a block of
symbols. The entries of are assumed to be independent com-
plex circularly symmetric Gaussian distributed with unit vari-
ance.

The transmit antennas are randomly partitioned into
groups, and data is encoded over these blocks, each of which
fades independently. Let denote a random partition,
and denote by the size of its th group, such that

. is fully specified by the number of
groups , and the size of each of the groups . To sim-
plify the notations, we will drop the index “ ” throughout
this paper, and shortly denote by “ ” the th group of .

Throughout this paper, we denote by the transmitted
matrix. is chosen from the codebook of rate b/s/Hz.
The latter has matrix codeword matrices, denoted
as . Similar to [2], we consider schemes
that support data rates that increase with the average signal-to-
noise ratio (SNR) per receive antenna. We will also think of a
scheme as a family of codes SNR of block length , one
on each SNR level, and we shall let SNR denote the overall
rate associated with the code SNR .

According to the group partition, can be written as
, where is the transmitted ma-

trix associated with the th group. Each will be associated
with a data rate SNR , assigned for the th group, such that

SNR SNR . Finally, is assumed normalized,
so that the average transmit power at each transmit antenna in
each symbol period is 1.

Assuming perfect symbol synchronization at the receiver, a
discrete model of the received complex signal vector can
then be written as

SNR
(1)

where is distributed. When , is of
full rank , and group detection is applicable. Considering a
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Fig. 2. a) GZF receiver block diagram. b) GSIC receiver block diagram.

GZF receiver as shown in Fig. 2(a), each group is associated
with a sufficient statistic vector , such that [12], [13]

SNR
(2)

where is distributed and is the

th diagonal submatrix of , of size with de-
noting the complex conjugate transpose operator. When GSIC
is considered, interference cancellation of the already detected
groups is performed successively, as shown in Fig. 2(b). In con-
trast to the GZF architecture, the order in which the various
groups are detected plays an important role with GSIC. Let
denote the group detected at the th stage. A sufficient statistic
vector at the th stage is then given by

SNR
(3)

where is the residual interference due to decision errors.
Let denote the equivalent channel after interference can-
cellation. is then distributed with

.
Throughout this paper, we denote by and the

determinant and the trace operators, respectively. Finally, for an
arbitrary matrix , we shall write when is a Hermitian
positive matrix.

III. TRADEOFF PROBLEM FORMULATION

Consider the channel over the blocks of length , and de-
rive the diversity-multiplexing tradeoff performance functions
with GZF and GSIC. In [2], the diversity-multiplexing tradeoff

function of a given scheme is defined as the SNR exponent
function of the minimum frame-error rate (FER) of that same
scheme, achieved when the best outer codes that generate the
transmitted symbols are used. Let SNR denote such min-
imum FER, and its SNR exponent function, or the tradeoff
function. is defined as the system multiplexing rate, and is
given by SNR SNR . Also, let denote
the system outage probability, and its associated SNR
exponent function. Throughout this paper, the following nota-
tion will be used:

SNR SNR when
SNR

SNR
SNR

(4)

Accordingly, we can write

SNR SNR and SNR (5)

It was found in [2] that is a lower bound of SNR .
Moreover, when , also upper bounds

SNR . The tradeoff function is, hence, given by
. Using a similar approach, we evaluate in what follows

the overall outage probability for GZF and GSIC receivers, and
deduce their corresponding tradeoff performance functions, that
we denote by and , respectively.

A. Group Outage Probability

We derive in what follows an expression for the overall
outage event according to the system configuration. Denote by

the random realization of the channel over the consid-
ered time frame . Consider the system given in (1), and let

be its mutual information conditioned
on [7]. When the system in (1) does not meet its
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required data rate , an outage event takes place, which we
denote by and we write as

The overall system outage probability is then given by
. When group detection is used, an

overall outage event indicates that any of the considered groups
is in outage.

Definition 1: Let denote the th group outage event,
associated with an input , an output , a data rate , and a
random channel realization held fixed for all the time.

is defined as the event where the th group does not
meet its required data rate , and is written as

where is the th-group mutual
information. The group outage probability is then defined as the
probability of , and is written as .

According to Definition 1, we can write the following:

B. GZF Tradeoff Function

Using the results of Section III-A, we provide a closed-form
expression of the overall tradeoff function for the GZF receiver.
To do so, we first evaluate the SNR exponent of the outage prob-
ability, and then derive using a similar approach to the
one in [2].

According to (2) and in the case of a GZF receiver, the
group outage events are independent of each other. This implies
that

and

Consequently, the overall system outage probability with GZF
satisfies

(6)

where is as defined for the th group with GZF ac-
cording to Definition 1. Now, using the union bound, as well
as the fact that the overall system outage probability is lower
bounded by the worst group outage performance, (6) gives

(7)

Let SNR be written as SNR SNR , with
. Also, let denote the SNR exponent

of . According to (4), we can write

SNR (8)

At high SNR values, the union bound in (7) decays exponen-
tially with the worst group performance. Hence

SNR with

(9)

For a sufficiently long block length that we specify in the
next section, is both a lower and an upper bound of

SNR . Consequently, SNR . Since
SNR SNR , then using (9), the overall GZF

tradeoff function satisfies

(10)

where denotes the group with the worst tradeoff perfor-
mance.

C. GSIC Tradeoff Function

When the GSIC architecture is used, the group outage events
are no longer independent. In order to evaluate the

GSIC tradeoff function, we resort to the use of the genie ap-
proach [6], [14]. The latter feeds back the correct data estimation
to the GSIC receiver, so as to eliminate the residual interference
term in (3). By doing so, (3) is rewritten as

SNR

Since the genie receiver provides the same overall FER perfor-
mance as the original GSIC receiver [6], [14], we conclude that
these two receivers have the same minimum achievable FER
with the best outer codes, as well as the same tradeoff func-
tions. Hence, SNR SNR and

. The problem consists now in evaluating .
Consider the group outage events obtained with the genie re-
ceiver. These quantities are clearly independent of each other
[6], [14]. could then be obtained following a similar
approach to the one in Section III-B. However, we propose in
what follows another method to obtain the same result. Specifi-
cally, we evaluate the SNR exponent of each group FER or each
group tradeoff function, and then deduce the overall system per-
formance.

Let be the outage probability of the th

group. Also, let SNR denote its minimum FER and

its corresponding SNR exponent function. It can be
easily shown that for each group and for a sufficiently long
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block length, we have . Then,
similar to (8), the overall FER is bounded as [12], [13]

SNR SNR SNR

(11)
At high SNR values , the group with the worst perfor-
mance dominates both bounds. As a consequence

(12)

IV. GROUP OUTAGE PROBABILITY AND TRADEOFF

In this section, we explicitly evaluate the tradeoff functions
of GZF and GSIC. According to (10) and (12), these functions,

and , respectively, depend on the tradeoff
functions of all the groups. Using the channel statistics proper-
ties, we evaluate here the performance of each of the groups.
We first consider the case of GZF and generalize the obtained
results to the case with GSIC.

Consider the th group, and denote by the entropy func-
tion and the expectation operator. According to (2) and Def-
inition 1, we have

SNR

(13)

A similar approach to the one in [2] allows us to choose the
transmitted data to be Gaussian distributed with a covariance
matrix . (13) is then simplified to

SNR
(14)

According to Section II, and of full rank . It fol-
lows that and is also of full rank . Let

be the ordered eigenvalues of . Accordingly, (14)
is rewritten as

SNR (15)

Consider the inverse of , . The latter is and of full
rank . Let denote its ordered eigenvalues,
such that , . Using (15) and
Definition 1, the th group outage probability satisfies

SNR (16)

In Appendix A, we show that have the fol-
lowing joint probability density function (pdf):

(17)

where denotes the number of interferers with the th group.
Since we assume a GZF receiver, will be written as ,
and is given by .

According to (17), can be obtained with a similar
approach to the one in [2]. Thus, is found to connect
the points , such that

(18)
Let . Given (10) and (18) and using
the results in [2], we can conclude that
when .

In the case of the GSIC receiver, have
the same distribution as in (17), but with

Hence, connects the points such
that

(19)

The tradeoff function is thus given by (12) when
, with .

V. RATE ALLOCATION

The rate allocated to each of the groups plays obviously an
important role in the evaluation of the system-tradeoff per-
formance. We consider in what follows three rate allocations;
namely, equal-rate allocation, group-size proportional rate
allocation, and optimal-rate allocation. and
are then evaluated accordingly. Table I summarizes the various
notations used for the tradeoff functions in all of these cases.
Furthermore, (18) and (19) indicate that different partitions
will lead to different tradeoff performances. Consequently,
we optimize and with regard to the group
partitioning. Two steps of optimization are considered here.
First, the number of groups is held fixed. We denote the
tradeoff in this case by the optimized tradeoff. Second, is
varied to obtain an overall optimum tradeoff function.

In the remainder of this section, we assume a sufficiently
long block length , as mentioned in Section IV. We consider
a random partition , and denote by the group with the
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TABLE I
OVERALL TRADEOFF NOTATIONS. EXAMPLE: GZF

largest size, by the one with the second-largest size, and so
on. We have, then, .

A. Equal-Rate Allocation

Consider the GZF receiver. Assuming equal-rate allocation,
we have . (10) and (18) allow us to write, in this case

(20)

with . Clearly, the maximum achievable mul-
tiplexing rate with this allocation is , which is smaller
than .

For the optimization of over all possible
partitions with groups, we can conclude, using (20), that

is maximized when the smallest group size
is maximized. That is, when approaches the equal-size
partition and . Let denote the
optimized tradeoff in this case. Then

(21)
Now, by varying in a second step, (21) indicates that

is further maximized when . The overall
optimum tradeoff performance is thus obtained.

When GSIC is used, the group-detection order plays an
important role in evaluating the overall tradeoff performance

. In Appendix B-A, we show that
is maximized when the groups are retrieved in the decreasing
order of their sizes. (12) and (19) are, hence, rewritten as

(22)

The exact evaluation of turns out to be analyt-
ically difficult, and we will use computer simulations to do it.
However, when all the groups have the same size , the problem
is simplified, and the tradeoff function is given by

. The GSIC and GZF have equiva-
lent performances in this case. Finally, both optimization steps
of will be applied using computer simulations.

B. Size-Proportional Rate Allocation

With this algorithm, groups are allocated rates proportionally
to their size. Hence, with . Note here

that the maximum achievable multiplexing rate is , in contrast
to the equal rate-allocation algorithm.

Using (10) and (18), the overall GZF tradeoff function is sim-
plified to

(23)
The optimized tradeoff function for a given , ,
is also achieved when , and the overall optimum
performance is obtained with .

As for the GSIC receiver, it can be shown that the tradeoff
function obtained with is maximized when the groups
are retrieved in the decreasing order of their sizes. As a result

(24)

Exact evaluation of and its optimized functions
will all be obtained using computer simulations. Finally, when
all the groups have the same size, we can easily verify that the
size-proportional rate allocation achieves the same performance
as the equal-rate one with both receivers.

C. Optimal-Rate Allocation With GZF

The optimal rate-allocation algorithm aims to

maximize

subject to: (25)

Let denote the obtained tradeoff function
for the partition . Allocation in this case is performed
in slots of multiplexing rates, where only “ ” groups
are allocated rates that are not zero at the th slot. Let

denote these slots,
where will be evaluated later in this
section. Also, let the diversity gain corresponding to be
written as . The overall tradeoff function will

then connect the points for .
Since the optimal-rate allocation maximizes the overall

tradeoff performance, then both and should
be maximized for each . Consequently, is the max-
imum starting rate from which groups are active, and

is the best possible diversity achieved with

active groups, out of groups. is next
fully specified as follows.
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• Let , , and .

connects the points ,
, such that

for

(26)

for (27)

with , , and
.

• When , only are allo-
cated a nonzero rate , such that

(28)

The corresponding diversity gain to the considered mul-
tiplexing rate is given by

for

(29)
The diversity-gain expression provided in (26) is the max-

imum achievable gain, with active groups out of
groups. It is obtained according to (18) when the corresponding
multiplexing rate of all the selected groups are equal to
zero. In Appendix B-B, we show that is maxi-
mized when these selected groups are the ones with the
largest sizes, i.e., . (26) follows then imme-
diately. As for , they are derived in Ap-
pendix B-C using (26). We can easily verify that given in
(27) is indeed the best possible starting rate from which
groups are active. In fact, we have for any

. This implies that , is max-
imized when the total number of active antennas for the th slot
is maximized. That is, when are the only groups
allocated rates different than zero, and when
are the next ones.

When , (28) is derived in Appendix B-D
using the following conditions:

(30)

The overall diversity gain, given in (29), is then obtained using
(18) and (28). It can be easily verified here that this diversity gain
is maximized when are the only active groups
at the th slot. The result provided in (29) indicates that when

, GZF is equivalent to the optimal detection ap-
plied to a MIMO system with receive antennas, transmit
antennas, and equal-rate allocation.

We further optimize over all possible par-
titions with groups to obtain . According

to the provided algorithm in (26)–(29), and
are maximized when is max-

imized for any . Hence, is

achieved with the partition that
maximizes for each . That is

(31)

is then given according to (26)–(29) with
as a partition.

Finally, we further optimize with regard to
the number of groups . Results in (26)–(29) indicate that

is maximized when is decreased. Assuming
the existence of at least two groups in the system, the overall
optimum GZF tradeoff function is obtained with .
Numerical results will further confirm such a conclusion.

D. Optimal-Rate Allocation With GSIC

As in the case of GZF, the tradeoff function with op-
timal-rate allocation for the GSIC receiver connects the points

for . In this case, not only
the groups being active for each rate are important to allow
the evaluation of the system-tradeoff performance, but also
their detection order. At each multiplexing rate , a different
set of groups with different detection order might be deployed
so as to maximize the tradeoff function. Let denote the
th-detected group, being randomly chosen for a given value of
. Then, when , (19) is rewritten as

(32)

Accordingly, we have . This
implies that is maximized only when
is maximized, and that is maxi-

mized only when for any . In
addition, we have . It
follows that is further maximized when

are retrieved in the decreasing order of their
sizes. is obtained. A similar analysis for

and provides the same conclusions. As a result,
the tradeoff function with optimal-rate allocation for GSIC
shall connect the points ,
such that

(33)

and where are obtained following
a similar approach as the one in Appendix B-C for GZF.
Moreover, when , only are
allocated a nonzero rate , such that

(34)

Since solving (33) and (34) turns out to be analytically difficult,
we resort to computer simulations to evaluate , as
well as its optimized functions, according to the group partitions
and the number of groups.
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Fig. 3. Optimization of the GSIC tradeoff with size-proportional rate
allocation. N = K = 8 and G = 3.

Finally, when all the groups have the same size , the
tradeoff function is simplified to a function that connects the
points , such that

(35)

(36)

with , and
.

VI. SIMULATION RESULTS

In this section, we evaluate the diversity-multiplexing
tradeoff of GZF, as well as GSIC with the three proposed
rate-allocation algorithms. As described in Section V, we first
evaluate the tradeoff with these allocations for a given partition

. We then optimize the obtained tradeoff results in two
steps. The first step will be over all possible partitions for a
given number of groups . The second step will be over all pos-
sible partitions and numbers of groups. We assume throughout
this section that and . We
shall denote by an ordered group partition

, where refers to the size of its th-detected group.
Finally, we assume that the coding block length or

.

A. Equal-Rate and Size-Proportional Rate Allocation

We will compare in this section the performance of the equal
and the size-proportional allocation algorithms obtained with a
random partition, as well as after optimization with regards to
the group partition. We begin by considering the case of GSIC
and illustrate how its optimized tradeoff is obtained. Also, as-
sume the size-proportional allocation with . In Fig. 3, we
plot the performance of all possible partitions, as indicated in

TABLE II
GROUP PARTITIONING, K = 8

Fig. 4. Equal rate and size-proportional rate allocation performance with GZF
and GSIC. N = K = 8 and G = 3.

Table II. is obtained by selecting, for each value
of , the best possible achieved tradeoff performance. Fig. 3
indicates the selected partition for each to illustrate this op-
timization process. For example, we observe that the {4,2,2}
partition optimizes the tradeoff when , followed by
{5,2,1} and {6,1,1}. Clearly, different partitions are selected for
different values of . This is because the overall GSIC tradeoff
function is not monotonously varying with regards to the group
sizes, as shown in Fig. 3.

A similar process can be applied to the GZF receiver to obtain
. The obtained numerical results which we do not

include in Fig. 3 indicate that can be obtained
with the {4,2,2} partition or the {3,3,2} one. These partitions
indeed satisfy and confirm conclusions
derived in Section V-B. We shall note here that the optimized
performance of GSIC is not only achieved with different par-
titions for different values of , such as is the case with GZF,
but also these partitions do not necessarily satisfy the condition

.
In Fig. 4, we assess the performance of the {4,3,1} partition,

as well as the optimized one, when . First, consider the
case of the {4,3,1} partition. Results indicate that the size-pro-
portional scheme outperforms the equal-rate one for both re-
ceivers. A maximum rate sym/s (that is,
sym/s) is achieved with this allocation, versus only 3 sym/s with
the equal-rate one. As for the diversity gains, although both al-
locations achieve the same maximum diversity, the size-propor-
tional scheme provides a diversity gain on the order of one for
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Fig. 5. Effect of G on the optimized tradeoff with size-proportional rate for
GSIC and GZF. N = K = 8.

any . Finally, GSIC is also observed to outperform GZF
with both allocations.

Next, we compare in Fig. 4 the performance of the {4,3,1}
partition with the optimized one. Significant tradeoff gains are
demonstrated with the optimized performance. For example,
an enhancement by 3 sym/s in the maximum multiplexing rate
with the equal-rate allocation for both receivers is observed, as
well as significant diversity gains. However, in the case of the
size-proportional allocation with GSIC, comparison results of
the optimized performance with the {4,3,1} partition indicate
that only a little performance enhancement is obtained when

sym/s. Further, we observe in the case of GSIC that the
optimized tradeoff with equal-rate allocation approaches the one
with size proportional for all values of . Hence, with GSIC,
equal-rate allocation can be used, instead of the size-propor-
tional one, to provide similar levels of optimized performance
with lower complexity levels.

In Fig. 5, we investigate the effect of the number of groups
on the optimized tradeoff with the proportional-rate alloca-

tion. To do so, we consider the cases of 2, 3, 4, and 8. Re-
sults indicate that with GSIC, the tradeoff is strictly maximized
when is minimized. indeed presents the best tradeoff
among all possible values of , approaching the optimal per-
formance [2] for all values of . When , all groups have
the same size, 1. The GSIC receiver in this case is then equiva-
lent to BLAST [6], and our obtained tradeoff confirms the one
found in [2]. Hence, when group detection is used with ,
GSIC strictly outperforms BLAST, and approaches the optimal
performance [2] with much less complexity, thus demonstrating
a major advantage of group detection.

As for the GZF receiver, diversity degradations are observed
with 2, 3, and 4, compared with GSIC. Fig. 5 also indicates
that the same optimized tradeoff is obtained with with
GZF. This is explained by the fact that both partitions have the
same as well as . We note here that the same con-
clusion is not expected with the equal rate-allocation scheme.

Fig. 6. Tradeoff performance of GSIC and GZF with optimum-rate allocation.
N = K = 8 and G = 4.

Finally, when , GSIC and GZF have equivalent per-
formances. This further confirms the results obtained in Sec-
tion V-B.

B. Optimal-Rate Allocation

We consider the performance of GZF and GSIC with op-
timal-rate allocation. To do so, we first assume that and
consider the partitions {3,2,2,1} and {2,2,2,2}. Fig. 6 presents
the obtained tradeoffs, as well as the performance with the
size-proportional scheme with {2,2,2,2} for comparison. When
GZF is deployed, the tradeoff curve with the optimal-alloca-
tion scheme is obtained by evaluating the diversity for each
, according to the results in Section V-C. As for GSIC, we

compute for , according to
Section V-D, and approximate the tradeoff by a linear function
connecting these points. To confirm the optimality of these
points, we have evaluated for each point the tradeoff of each
possible permutation of out of groups, and found that the
results confirm our claims made in Section V-D.

A close observation of Fig. 6 indicates that the optimum-rate
allocation significantly outperforms the size-proportional one
for low values of . However, when sym/s, both schemes
perform similarly to GZF. As for the comparison of GSIC
with GZF, we first note that GSIC presents a better tradeoff
than GZF with the equal group-size partition {2,2,2,2}. This
is explained by the successive reduction of the number of in-
terferers for each group with GSIC. Surprisingly, performance
with {3,2,2,1} does not provide the same conclusions. As
indicated in the figure, GSIC does not outperform GZF when

. This is explained by
the fact that GSIC is performed with two active groups in that
range of multiplexing rate, while GZF is still performed with
only one group.

Next, we illustrate the optimization process with GZF
when . The tradeoff with optimal-rate allocation for all
possible partitions is evaluated and shown in Fig. 7. Clearly,
{5,1,1,1} outperforms all other partitions for all ranges of .
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Fig. 7. Optimization of the GZF tradeoff with optimum-rate allocation. N =

K = 8 and G = 4.

Fig. 8. Optimized tradeoff performance of GSIC and GZF with optimum-rate
allocation. N = K = 8 and G = 4 and 5.

The optimized-tradeoff function with optimal-rate allocation
is then obtained with {5,1,1,1}. Such a partition is indeed

, as found in Section V-C. As for the GSIC receiver,
a similar process is performed, and maximization over all
possible for each partition provides a
linearly approximated optimized tradeoff function. Fig. 8 puts
forward an example of results when and . First,
we note that in contrast to the equal-rate and proportional-rate
schemes (see Fig. 7), GZF and GSIC perform very closely
to each other for low values of . When , GZF even
outperforms the GSIC receiver for . The fact that
the number of active groups with GSIC is larger than the one
with GZF explains such results. At high values of ,
sym/s, GSIC presents a better tradeoff than GZF clearly for
each . This implies that GZF should be
used instead of GSIC for low values of , since it provides the
same level of performance with lower levels of computational

Fig. 9. Effect of G on the optimized tradeoff with optimal-rate allocation for
GZF. N = K = 8 and G = 2; 3; . . . ; 8.

complexity. We have also compared the optimized performance
of the optimal tradeoff with the size-proportional scheme for
different values of , and found that they perform very closely
to each other at high multiplexing rates. Hence, the size-propor-
tional rate-allocation scheme with GSIC might be deployed at
high values of to provide lower complexity levels. Results in
this case are not shown in this paper, due to space limitations.

Finally, we investigate the effect of the number of groups on
the optimized tradeoff of GZF with the optimal rate-allocation
scheme. Fig. 9 provides the obtained results with GZF for

. The optimal tradeoff with no group detection [2] is also
shown for comparison. As in the case of the equal-rate and size-
proportional rate-allocation schemes, the optimized tradeoff is
enhanced when is decreased. Indeed, when , GZF
significantly approaches the optimal tradeoff, while
(V-BLAST) presents the worst performance, as found in Sec-
tion V-C. As a result, we conclude that group detection can sig-
nificantly bridge the gap between V-BLAST [6] and the optimal
scheme [2], while offering low levels of complexity.

VII. CONCLUSIONS

In this paper, we considered a MIMO system where group
detection is used at the receiver. For each of the groups, we
evaluated its diversity-multiplexing tradeoff with both GZF and
GSIC. We provided an expression of the overall system-outage
probability as a function of the group outage ones, and showed
that the overall system tradeoff is given by the worst group
tradeoff performance. Several rate-allocation schemes have
been proposed; namely, the equal rate, the size-proportional
rate, and the optimal rate-allocation schemes. A closed-form
expression of the tradeoff function with the latter scheme
for the GZF receiver has been derived. Simulation results
demonstrated that the size-proportional scheme outperforms
the equal-rate one, and approaches the optimal one for high
values of multiplexing rates. Moreover, when the tradeoff with
optimal-rate allocation is optimized over all possible partitions
for a given , GZF performs close to the GSIC receiver for
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a wide range of low values of , and sometimes outperforms
it. As a result, GZF can prove to be an alternative receiver to
GSIC, providing similar levels of tradeoffs with much lower
complexity. Finally, both GSIC and GZF have been shown to
efficiently bridge the gap between the optimal performance [2]
and BLAST, while decreasing .

APPENDIX A
JOINT DISTRIBUTION OF EIGENVALUES

Let us write as , where denotes the set
of groups interfering with the th group. According to [15], we
have

where is a projection matrix, such that

(A.1)

Since the columns of are independent of each other, then
so are the columns of and . According to (A.1), is
expressed as a function of only. Hence, is independent
of . Moreover, has unit eigenvalues and zero
eigenvalues [14]–[15]. Let be diagonalized [16] such that

(A.2)

where is a unitary matrix, and
, where are the ordered eigen-

values of . We can then write the following:

(A.3)

where . Next, let be written as
. It follows that:

(A.4)

Since is a unitary matrix, so is . Consequently, has
the same distribution as , and , conditioned
on , are complex Gaussian-distributed -length vectors
with zero mean and covariance . Hence, conditioned on

, is Wishart distributed with
degrees of freedom, denoted by [17].
However, since are either “1” or “0,” and
are independent of , is and has

eigenvalues. Let be these eigenvalues in
the ascending order. According to [17], are
distributed as in (17). Finally, we note that when real constella-
tions are used, the results are changed, according to [15].

APPENDIX B

A. Optimal Ordering for Equal-Rate Allocation

Without loss of generality, consider the two orders
and ,

where the th and th positions, with , are inter-
changed. Consider the th retrieved group with both or-
ders. Denote by and the sizes of its interferers,
and by and its corresponding tradeoff, re-
spectively. According to (19), we have and

. How-
ever, when , and

. Since , and

, implying that . It follows that
and that the first ordering

outperforms the second one. Therefore, we conclude that the
tradeoff function of GSIC with equal-rate control is maximized
when the groups are retrieved in the decreasing order of their
size.

B. Derivation of for GZF With Optimal-Rate
Control

Consider the partition , and let
be a random subset of

consisting of groups, such that
. Let denote the tradeoff of each of these

groups. According to (18), we have

with .
Assuming that are already chosen,

is maximized when is max-

imized. Since ,

and .
then follows immediately.

C. Derivation of for GZF With Optimal-Rate Control

Let be the multiplexing rate allocated
to when , then .
We evaluate in what follows . Consider

, then satisfies

(B.2)
Let . According to the notations in (12), (B.2)
is equivalent to or

(B.3)

Equation (B.3) admits , which is
always positive, since . (B.3) has, then, two solutions
given by . Since , we have

. Hence, and
.

D. Derivation of for GZF With
Optimal-Rate Control

Assume that the system consists of active groups only;
namely, , and let . We derive in
what follows , the multiplexing rate
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allocated to each of these groups, such that
and

(B.4)

Consider . According to (12), (B.4) is equivalent
to

(B.5)

Let . Then (B.5) is rewritten as

(B.6)

It is easy to see that (B.6) has as the only possible
solution, since . It follows that

. Since , (26) and (27) are obtained.

E. Optimality of When With
GZF

We shall prove here that when , the diversity
achieved with is larger than the one achieved
by any other partition of groups out of . Without loss
of generality, we consider the set with

. Let and denote the diversity
achieved with both partitions, respectively. Then, since (B.4) is
satisfied with both partitions, it follows that

and are provided by (27) such that

By comparing and , we find that
, which is strictly positive for .

We also obtain that . It follows that
when . When , we have

, and .
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