Lecture 5. Multiple Access

- Overview of Multiple Access
- Centralized MAC
- Distributed MAC
- Case Study: WiFi
What is Multiple Access?

• Broadcast channel
• How to share the channel? Multiple Access
Ideal MAC

- Sum rate (system throughput) \(\sum_{k=1}^{K} R_k \)
 - High throughput
- Rate of each single user \(R_k \)
 - Fairness
- Complexity
 - Low complexity
-

- Resource Allocation
 - A central controller is required to perform the optimal resource allocation.
 - Given the resources (time, frequency, antennas, power, ...), how to maximize the system objective (sum rate, average user rate, ...)?

- Protocol Design
 - Minimum system control, fully distributed
 - What is the simplest way to determine how nodes share the channel?
Centralized MAC vs. Distributed MAC

<table>
<thead>
<tr>
<th>Centralized MAC</th>
<th>Distributed MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Resource allocation</td>
<td>• Resource competition</td>
</tr>
<tr>
<td>• Joint processing of users’ information</td>
<td>• No joint transmission/detection</td>
</tr>
<tr>
<td></td>
<td>(A “collision” occurs if more than one user transmits. None of them can succeed.)</td>
</tr>
<tr>
<td>• Multiuser information theory</td>
<td>• Random access theory</td>
</tr>
<tr>
<td>– Perfect system guidance and performance evaluation</td>
<td>– Simple, scalable</td>
</tr>
<tr>
<td>– Bursty arrival is not taken into consideration</td>
<td>– No unified framework</td>
</tr>
<tr>
<td>• CDMA, OFDMA and Scheduling</td>
<td>• Aloha and CSMA</td>
</tr>
</tbody>
</table>

Notes:
- **Centralized MAC**
 - Joint processing of users’ information
 - Multiuser information theory
 - Perfect system guidance and performance evaluation
 - Bursty arrival is not taken into consideration
 - CDMA, OFDMA and Scheduling

- **Distributed MAC**
 - Resource competition
 - No joint transmission/detection
 - Random access theory
 - Simple, scalable
 - No unified framework
Centralized MAC I: MAC of Wideband Cellular Networks

- CDMA
- OFDMA
- Scheduling
A little bit of History

- 1st Generation: AMPS, TACS, NMT
- 2nd Generation: GSM, IS-136, IS-95
 - 2.5G: GPRS, EDGE
- 3rd Generation: WCDMA, CDMA2000, TD-SCDMA
- 4th Generation: WiMAX, LTE, LTE Advanced
Cellular Networks

- Intra-cell: How to allocate resources to different users inside the cell?
 - FDMA, TDMA, CDMA, OFDMA, SDMA, ...

- Inter-cell: How to overcome the interference outside the cell?
 - Avoid, Average out, Cancel

- How to manage cells?
 - Cell planning, Cell cooperation

- Voice and data service
 - Provide distinct QoS

- Expensive spectrum
 - Improve spectral efficiency

- Large-scale network
 - Decompose the network
Uplink vs. Downlink

- **Synchronization**
 - Easier in downlink because all the signals originate from the same transmitter (BS)

- **Power control**
 - More crucial for uplink because the receive signals experience distinct channels

- **Channel measurement**
 - Easier in downlink because BS can send a strong pilot signal

- **Data rate requirement**
 - Higher in downlink (for data service)

- **Duplexing**: How to allocate resources between uplink and downlink
 - Time Division Duplex (TDD) or Frequency Division Duplex (FDD)
Narrowband Cellular Network (e.g. GSM)

- Intra-cell: TDMA
 - Users are allocated different time slots.

- Inter-cell: Avoid the interference
 - Frequency reuse factor: 1/7

- Complicated cell planning

- Hard handoff

✓ No intra- or inter-cell interference
✓ Inefficient use of resources
Wideband Cellular Network

- Universal frequency reuse
 - Share the bandwidth
- Cell cooperation
 - Soft handoff
- Flexible resource allocation
 - Allocate on-demand
 - Exploit the channel condition

Examples:

- CDMA (e.g. IS-95, WCDMA, CDMA2000, TD-SCDMA)
- OFDMA (e.g. Flash-OFDM, WiMAX, LTE)
- Channel-aware Scheduling (e.g. CDMA 1xEVDO, HSDPA)
Wideband Cellular (1): CDMA

- Intra-cell: CDMA
 - Users are allocated different PN sequences.

- Inter-cell: average out the interference
 - Fluctuations of aggregate interference in adjacent cells are reduced when there are many users in the network.

- Decompose the network problem into a set of independent point-to-point links, while each link sees both interference (regardless of intra-cell or inter-cell) and background thermal noise.
 - Simple transceiver design
 - Soft capacity
CDMA Uplink vs. Downlink

<table>
<thead>
<tr>
<th>Uplink (users-BS)</th>
<th>Downlink (BS-users)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-far effect (power control is crucial)</td>
<td>No near-far problem</td>
</tr>
<tr>
<td>Intra-cell interference (chip-level synchronization is required to keep users orthogonal)</td>
<td>Much smaller intra-cell interference</td>
</tr>
<tr>
<td>Interference averaging</td>
<td>Less interference averaging due to few base stations</td>
</tr>
<tr>
<td>Non-coherent demodulation</td>
<td>Coherent demodulation (strong pilot)</td>
</tr>
<tr>
<td>Multiuser detector is affordable</td>
<td>Rake receiver</td>
</tr>
</tbody>
</table>
Wideband Cellular (2): OFDMA

• Intra-cell: OFDMA
 - Users are allocated different subcarriers using OFDM.
 - No intra-cell interference.

• Inter-cell: average out the interference
 - Hopping

✓ Flexible resource allocation
 ✓ Abundant frequency and time units
 ✓ Various allocation strategies
Hopping Pattern

Resources: 5 by 5 time-frequency units. To be allocated to 5 users.

- Users should be spread out.
- Fair allocation

No interference averaging. Similar to a narrowband system.

Each user sees interference from many users instead of a single strong user.
CDMA vs. OFDMA

<table>
<thead>
<tr>
<th>CDMA</th>
<th>OFDMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Universal frequency reuse</td>
<td>• Universal frequency reuse</td>
</tr>
<tr>
<td>• Inter-cell interference averaged</td>
<td>• Inter-cell interference averaged</td>
</tr>
<tr>
<td>• Significant intra-cell interference</td>
<td>• No intra-cell interference</td>
</tr>
</tbody>
</table>
| • Tight power control
 - “expensive” for users who only transmit infrequently
 - incur delay | • Timing and frequency synchronization |
| • Fewer degrees of freedom | • Adaptive resource allocation |
| • Medium PAPR
 (Peak-to-Average Power Ratio) | • High PAPR |
Wideband Cellular (3): Channel-aware Scheduling

- Intra-cell: channel-aware scheduling
 - Users are allocated different time slots according to their channel conditions: select the best user at each time slot.
 - No intra-cell interference.

- Inter-cell: opportunistically avoid the interference
CDMA vs. Channel-aware Scheduling

<table>
<thead>
<tr>
<th>CDMA</th>
<th>Channel-aware Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Average out channel fluctuations</td>
<td>• Exploit channel fluctuations</td>
</tr>
<tr>
<td>• Track slow fluctuations</td>
<td>• Track as many fluctuations as possible</td>
</tr>
<tr>
<td>• Power control</td>
<td>• Rate control</td>
</tr>
<tr>
<td>• Average out inter-cell interference</td>
<td>• Opportunistically avoid inter-cell interference</td>
</tr>
<tr>
<td>• Support tight delay</td>
<td>• Need some laxity</td>
</tr>
</tbody>
</table>
More about Channel-aware Scheduling

- Fairness
 - Hit the "peak"

- Channel measurement and feedback
 - Fast channel tracking

- Channel fluctuations
 - Too fast
 - Too slow

"Opportunistic Beamforming"
Introducing randomness
Summary I: MAC of Wideband Cellular Networks

<table>
<thead>
<tr>
<th></th>
<th>CDMA</th>
<th>OFDMA</th>
<th>Channel-aware Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-cell Resources</td>
<td>PN Sequences</td>
<td>Subcarriers & Time slots</td>
<td>Time slots</td>
</tr>
<tr>
<td>Intra-cell Interference</td>
<td>Significant</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Control at BS</td>
<td>Tight Power Control</td>
<td>Timing & Frequency Synchronization</td>
<td>Rate Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Track as many fluctuations as possible</td>
</tr>
<tr>
<td>Delay Requirement</td>
<td>Can Support Tight Delay</td>
<td>Need some laxity</td>
<td></td>
</tr>
</tbody>
</table>

- **CDMA** uses PN Sequences as its resource allocation mechanism.
- **OFDMA** uses Subcarriers & Time slots.
- **Channel-aware Scheduling** involves utilizing Time slots.
- **Intra-cell Interference** for CDMA is significant, while for OFDMA it is none.
- **Control at BS** for CDMA involves tight power control, while for OFDMA it involves tight frequency synchronization.
- **Delay Requirement** for CDMA can support tight delay, while for OFDMA it needs some laxity.
Centralized MAC II: Multiuser Capacity

- Multiuser Capacity of AWGN Channels
- Multiuser Capacity of Fading Channels
Uplink vs. Downlink Channel Model

- **user→BS**: uplink
 \[y[m] = \sum_{k=1}^{K} h_k[m] x_k[m] + z[m] \]

- **BS→user**: downlink
 \[y_k[m] = h_k[m] x[m] + z_k[m], \quad k = 1, \ldots, K \]
Multiuser Capacity of AWGN Channels

- Uplink Capacity
- Downlink Capacity
Capacity of Uplink AWGN Channel

\[y = h_1 x_1 + h_2 x_2 + z \]

\[R_1 \leq \log_2 \left(1 + P_1 |h_1|^2 / N_0 \right) \quad R_2 \leq \log_2 \left(1 + P_2 |h_2|^2 / N_0 \right) \]

\[R_1 + R_2 \leq \log_2 \left(1 + (P_1 |h_1|^2 + P_2 |h_2|^2) / N_0 \right) \]

- **Capacity Region**: set of pairs \((R_1, R_2)\) at which users 1 and 2 can reliably and simultaneously communicate.

- **Sum Capacity**: the maximum total rate

\[
C_{\text{sum}} = \max_{(R_1, R_2) \in C} R_1 + R_2 \\
= \log_2 \left(1 + \frac{P_1 |h_1|^2 + P_2 |h_2|^2}{N_0} \right)
\]
To Achieve Uplink Capacity I: Non-orthogonal Access

- Always treat the other user’s signal as noise during detection
 \[R_1 = \log_2 \left(1 + P_1 |h_1|^2 / (P_2 |h_2|^2 + N_0) \right) \]
 \[R_2 = \log_2 \left(1 + P_2 |h_2|^2 / (P_1 |h_1|^2 + N_0) \right) \]

- Successive Interference Cancellation (SIC)
 ✓ Decode the data of user 2, treating user 1’s signal as Gaussian noise;
 ✓ Reconstruct user 2’s signal and subtract it from the aggregate received signal. Decode the data of user 1.

\[R_1 = \log_2 \left(1 + \frac{P_1 |h_1|^2}{N_0} \right) \]
\[R_2 = \log_2 \left(1 + \frac{P_2 |h_2|^2}{P_1 |h_1|^2 + N_0} \right) \]
To Achieve Uplink Capacity II: Orthogonal Access

- Suppose a fraction of α of the bandwidth is allocated to user 1 and the rest is allocated to user 2.

\[
R_1 = \alpha \log_2 \left(1 + \frac{P_1 |h_1|^2}{\alpha N_0} \right) \\
R_2 = (1 - \alpha) \log_2 \left(1 + \frac{P_2 |h_2|^2}{(1 - \alpha)N_0} \right)
\]

Optimal when

\[
\alpha = \frac{P_1 |h_1|^2}{P_1 |h_1|^2 + P_2 |h_2|^2}
\]
Capacity of Downlink AWGN Channel

\[y_1 = h_1 x + z_1 \quad y_2 = h_2 x + z_2 \]

\[R_k \leq \log_2 (1 + P |h_k|^2 / N_0), \quad k = 1, 2. \]

Suppose \(|h_1| < |h_2|\).

- User 2 has a better channel than user 1.
- User 2 can decode any data that user 1 can successfully decode.

- Superposition coding achieves the downlink AWGN capacity.
- Orthogonal division is strictly inferior to superposition coding.
To Achieve Downlink Capacity

- **Superposition Coding**

 - The transmit signal is a linear superposition of the signals of two users.

 Total transmission power: \(P = P_1 + P_2 \)

 - User 1: Treat user 2’s signal as noise
 \[
 R_1 = \log_2 \left(1 + \frac{P_1 |h_1|^2}{P_2 |h_1|^2 + N_0} \right)
 \]

 - User 2: Perform SIC
 \[
 R_2 = \log_2 \left(1 + \frac{P_2 |h_2|^2}{N_0} \right)
 \]

- **Orthogonal Division**

 - A fraction of \(\alpha \) of the bandwidth is allocated to user 1 and the rest is allocated to user 2. \(P = P_1 + P_2 \)

 \[
 R_1 = \alpha \log_2 \left(1 + \frac{P_1 |h_1|^2}{\alpha N_0} \right) \\
 R_2 = (1 - \alpha) \log_2 \left(1 + \frac{P_2 |h_2|^2}{(1 - \alpha)N_0} \right)
 \]
K-User Capacity

- **Capacity Region**

 Uplink

 \[R_k \leq \log_2 \left(1 + \frac{P_k |h_k|^2}{N_0} \right), \quad k = 1, \ldots, K. \]

 \[\sum_{k \in S} R_k \leq \log_2 \left(1 + \frac{\sum_{k \in S} P_k |h_k|^2}{N_0} \right), \quad S \subset \{1, \ldots, K\} \]

 ✔ **SIC**

 \[R_i \leq \log_2 \left(1 + \frac{P_1 |h_i|^2}{\sum_{k=2}^K P_k |h_k|^2 + N_0} \right), \quad \text{for } i = 1, \ldots, K\]

 \[R_K \leq \log_2 \left(1 + \frac{P_K |h_K|^2}{N_0} \right). \]

 ✔ **Orthogonal Access**

 \[R_k \leq \alpha_k \log_2 \left(1 + \frac{P_k |h_k|^2}{\alpha_k N_0} \right), \quad \sum_{k=1}^K \alpha_k = 1. \]

 Downlink

 \[|h_1|^2 \leq |h_2|^2 \leq \cdots \leq |h_K|^2 \]

 \[R_1 \leq \log_2 \left(1 + \frac{P_1 |h_1|^2}{|h_1|^2 \sum_{k=2}^K P_k + N_0} \right), \]

 \[\cdots \]

 \[R_K \leq \log_2 \left(1 + \frac{P_K |h_K|^2}{N_0} \right), \quad \sum_{k=1}^K P_k = P. \]

 ✔ **Superposition Coding**

 \[R_i \leq \log_2 \left(1 + \frac{P_1 |h_i|^2}{|h_i|^2 \sum_{k=2}^K P_k + N_0} \right), \]

 \[\cdots \]

 \[R_K \leq \log_2 \left(1 + \frac{P_K |h_K|^2}{N_0} \right), \quad \sum_{k=1}^K P_k = P. \]

 ✔ **Orthogonal Division**

 \[R_k \leq \alpha_k \log_2 \left(1 + \frac{P_k |h_k|^2}{\alpha_k N_0} \right), \quad \sum_{k=1}^K P_k = P, \sum_{k=1}^K \alpha_k = 1. \]
K-User Capacity

- **Sum Capacity**
 \[C_{\text{sum}} = \max_{R_1, \ldots, R_K} \sum_{k=1}^{K} R_k \]

Uplink

\[C_U^{\text{sum}} = \log_2 \left(1 + \sum_{k=1}^{K} \frac{P_k |h_k|^2}{N_0} \right) \]

To achieve the sum capacity:

- **SIC**
- **Orthogonal Access with**

\[\alpha_k = \frac{P_k |h_k|^2}{\sum_{j=1}^{K} P_j |h_j|^2}, \quad k = 1, \ldots, K. \]

Downlink

With \(|h_1|^2 \leq |h_2|^2 \leq \cdots \leq |h_K|^2|\):

\[C_D^{\text{sum}} = \log_2 \left(1 + \frac{P |h_K|^2}{N_0} \right) \]

To achieve the sum capacity:

Allocate all the transmission power to the strongest user!
Multiuser Capacity of Fading Channels

- Ergodic Uplink Sum Capacity without CSIT
- Ergodic Uplink Sum Capacity with CSIT
Ergodic Uplink Sum Capacity of without CSIT

- Single-user: \[C = \mathbb{E}_h [\log_2 (1 + |h|^2 \frac{P}{N_0})] \]

- K-user:
 \[
 C_{sum} = \mathbb{E}_h \left[\log_2 \left(1 + \sum_{k=1}^{K} \frac{|h_k|^2 P_k}{N_0} \right) \right]
 \leq \log_2 \left(1 + \sum_{k=1}^{K} \frac{\mathbb{E}_h |h_k|^2 P_k}{N_0} \right)
 = \log_2 \left(1 + \frac{\sum_{k=1}^{K} P_k}{N_0} \right)
 \]

Fading always hurts if no CSI is available at the transmitter side!
Ergodic Uplink Sum Capacity with CSIT

- Single-user:

\[
\max_{P_1, \ldots, P_L} \frac{1}{L} \sum_{l=1}^{L} \log_2 \left(1 + \frac{P_l |h_l|^2}{N_0} \right)
\]

Subject to: \[\frac{1}{L} \sum_{l=1}^{L} P_l = P. \]

\[P_l^{optimal} = \left(\mu - \frac{N_0}{|h_l|^2} \right)^+ \]

Waterfilling power allocation

- \(K\)-user:

\[
\max_{P_{k,l}: k=1, \ldots, K, l=1, \ldots, L} \frac{1}{L} \sum_{l=1}^{L} \log_2 \left(1 + \frac{\sum_{k=1}^{K} P_{k,l} |h_{k,l}|^2}{N_0} \right)
\]

Subject to: \[\frac{1}{L} \sum_{l=1}^{L} P_{k,l} = P, \quad k = 1, \ldots, K. \]

\[P_{k,l}^{optimal} = \begin{cases}
\left(\mu - \frac{N_0}{|h_{k,l}|^2} \right)^+ & \text{if } |h_{k,l}| = \max_{i=1,\ldots,K} |h_{i,l}| \\
0 & \text{otherwise}
\end{cases} \]
Ergodic Uplink Sum Capacity with CSIT

- Single-user:
 \[C = E_h \left[\log_2 \left(1 + \frac{P^*(h) |h|^2}{N_0} \right) \right] \]

 \[P^*(h) = \left(\mu - \frac{N_0}{|h|^2} \right)^+ \quad \text{where } \mu \text{ satisfies } E_h[P^*(h)] = P \]

- K-user:
 \[C_{sum} = E_h \left[\log_2 \left(1 + \frac{P_k^*(h) |h_k|^2}{N_0} \right) \right] \quad h = [h_1, h_2, ..., h_K] \]

 \[P_k^*(h) = \begin{cases} \left(\mu - \frac{N_0}{|h_k|^2} \right)^+ & \text{if } |h_k| = \max_{i=1,...,K} |h_i| \\ 0 & \text{otherwise} \end{cases} \]

 where \(\mu \) satisfies \(\sum_{k=1}^K E_h[P_k^*(h)] = KP \)

Select the user with the best channel condition!
Multiuser Diversity:

The more users, the higher capacity benefits!

Multiuser Diversity: when there are many users that fade independently, at any time there is a high probability that one of the users will have a strong channel.
Summary II: Multiuser Capacity

- **AWGN channel**
 - To achieve uplink capacity: SIC
 - To achieve downlink capacity: superposition coding

- **Fading channel**
 - Without CSIT: always inferior to AWGN
 - With CSIT: better than AWGN with optimal power allocation
Distributed MAC

- Aloha
- CSMA
Random Access

• Each node determines whether to access the channel independently.

• Collision
 – The receiver cannot properly detect the signal if more than one node transmit simultaneously.

• Resolving collisions: Backoff
 – Retransmit with a certain probability; or
 – Choose a random value and countdown. Retransmit when the counter is zero.
• **Slotted Aloha**

 – Transmit if there is a new packet;

 – Backoff if there is a collision:

 • Retransmit with a constant probability q; or

 • Choose a value from $\{0, 1, \ldots, \lfloor 1/q \rfloor\}$ and count down. Retransmit when the counter is zero.
Network Throughput of Slotted ALOHA

- **Network Throughput**: The percentage of time that the network produces an effective output.

 - What is the maximum network throughput of slotted Aloha?

 - n: the number of nodes
 - G: the attempt rate

 - G/n is the attempt rate per node, which is also the probability that a node has an attempt for given time.

 - The probability of successful transmission p is the probability that there is only one attempt among n nodes for given time.

 - The network has an effective output if there is a successful transmission.

 Network throughput $S = p \approx Ge^{-G}$

The maximum network throughput of slotted Aloha is e^{-1}, achieved when $G=1$.
Random Access II: Carrier Sense Multiple Access (CSMA)

CSMA: listen before transmit

- If channel sensed idle, transmit entire frame
- If channel sensed busy, defer transmission

- Can collisions be completely avoided in this way? No.
- What is the maximum network throughput? 1.
More about CSMA

- The network throughput of CSMA increases as the propagation delay a decreases.
 - CSMA has a much higher throughput than Aloha if a is small enough.

- **CSMA/CD (Collision Detection) vs. CSMA/CA (Collision Avoidance)**
 - The collision can be detected only if the node is full-duplex (i.e., be able to receive signals via transmission)

Ethernet: CSMA/CD + Binary Exponential Backoff

WiFi: CSMA/CA + Binary Exponential Backoff
Summary III: Distributed MAC

• No central controller
• Resource competition

• Aloha: transmit if there is a request, back off if a collision occurs
 - Maximum network throughput e^{-1}

• CSMA: Listen before transmit
 - Reduce the propagation delay a to improve the network throughput.
 - The maximum network throughput approaches 1 as a goes to zero.
Case Study: WiFi
Wireless Networks

- **WPAN**
 - IEEE 802.15.4
 - IEEE 802.15.3
- **WLAN**
 - IEEE 802.11 b
 - IEEE 802.11 a/g
 - IEEE 802.11 n
- **WWAN**
 - 3G
 - 3.5G
 - 4G
 - LTE
 - LTE Advanced

Data rate:
- 1 Gbps
- 100 Mbps
- 10 Mbps
- 1 Mbps

Coverage:
- Room: 1m
- Building: 10m
- Community: 100m
- Kms
WiFi and IEEE 802.11

• WiFi
 - a class of WLAN devices based on the IEEE 802.11 standards.

• IEEE 802.11
 - a set of standards carrying out WLAN computer communication in the 2.4, 3.6 and 5 GHz frequency bands. They are implemented by the IEEE LAN/MAN Standards Committee (IEEE 802).
IEEE 802.11 Standards

- **802.11a**
 - 5 GHz
 - up to 54 Mbps
 - OFDM in physical layer

- **802.11g**
 - 2.4 GHz
 - up to 54 Mbps
 - OFDM in physical layer

- **802.11b**
 - 2.4 GHz unlicensed spectrum
 - up to 11 Mbps
 - DSSS in physical layer

- **802.11n**
 - 2.4 GHz
 - up to 200 Mbps
 - OFDM, Multiple antennas (4)

- **802.11ac**
 - 5 GHz
 - up to 900 Mbps
 - OFDM, Multiple antennas (8)

- all use CSMA/CA for multiple access
- all have access-point-based and ad-hoc network versions
LAN Architecture

- **BSS 1**
 - AP
 - hub, switch or router

- **BSS 2**
 - AP

AP: Access Point

BSS: Basic Service Set
Channels and Association

- **802.11b**: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!

- **Wireless Station**: must *associate* with an AP
 - scans channels, listening for *beacon frames* containing AP’s name (SSID) and MAC address
 - selects AP to associate with
 - typically run DHCP to get IP address in AP’s subnet
MAC Protocol: CSMA/CA + Binary Exponential Backoff

Transmitter (Wireless Station)
if sense channel idle (idle for a period of time equal to DIFS), then
 transmit the entire frame.
* else, choose a random backoff value and count down whenever the
 channel is sensed idle. Transmit the entire frame when the
 counter reaches zero.

Receiver (Access Point)
- if frame received OK, then return ACK

Transmitter (Wireless Station)
if ACK, then repeat step * if it has another frame to transmit.
else, choose a random backoff value from (0, w-1), w is initialized at
 CW_{min} and doubled after each unsuccessful transmission. Count
 down whenever the channel is sensed idle. Transmit the entire
 frame when the counter reaches zero.
Hidden Terminal Problem

- Node A and AP hear each other
- Node B and AP hear each other
- Node A and Node B cannot hear each other

A and B are unaware of each other’s transmission
RTS-CTS Exchange

- RTS(A)
- RTS(B)
- reservation collision
- CTS(A)
- DATA (A)
- ACK(A)
- defer
To Solve the Hidden Terminal Problem: RTS-CTS

- Sender transmits small request-to-send (RTS) packets to AP
 - RTSs may still collide with each other (but they're short)
- AP broadcasts clear-to-send (CTS) in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Avoid data frame collisions by using small reservation packets!
Summary

• Low cost, short-distance transmission
 - Free spectrum
 - High data rate

• Limited network control
 - Distributed MAC
 - Simple coordination among APs

• IP-based network architecture