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The distributed antenna system (DAS) has emerged as a promising candidate for the
future, beyond 3G or 4G mobile communications thanks to its open architecture and
flexible resource management. The distributed characteristic of the antennas provides a
more efficient utilization of space resources; however, it also raises a crucial challenge for
the advanced resource allocation. In this chapter, the optimal resource allocation for DAS
networks is investigated. We start with an overview of the current adaptive techniques
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for wireless systems. The resource allocation strategies in distributed channels are then
proposed, and the performance comparison with equal allocation helps us understand
why an adaptive resource allocation is indispensable to the DAS. It is further extended
to the multi-user scenario and the optimal resource allocation among multiple users
is discussed. The chapter concludes by presenting some open research issues in the
realization of resource allocation for DAS networks.

7.1 RESOURCE ALLOCATION FOR WIRELESS SYSTEMS

Future wireless networks are expected to support a wide variety of communication ser-
vices, such as voice, video, and multimedia. However, the wireless environment provides
unique challenges to the reliable communication: time-varying nature of the channel and
scarcity of the radio resources such as power and bandwidth. Therefore, it is of great
interest to investigate how to efficiently allocate the limited radio resources to meet
diverse quality-of-service (QoS) requirements of users and maximize the utilization of
available bandwidth based on the channel states of users. In this section, we will present
an optimal resource allocation framework for the wireless system, and based on it, some
adaptive techniques will be introduced.

7.1.1 Optimal Framework of Resource Allocation

There are tremendous ways to perform resource allocation. For instance, adaptive power
and rate allocation can provide significant performance gain in fading channels [1]. In
code division multiple access (CDMA) systems, the radio resources are usually allocated
to the users by regulating their transmit power and spreading gains [2]. In general, if
we consider a wireless network with K users, each with a utility function Uk(.) and a
constraint Sk(.) ≤ qk, the problem of optimal resource allocation can be formulated as

Maximize
K∑

k =1

Uk(Pk, Rk, L k, �k)

Subject to Sk(Pk, Rk, L k, �k) ≤ qk, k = 1, . . . , K, (7.1)

where the utility of user k Uk(.) is a function of the allocated resources including: the
transmit power Pk, the modulation and coding level Rk, the packet length L k and �k.
�k represents the available resources in specific systems, which can be the number
of spreading codes assigned to user k in CDMA systems; the number of subcarriers in
orthogonal frequency division multiplexing (OFDM) systems; the number of antennas
in multiple-input multiple-output (MIMO) systems; or the number of time slots in time
division multiple access (TDMA) systems. qk is the required QoS for user k, i.e., the
required rate, error probability, and delay constraints, etc.

From (7.1) it can be seen that the optimal resource allocation is essentially an
optimization problem of maximizing the network utility

∑K
k =1 Uk(.), over the available

resources, subject to the constraints of all users. Obviously, in wireless systems where
users may have diverse QoS requirements and distinct channel statistics, optimal resource
allocation can bring huge performance gain.
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Optimal resource allocation for a specific user can be performed in time, space, or
frequency domain. For example, the transmit power and rate can be adjusted among
different fading states (time domain), different antennas (space domain), or different
subcarriers (frequency domain) to maximize the throughput or minimize the error rate.
Optimal resource allocation among multiple users, however, will be much more com-
plex because the feasible solution field may not always exist. Maximizing the network
utility

∑K
k =1 Uk(.) does not guarantee that the utility of each user is maximized; on the

contrary, sometimes it is achieved by scarifying some users’ performance. Therefore,
a tradeoff between efficiency and fairness usually has to be addressed in multi-user
resource allocation.

7.1.2 Adaptive Techniques

We have shown that in wireless systems, resources should be adaptively allocated ac-
cording to users’ QoS requirements and channel statistics. In this section, we will further
introduce some adaptive techniques and show how to perform resource allocation in
specific systems.

7.1.2.1 Adaptive Power and Rate Allocation

Adaptive power and rate allocation was proposed a long time ago as an effective means
to overcome the detrimental effect of time-varying channels [1, 3–5]. Later, information-
theoretic work showed that to maximize the ergodic capacity of a single-user fading
channel with channel state information (CSI) at both the transmitter and receiver, the
optimal power and rate allocation is a water-filling procedure over the fading states [6].
The ergodic capacity region of a fading multiple-access channel (MAC) and the corre-
sponding optimal power and rate allocation, which is a multi-user version of the single-
user water-filling procedure, were obtained in [7] using the polymatroidal structure of the
region. [8] further derived the optimal power allocation for maximizing the delay-limited
capacity. It was shown that with the proposed channel inversion strategy, there is zero
outage probability and the end-to-end delay is independent of the channel variation.
The price is that huge power has to be consumed to invert the channel when it is in an
unfavorable state.

Another line of work focused on practical schemes, which typically assume a finite
number of power levels and modulation and coding schemes [9–15]. For example, adap-
tive modulation and coding (AMC) has been studied extensively [10–14] and adopted at
the physical layer in several standards, e.g., 3GPP, 3GPP2, IEEE 802.11a, IEEE 802.15.3,
and IEEE 802.16 [16–18]. Recent work includes the cross-layer optimization combining
AMC at the physical layer and automatic request protocol (ARQ) or finite-length queue at
the link layer [19,20], and the joint optimization of rate and packet length in cooperative
ad hoc networks [21].

7.1.2.2 Adaptive Resource Allocation for MIMO Systems

MIMO systems have recently attracted tremendous interest due to their ability in provid-
ing great capacity improvements [22,23]. Different from the traditional power and rate
allocation in fading channels, which is performed in time domain, the resources in MIMO
systems are usually allocated among the antennas or in space domain.

It has been shown that the optimal power allocation among the multiple antennas is
the water-filling strategy [22]. However, to perform this optimal allocation requires full
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CSI at the transmitter. Later work focused on transmit beamforming and precoding with
limited feedback [24–27], where the transmitter uses a small number of feedback bits to
adjust the power and phases of the transmit signals. To further reduce the amount of
feedback and complexity, per-antenna rate and power control was proposed [28–32]. By
adapting the rate and power for each antenna separately, the performance (error proba-
bility [31] or throughput [28–30]) can be improved greatly at a slight cost of complexity.

Antenna selection was proposed to reduce the number of radio frequency (RF) chains
and the receiver complexity. Various criteria for receive antenna selection or transmit an-
tenna selection have been presented, aiming at minimizing the error probability [33–40]
or maximizing the capacity bounds [41,42]. It was shown that only a small performance
loss is suffered when the transmitter/receiver selects a good subset of the available anten-
nas based on the instantaneous CSI. However, recently it is found that in the correlated
scenario, proper transmit antenna selection can not just be used to decrease the number
of RF chains, but as an effective means to bring the performance gain [43]. When the
channel links present spatial correlation (due to the lack of spacing between antennas or
the existence of small angular spread), the degrees of freedom of the channel are usually
less than the transmit antennas. Therefore, by the use of transmit antenna selection, the
resources are allocated only to the “good” subchannels so that a capacity gain can be
achieved.

Most of the above work focused on the peer-to-peer link in the single-user scenario.
Resource allocation in a multi-user MIMO scenario is still quite an open issue. [44,45] both
considered a multi-user MIMO system and focused on multi-user precoding and turbo
space–time multi-user detection, respectively. More recent work includes a cross-layer
resource allocation in downlink multi-user MIMO systems [46].

7.1.2.3 Adaptive Resource Allocation for OFDM Systems

OFDM was proposed to combat the intersymbol interference (ISI) problem [47]. Later it
was found that adaptive rate allocation can be perfectly performed in OFDM systems,
where subcarriers with higher channel gains carry more bits while the ones in deep fade
carry few or even zero bits [48,49]. Similar to the per-antenna rate and power allocation,
here the rate of each subcarrier is adjusted according to the CSI following the water-
filling principle. The optimal power allocation has also been studied [50,51]. Significant
performance gain can be achieved through the power and rate adaptation.

In MIMO systems, it is not straightforward to extend the per-antenna rate and power
allocation to the multi-user scenario as there is no bijective mapping between the trans-
mit antenna set and the subchannel set. Some complicated interference cancellation
techniques have to be developed. In multi-user OFDM systems, however, thanks to the
orthogonality among the subcarriers, each subcarrier can be allocated to a user with
the best channel condition. Here multi-user diversity gain is further achieved based on
the low probability that all the users’ signals on the same subcarrier are in deep fading
[52–55]. Some recent work includes the adaptive resource allocation for MIMO-OFDM
systems [56] and cross-layer optimization for multi-user OFDM systems [57].

7.1.2.4 Adaptive Resource Allocation for CDMA Systems

The available resources in CDMA systems include transmit power and spreading codes.
Joint power allocation and base station assignment problems were first analyzed
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in [58,59]. In these works, the objective is the minimization of the total transmit power
subject to the QoS requirements of the sources, without considering the allocation of
the spreading gains. Another line of work focuses on multiple classes of service, where
users are allocated different class-dependent spreading gains to maximize the through-
put [60,61]. The joint optimal allocation of power and spreading gains was considered
in [2, 62–66], in which an optimization problem is usually formulated to optimize the
total transmit power or the sum of the transmission rate (or say, the network throughput)
under the constraint on the maximum transmission power of each user or the minimum
spreading gain (or both).

Recently, utility-based power control has received significant attention, where a game
theoretic approach is applied to the power control problem for CDMA data networks.
Here, the optimization objective is neither the total transmit power nor the sum rate.
Instead, a utility function is proposed which quantifies the level of satisfaction a user
gets from using the system resources [67], and the resources are allocated to optimize the
network utility. Its attractiveness comes partially from the distributed nature: each user
can maximize its own utility in a distributed fashion. See [67,68] and references therein
for more details.

7.1.2.5 Channel-Aware Scheduling

Efficient resource allocation for multiple users is always an interesting but challenging
issue. As we have introduced, in OFDM (or CDMA) wireless systems, subcarriers (or
spreading codes) are assigned to users according to their QoS requirements and channel
conditions. Another option, however, is to allocate all the system resources to differ-
ent users, in different time slots. This leads to the so-called scheduling problem. In the
earliest work on scheduling for wireless systems, the time-varying nature of wireless
channels was not taken into full consideration [69,70]. The channel is usually simplified
as an “ON-OFF” model and the focus is on the queue statistics. Knopp and Humblet [71]
first proposed to always schedule the user with the best channel and showed that sig-
nificant throughput gain can be brought by multi-user diversity “when there are many
users who fade independently; at any one time there is a high probability that one of the
users will have a strong channel” [72]. Obviously, the more users scheduled, the higher
throughput that can be obtained.

There have been numerous works on how to exploit this multi-user diversity gain
[73–77]. However, to directly implement the idea of multi-user diversity will result in
unfairness if users’ fading statistics are not identical: The user with a statistically stronger
channel has a higher opportunity in acquiring the system resources. From a system
aspect, efficiency and fairness are both crucial issues in resource allocation and should
be carefully addressed. Several definitions of fairness have been proposed, such as max-
min fairness [78] and proportional fairness [79,80]. A scheduler combined with multi-user
diversity and proportional fairness has been proposed in [81], which is also the baseline
scheduler for the downlink of IS-856. Asymptotic analysis of scheduling can be found
in [82].

So far we have presented the optimal resource allocation framework and introduced
some representative adaptive techniques. In next section, we will focus on distributed
antenna systems (DASs) and illustrate how to efficiently allocate resources in distributed
channels.
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7.2 RESOURCE ALLOCATION IN DISTRIBUTED CHANNELS

In DASs, many remote antenna ports are distributed over a large area and connected
to a central processor by fiber, coax cable, or microwave link [83]. Basically, resource
allocation of DASs is also performed among the antennas, similar to that of the MIMO
systems. However, due to some special characteristics of distributed channels, resource
allocation is indispensable to a DAS and is not just for performance enhancement. It will
be shown that the performance severely deteriorates without proper resource allocation.
In this section, we consider the downlink resource allocation in the single-user scenario,
i.e., how to assign the transmission phases, rate, and power of different distributed
antennas to a specific user. Multi-user resource allocation will be discussed in Section 7.3
from a system perspective.

7.2.1 System and Channel Model

Consider a DAS with M remote antennas which are randomly distributed around K users
each equipped with n colocated antennas. Here the cells are divided not geographically,
but according to the user demands, which are called “virtual cell” [83]. As shown in
Figure 7.1, the remote antennas serving for user k form the k-th virtual cell. When user
k moves, the remote antennas in the k-th virtual cell will be dynamically modified to
adapt to the changes of user k. The central processor continuously tracks the channel
between user k and each remote antenna and selects the best m remote antennas to
form the virtual cell of user k.

Particularly, user k receives signals from the m remote antennas of its virtual cell.
Assume a flat fading and quasi-static channel model and perfect symbol synchronization

mobile user k

remote antenna

the k-th virtual cell

Figure 7.1 System Model of DAS
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Figure 7.2 MIMO Channel Vs. Distributed Channel

at the receiver. The discrete model of the received complex signal vector can be written
as

y = Hx + z = R1/2
r HwFx + z, (7.2)

where z is the noise vector with i.i.d. CN (0, σ 2) entries. The small-scale fading is denoted
by an n×m matrix Hw with i.i.d. CN (0, 1) entries. Rr denotes the n×n antenna correlation
matrix at the receiver (where n antennas are colocated) [84]. F is an m×m diagonal matrix.

Equation (7.2) is reminiscent of a MIMO channel model [85]. The only difference
is that the transmit correlation matrix Rt is replaced by a diagonal matrix F. Illustrated
in Figure 7.2 is a comparison between a MIMO channel and a distributed channel.
It can be seen that in a MIMO system, the antennas are colocated at both the base
station and the user. Therefore, the transmit signals experience similar large-scale fading
and resource allocation here is usually adopted to overcome the spatial correlation,
which leads to insufficient degrees of freedom of the channels. However, in distributed
channels, the signals transmitted from different remote antennas suffer from distinct
degrees of large-scale fading, which is denoted by this m × m diagonal matrix F. In
particular, F = diag ( f1, . . . , fm) = diag (

√
ς1d

−α
1 , . . . ,

√
ςmd−α

m ), where di is the access
distance between the user and the i-th remote antenna. α is the path loss exponent and ςi

represents the effect of log-normal shadowing, i = 1, . . . , m. In the following discussions,
we normalize trace(FF∗) to be m and let η = ‖ f1‖2 : ‖ f2‖2 : · · · : ‖ fm‖2.1 We will show
that due to the existence of F, equally allocating resources among the transmit antennas,
which is often adopted in MIMO systems, will lead to severe performance degradation.
Adaptive resource allocation is highly desired in a DAS.

1 Throughout the chapter, “∗” represents the conjugate and transpose operator.
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7.2.2 Water-Filling and Equal Power Allocation

To understand why resource allocation is requisite in a DAS, we start with a simple power
allocation problem in a multiple-antenna channel. For simplicity, let us assume that the
receive antennas at the user are uncorrelated, i.e., Rr = In. The mutual information is
then given by

I (Q) = log2det
(

In + 1

σ 2
HwFQF∗H∗

w

)
, (7.3)

where Q = E(xx∗) is the transmit covariance matrix.
Without the CSI at the transmitter, equal power allocation, i.e., Q = Pt

m Im, would be
optimal [22,23]. In this case, we have

C = log2det
(

In + ρ

m
HwFF∗H∗

w

)
= log2det

(
Im + ρ

m
F∗H∗

wHwF
)
, (7.4)

where ρ = Pt/σ
2 is the average receive single-to-noise ratio (SNR). Since H∗

wHw is
Hermitian, it can be diagonalized as H∗

wHw = U∗
hΛhUh, with a unitary matrix Uh and a

nonnegative diagonal matrix Λh. Let X = Λ1/2
h UhF = V∗

xΛ
1/2
x Ux, we see that

Ceq =
r∑

i=1

log2

(
1 + ρ

m
λi

)
, (7.5)

where λi is the i-th eigenvalue of X∗X and r = min(m, n).
On the other hand, if CSI is available at the transmitter, [22] has shown that the

water-filling policy would maximize the capacity, which requires

Q̃ = UxQU∗
x = diag (µ − σ 2λ−1

i )+, (7.6)

where µ is chosen to satisfy
∑m

i=1 Q̃ii = Pt , and the capacity is then given by

Cw f =
r∑

i=1

(log2(µλi/σ
2))+. (7.7)

When X∗X is of full rank and well-conditioned, the water-filling strategy allocates nearly
an equal amount of power to all the dimensions, and the capacity is approximated by

Cw f =
r∑

i=1

log2

(
1 + ρ

r
λi

)
. (7.8)

Comparing (7.8) and (7.5), we can see that the water-filling strategy can achieve a
power gain of a factor of m/r over the equal power allocation. This implies that when
there are more transmit antennas than receive antennas, CSI at the transmitter is highly
desired so that the transmit energy can be effectively allocated to only r degrees of free-
dom instead of being spread out equally across all m directions. Figure 7.3 presents the
10% outage capacity results of the water-filling strategy and the equal power allocation
in iid. MIMO channels (i.e., F = Im). Only a slight capacity gain can be observed with the
water-filling strategy when both the number of transmit antennas and receive antennas
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Figure 7.3 10% Outage Capacity Comparison of Water-Filling Strategy and Equal Power
Allocation in MIMO Channels

are equal to four. However, the capacity gap is significantly enlarged if there are not as
many receive antennas as transmit antennas.

In fact, if we notice that X∗X is usually ill-conditioned in distributed channels, we
will find that the water-filling strategy can bring even more substantial capacity gains.
Again, assume m = n = 4 and consider two types of distributed channels with η1 =
500:100:20:1 and η2 = 1000:100:10:1. Obviously, in the first case two subchannels are
significantly better than the others and X∗X is rank deficient. The second case is even
more asymmetric, and X∗X is severely ill-conditioned. Figure 7.4 shows the capacity gains
of the water-filling strategy over the equal power allocation, i.e., (Cw f −Ceq)/Ceq ×100%,
in both cases. For comparison, the results in MIMO channels are also provided. In
distributed channels, the water-filling strategy performs much better than the equal power
allocation. In a low SNR regime, over 50% capacity gains can be achieved by the water-
filling strategy. This gain, however, will diminish when the SNR is high enough.

Based on the above discussions, we can conclude that resource allocation is highly
desired in a DAS. In MIMO systems, all the subchannels suffer from nearly the same
large-scale fading; hence, the equal power allocation can provide comparable perfor-
mance, especially when m = n.2 In DASs, however, due to the large differences among
subchannels, equal allocation incurs a significant capacity loss. CSI is highly desired at
the transmitter to perform the adaptive resource allocation.3

2 Note that here, no space correlation is assumed.
3 Throughout this chapter, perfect CSI is always assumed available at the receiver.
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Figure 7.4 Capacity Gains of Water-Filling Strategy Over Equal Power Allocation in Distributed
Channels and MIMO Channels. m = n = 4

7.2.3 Full CSI at the Transmitter

So far we have shown that CSI at the transmitter plays an important role in distributed
channels. In a DAS, the signals transmitted from different remote antennas suffer from
distinct degrees of large-scale fading. Therefore, CSI is required at the transmitter to en-
sure that the resources are allocated only to those “good” subchannels. In this subsection,
we will focus on the case with full CSI at the transmitter.4

7.2.3.1 Transmit Precoding

As we know, with full CSI, i.e., H, at the transmitter, the water-filling strategy can achieve
the optimal capacity. Therefore, a natural way is to design a precoding matrix based on
this water-filling principle.

As shown in Figure 7.5, at the transmitter, the information is split into m parallel data
streams and encoded separately. After being modulated, those streams are multiplied
by a linear transformation matrix L ∈ Cm×m and then transmitted through m remote
antennas. Based on the water-filling principle, L is given by [86]

L = VD1/2W (7.9)

where the columns of V are eigenvectors of H∗H. D = diag (m (µ − λ−1
i )/ρ)+ and W

is a unitary matrix. It can be easily proved that (7.9) satisfies the constraint condition

4 Although the subsection is entitled “full CSI at the transmitter,” the resource allocation can be per-
formed at the receiver. The receiver then feeds back the allocation results, instead of the exact CSI
information, to the transmitter.
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Figure 7.5 Transmitter Structure with Precoding

tr (LQL∗) = tr (Q) and achieves the optimal capacity given by (7.7). Although the ca-
pacity is maximized as long as W is a unitary matrix, W should be carefully selected
for particular coding and modulation beacuse the error performance depends on W. We
search the optimal W to minimize the pairwise error probability, namely, to maximize
the minimum distance between received vectors.

Figure 7.6 presents the frame error rate (FER) comparison of this precoding scheme
and the equal power allocation in MIMO channels. QPSK modulation is assumed at
the transmitter with m = 2 remote antennas. Maximum likelihood detection (MLD) is Au: Does

QPSK =
quadratic
phase shift
keying?
Please
spell out.

adopted at the receiver. From Figure 7.6 it can be seen that a significant performance
gain is brought by precoding at the transmitter. For instance, a 3 dB gain can be observed
at the FER of 0.1 with n = 2 receive antennas, and this gain increases to 10 dB when
there are less antennas at the receiver, say, n = 1.
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Figure 7.6 FER Comparison of the Precoding Scheme and Equal Power Allocation in MIMO
Channels With QPSK Modulation and MLD
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Figure 7.7 FER Comparison of the Precoding Scheme and Equal Power Allocation in Distributed
Channels With QPSK Modulation and MLD. m = n = 2

The performance gap is even larger in distributed channels. As shown in Figure 7.7,
when η1 = 10 : 1, an 8 dB gain can be achieved by the precoding scheme over the equal
allocation one. As the variance of subchannels increases, the performance of the equal
power allocation deteriorates rapidly. When η2 = 100 : 1, the equal power allocation
cannot work at all. In contrast, only slight performance degradation is observed with the
precoding scheme.

Despite the superior performance, the precoding scheme requires either full CSI or
an updated linear precoding matrix L to be fed back to the transmitter, both of which
will incur a large amount of feedback. Thus, the transmission phase of each remote
antenna is adjusted based on the feedback information, which makes this scheme highly
sensitive to the feedback errors.

7.2.3.2 Per-Antenna Rate and Power Adaptation

With full CSI at the transmitter, the water-filling based precoding scheme has been able to
achieve huge performance gains, especially in distributed channels. However, this pre-
coding scheme requires a large amount of feedback and is quite sensitive to the feedback
errors, which restricts its application in the practical scenarios. In this subsection, we will
introduce a more robust resource allocation strategy, where the transmission rate and
power are adjusted in a per-antenna manner.

As shown in Figure 7.8, the coding, modulation, and average transmit power of each
remote antenna are adjusted based on the feedback information. Here we define a mode
as a combination of specific coding and modulation. Let Mi denote the mode of the i-th
antenna and the corresponding spectral efficiency is denoted by R (Mi). Given the total
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Figure 7.8 Transmitter and Receiver Structures With Per-Antenna Rate and Power Allocation

required spectral efficiency Rt , we define the mode vector as M = [M1, . . . , Mm ] such
that Rt = ∑m

i=1 R (Mi). Likewise, with the total transmit power Pt , we define the power
allocation vector as P = [P1, . . . , Pm ] such that Pt = ∑m

i=1 Pi , where Pi denotes the
average power radiated by the i-th transmit antenna. Although full CSI is required to
optimize the mode vector M and the power allocation vector P, this can be performed at
the receiver and only the optimized results on M and P are fed back to the transmitter.

There are numerous ways to optimize the mode vector M and the power allocation
vector P, based on different objectives. Here we take the example of minimizing bit error
rate (BER) to illustrate how to design the optimization criterion. In particular, define the
active antenna set as A = {i|R (Mi) > 0, ∀i}. Denote the BER of the i-th antenna
after detection as BE Ri . Zero-forcing (ZF) is assumed at the receiver and denote the
nulling vector of the i-th substream as wA

i (i ∈ A). The total transmit power can then be
expressed as

Pt = σ 2
∑
i∈A

ξ (Mi , BE Ri)‖wA
i ‖2 R (Mi), (7.10)

where ξ (Mi , BE Ri) represents the required Eb/N0 in additive white Gaussian noise
(AWGN) for the target BE Ri , with the mode Mi . It can be approximated by ξ (Mi , BE Ri)
≈ K (Mi) · F (BE Ri), where K (Mi) is the coefficient in terms of mode and F (BE Ri) is a
monotonously decreasing function of BE Ri [31]. To optimize the BER performance, we
should minimize the maximum BE Ri because the overall BER performance is mainly
dictated by the worst one. Therefore, the optimal mode vector M̃ and antenna set Ã
can be finally obtained as

Ã, M̃ = argmin
A,M

∑
i∈A

‖wA
i ‖2K (Mi)R (Mi) (7.11)

and the corresponding power allocation vector P̃ satisfies

P̃i =



Pt
‖wA

i ‖2
K (Mi )R (Mi )∑

k ∈A ‖wA
k ‖2

K (Mk)R (Mk)
i ∈ A

0 i /∈ A.

(7.12)
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Figure 7.9 SER Comparison of Per-Antenna Adaptive Rate and Power Allocation, Equal Allocation
and Precoding. m = n = 4

The transmission rate and power of each antenna can be determined by (7.11 to
7.12). Because the number of available modes is usually small and the power quanti-
zation requires only limited bits, the amount of feedback information can be sharply
reduced compared to the precoding case. Figure 7.9 shows the symbol error rate (SER)
performance of this per-antenna adaptive rate and power allocation strategy. Here four
antennas are assumed at both the transmitter and the receiver, i.e., m = n = 4. Three
modes are considered: uncoded BPSK, uncoded QPSK and uncoded 16 QAM. The total
spectral efficiency Rt is constrained to be 4 b/s/Hz. For comparison, the SER curves ofAu: Does

BPSK =
binary
phase shift
keying?
Please
spell out.

Au: Does
QAM =
quadratic
amplitude
modula-
tion?
Please
spell out.

the precoding scheme and the equal allocation are also provided.
From Figure 7.9 it can be seen that in MIMO channels, a 5 dB gain can be achieved

by the adaptive power and rate allocation over the equal one at the SER of 10−3. When
the variance of subchannels increases significantly, i.e., in distributed channels with
η = 500 : 100 : 20 : 1, the performance of the equal allocation deteriorates sharply while
the adaptive one still works well. A closer observation shows that in this case the adaptive
power and rate allocation scheme always chooses the best antenna using 16QAM or
the best two antennas using QPSK, because the degrees of freedom of the channel
never exceed two. It can be also seen that the performance of the precoding scheme
is significantly better than the adaptive one, which is partially attributed to the optimal
transmission phase and partially to the optimal MLD receiver. Nevertheless, considering
that the precoding scheme requires a large amount of feedback and is sensitive to the
feedback error, the adaptive power and rate allocation scheme is still highly attractive in
a DAS.
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7.2.4 Long-Term Channel Statistics at the Transmitter

So far we have discussed the resource allocation schemes based on full CSI, which
require the adaptation results to be updated for each channel instance. In this section,
we will further show that in distributed channels, resources can be adaptively allocated
based only on the long-term channel statistics, i.e., F and Rr in (7.2), instead of the
instantaneous CSI, with only negligible performance loss.

7.2.4.1 Antenna Selection

As explained in the system model, in the downlink of DASs, the central processor usually
selects the “best” m antennas for user i ’s data transmission. A natural question is how
to optimally choose those m antennas. There have been numerous papers on antenna
selection algorithms (see Section 7.1.2 for an overview). However, most of them are
based on the instantaneous CSI at the transmitter. In the following we will introduce
an optimal antenna selection criterion for capacity maximization assuming that only the
long-term channel statistics, i.e., F and Rr in (7.2), are available.

Define the selected transmit antenna subset and selected receive antenna subset as
Λt and Λr, respectively, which are both unordered sets with m and n selected antennas.
Let RΛr denote the cross-correlation matrix of those n selected antennas, and FΛt denote
the large-scale fading of the m selected antennas. These matrices can be obtained by
eliminating the columns and rows of the nondesired antennas from Rr and F, respec-
tively. Assume that m and n are selected to ensure that RΛr and FΛt are both of full rank.
Now let H̃ represent the n × m channel gain matrix between m selected transmit and n
selected receive antennas. Then,

ỹ = H̃x̃ + z̃ = R1/2
Λr

H̃wFΛt x̃ + z̃. (7.13)

Assume equal power allocation among those selected transmit antennas. By applying
eigenvalue decomposition to RΛr , we can obtain

C = log2det
[
In + ρ

m
H̃H̃∗

]
= log2det

[
In + ρ

m
ĤwQtĤ

∗
wQr

]
, (7.14)

where Qr is a diagonal matrix whose diagonal entries are the eigenvalues of RΛr , and
Qt = FΛtF

∗
Λt

. Ĥw = U∗
rH̃w, where Ur is a unitary matrix whose columns are the eigen-

vectors of RΛr . Clearly, Ĥ∗
wĤw has the same eigenvalues as H̃∗

wH̃w.
When m = n, from (7.14) we have

C ≈ m log2

(
ρ

m

)
+ log2det

[
ĤwĤ∗

w

] + log2det[Qt] + log2det[Qr] (7.15)

at high values of ρ. From (7.15) to maximize the capacity, we should maximize the
determinants of Qt and RΛr . In other words, the optimal transmit (or receive) antenna
set Λt(or Λr), in terms of capacity maximization, should be selected to maximize the
determinant of the corresponding matrix Qt(or RΛr). When n �= m, however, it is difficult
to obtain a closed form of the exact capacity expression. In [43], lower and upper bounds
were developed which converge to the same limit. Both bounds can be maximized
according to the following antenna selection criterion.
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Antenna Selection Criterion: The optimal selected transmit antenna subset Λ∗
r and

receive antenna subset Λ∗
t that maximize the capacity are given by

Λ∗
r = argmax

Λr

det(RΛr), and Λ∗
t = argmax

Λt

det(FΛtF
∗
Λt

). (7.16)

The above criterion is based on the assumption that both FΛtF
∗
Λt

and RΛr are of full
rank. For the cases when FΛtF

∗
Λt

and RΛr are singular, the criterion is also applicable if

we substitute det(RΛr) and det(FΛtF
∗
Λt

) in (7.16) by
∏rank (RΛr )

i=1 q (i)
r and

∏rank (FΛt F
∗
Λt

)

i=1 q (i)
t ,

respectively.
Then we can describe a selection process according to the above criterion, namely,

long-term selection algorithm (LtSA). This algorithm consists of creating all possible
antenna sets Λt (or Λr) with m (or n) out of M transmit (or N receive) antennas.
The corresponding det(FΛtF

∗
Λt

)(or det(RΛr)) are computed and the one with the best
measure, as described in the criterion, is selected.

The capacity cumulative density function (cdf) curves of the LtSA in distributed chan-
nels are provided in Figure 7.10 and Figure 7.11 for M = n = 6 with an SNR of 10 dB.
Here, we only consider antenna selection at the transmitter side with m ranging from 2 to
6. For comparison, the capacity cdf results of the instantaneous selected algorithm (ISA),
which is based on the exact CSI, are also presented. From Figure 7.10, the LtSA incurs
only a negligible capacity loss compared to ISA. When m = 4 or 5, the gap between the
capacity of the ISA and LtSA is so slight that the two curves overlap. With a smaller m,
say, m = 2, a 10% outage capacity of the LtSA is only 0.5 b/s/Hz less than that of the ISA.
Figure 7.11 presents the capacity comparison in a more asymmetric distributed channel,
i.e., η = 1000 : 500 : 200 : 100 : 50 : 1. In this case, the LtSA can always achieve almost
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the same capacity as the ISA. As a result, we conclude that in distributed channels, an-
tenna selection can be performed based on the long-term channel statistics instead of the
instantaneous CSI with a very slight capacity loss, but significant complexity reduction.

From Figure 7.10 and Figure 7.11 it can be also seen that in distributed channels,
transmit antenna selection can bring significant capacity gains. In Figure 7.10, the highest
capacity is achieved when m = 5 instead of 6. In distributed channels, there are usually
insufficient degrees of freedom of the channel. By allocating the transmit power to only
the “good” subchannels, the optimal transmit antenna selection actually performs like a
water-filling strategy. In Figure 7.11, the number of degrees of freedom of the channel
further decreases to around 4. Therefore, choosing the best 4 transmit antennas can
achieve the highest capacity.

7.2.4.2 Adaptive Power Adaptation

In Section 7.2.4.1, we have shown how to choose m antennas for downlink transmission
based on the long-term channel statistics. In this section, we will further present an
adaptive power allocation scheme which also requires only the information of F instead
of the full CSI.

In particular, recall that for a channel model given by (7.2), the mutual information
can be written as

I (Q) = log2det
(

In + 1

σ 2
HwFQF∗H∗

w

)
(7.17)
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by assuming that the receive antennas at the user are uncorrelated, i.e., Rr = In, and
Q = E(xx∗) is the transmit covariance matrix. Let Ω = (1/σ 2)QF∗H∗

wHwF. We have

E{I (Q)} ≤ E
{

log2

m∏
i=1

(1 + �ii)
}

≤
m∏

i=1

log2E{1 + �ii} =
m∏

i=1

log2

(
1 + nPi

σ 2
‖ fi‖2

)
. (7.18)

The suboptimal power allocation scheme that maximizes the upper bound in (7.18) can
be solved using the water-filling principle [87], i.e.,

Pi =
(

µ − σ 2

n‖ fi‖2

)+
, (7.19)

i = 1, . . . , m, where µ is chosen to satisfy
∑m

i=1 Pi = Pt .
Clearly the power allocation given by (7.19) requires only the long-term channel

statistics, i.e., ‖ fi‖2, i = 1, . . ., m. Figure 7.12 provides the capacity cdf results of the
adaptive power allocation in distributed channels with η = 500 : 100 : 20 : 1 and SNR
= 10dB. Despite a slight capacity loss, say, 0.3 b/s/Hz at 10% outage, compared to
the optimal water-filling strategy, significant capacity gains can be achieved over the
equal power allocation. This performance degradation becomes negligible in a more
asymmetric channel. As shown in Figure 7.13, the adaptive power allocation achieves
almost the same capacity as the optimal water-filling strategy in distributed channels with
η = 1000 : 100 : 10 : 1.
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7.2.5 Summary

In this section, we discussed the resource allocation strategies in distributed channels.
The information-theoretic results demonstrated that resource allocation is indispensable
to DASs due to the large differences among subchannels. Transmit precoding and the per-
antenna rate and power allocation schemes were introduced, which adaptively allocate
resources among the remote antennas according to the full CSI. Superior performance
has been shown in distributed channels, where equal allocation suffers from severe per-
formance degradation. We further showed that in a DAS, resource allocation can be
performed based on only the long-term channel statistics with a negligible capacity loss
compared to the ones with full CSI.

Performance evaluation of the above schemes in more practical scenarios, i.e., with
the effect of Doppler spread and frequency selectivity, still needs further investigation.
Additionally, a two-dimensional resource allocation would be interesting if OFDM is
adopted. The cross-layer joint optimization with some link layer techniques such as
ARQ is also an attractive issue.

7.3 MULTI-USER RESOURCE ALLOCATION IN DASs

In Section 7.2, we introduced the adaptive resource allocation strategies in the context
of a single-user scenario. In this section, we will turn to a network of multiple users and
study the optimal multi-user resource allocation strategy for DASs.
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mobile user

remote antenna

Figure 7.14 A Multiuser DAS Network. The Circle Represents the Virtual Cell for Each User

In a multi-user DAS network, each user has its own virtual cell and different remote
antennas may transmit to (or receive from) different user sets. As shown in Figure 7.14,
instead of a one point to multipoint (in downlink) or multipoint to one point (in uplink)
channel, here both downlink and uplink resource allocation should be performed based
on a multipoint-to-multipoint channel, which is much more complex than the traditional
resource allocation in cellular systems. It can be also seen that in a DAS, each remote
antenna connects to only a small set of users (instead of the whole user set in cellular
systems). Likewise, each user only receives signals from its own virtual cell. This can
actually bring significant performance gains, as we will show later. However, it also
requires a more complicated resource allocation strategy.

In particular, in a multi-user DAS network, the first issue to be addressed is interfer-
ence management. The signals transmitted to and from different users need to be distin-
guished using code division, frequency division, time division, or space division so as
to avoid strong interference. Then based on some specific multiplexing/multiple-access
scheme, the system resources, such as power, antennas, codes, etc., can be adaptively
allocated among multiple users according to their channel states and QoS requirements.
In Section 7.3.1, we will focus on a CDMA-based DAS system, i.e., transmit signals to and
from users are assigned with different spreading codes. The optimal power allocation
strategy will be introduced for the downlink transmission. In Section 7.3.2 opportunistic
transmission will be applied to a DAS and the fairness issue will be also addressed.

7.3.1 CDMA-Based Resource Allocation

Let us consider a downlink CDMA-based DAS where the transmit signal to each user is aAu: What is
PN? Please
spell out.

PN code modulated bit stream with a spreading factor (or processing gain) of φ. Assume
that each user has only one antenna and maximum ratio combining (MRC) is adopted.
The power of the pilot channel, P , is equal to the total allocated power of each user. As
explained previously, in DASs each signal from remote antennas to a user propagates
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through a distinct path and arrives at the user with independent fading. Therefore, some
form of resource allocation is required. In the following, we focus on the optimal power
allocation.

Assume that the power allocated to user k from antenna lk,i is � 2
k,lk,i

· P , where lk,i

and �k,lk,i represent the i-th antenna in user k’s virtual cell and its corresponding weight,
respectively. Clearly, we have ∀k,

∑m−1
i=0 � 2

k,lk,i
= 1. Then, the received signal of user 0 is

given by

x (t) =
M−1∑
i=0

Ki−1∑
k=0

ψk

√
P�k,iγ0,ibk

(
� t − τ0,i

T
�
)

ck(t − τ0,i)

+
M−1∑
i=0

√
Pγ0,ib

′
i

(
� t − τ0,i

T
�
)

c
′
i(t − τ0,i) + n(t), (7.20)

where the first and second items represent the data and pilot signals received by user
0, respectively. In particular, ψk is the voice activity variable with an activity factor of ν.
bk(·) denotes the transmitted bit of user k in duration T and ck(·) is the spreading code
used by user k. b

′
i(·) and c

′
i(·) represent the bit and the spreading code used by the pilot

of antenna i. Ki is the number of users that communicate with antenna i. γ0,i represents
the channel gain between user 0 and antenna i, which includes the effect of both the
large-scale fading and the small-scale fading. τ0,i is the propagation delay from antenna
i to user 0, i = 0, . . . , M−1. By regarding the signals from different antennas in user 0’s
virtual cell to user 0 as multiple paths of the desired signal, we can separate the paths
with a RAKE receiver. The Eb/I0 at the receiver can then be derived as [83]

Eb

I0
=

m−1∑
j=0

(
Eb

I0

)
j
= φ · ∑m−1

j=0 � 2
0, j‖γ0, j‖2

(νK/M + 1)
∑M−1

i=0 ‖γ0,i‖2
. (7.21)

It can be easily proved that the optimal weight vector to maximize (7.21) is given by

�0,i =
{

1, i = argmax
∥∥γ0, j

∥∥2

0, otherwise
(7.22)

i = 0, . . ., m −1. Obviously this is the well-known selective transmission scheme, i.e., the
transmit power is allocated to the antenna with the best channel. Figure 7.15 shows the
curves of outage probability versus the number of users per antenna. Here we consider a
three-tier hexagonal model, i.e., M = 37. Both the effect of path loss and shadow fading
are included with the path loss exponent α = 4 and the standard variance of the log-
normal shadowing variable σs = 8 dB. Additionally, the voice activity factor ν = 0.375
and the spreading factor φ = 127. Assume adequate performance (i.e., BER ≤ 10−3) is
achieved with Eb/I0 = 7 dB. Figure 7.15 shows that the downlink capacity5 decreases
rapidly as m increases. This is because the received signal power at the user is the sum

5 Here the “downlink capacity” is defined as the number of users that can be supported by the system
at a certain outage probability. For example, from Figure 7.15 it can be seen that when m = 1, at an
outage probability of 10−3, 18 users can be supported. This number drops to 10 when m increases
to 4.
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Figure 7.15 Outage Probability Vs. the Number of Users Per Antenna in a CDMA-Based DAS.
Selective Transmission (m = 1) Performs the Best

of the power received from each involved antenna. By assuming that the total power
allocated to each user is a constant, which implies that the total interference is fixed, it is
clear that distributing the transmit power among several antennas will cause a decrease
of the received SIR. Therefore, selective power allocation performs the best.

The above conclusion is drawn based on the assumption that only the optimal trans-
mit power allocation is performed. If the phases of the transmit signals can be also jointly
adjusted, the downlink capacity can be dramatically improved with an increase of m.

In particular, assume that the desired signals from the antennas in user 0’s virtual
cell are jointly adjusted so that they arrive at user 0 in phase and simultaneously. The
received Eb/I0 of user 0 can then be derived as

Eb

I0
≈ φ

( ∑m−1
j=0 �0, j‖γ0, j‖

)2

(νK/M + 1)
∑M−1

i=0 ‖γ0,i‖2
. (7.23)

It can be proved that when �0,i = ‖γ0,i‖√∑m−1

j=0
‖γ0, j ‖2

, i=0, . . ., m − 1, the received Eb/I0 is

maximized and given by

Eb/I0 = φ

(νK/M + 1)
·

∑m−1
i=0 ‖γ0,i‖2∑M−1
i=0 ‖γ0,i‖2

. (7.24)

Equation (7.24) shows that Eb/I0 will increase as m increases. Here the power weight of
each antenna is proportional to the channel gain. Therefore, it is also called
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Figure 7.16 Outage Probability Vs. the Number of Users Per Antenna in a CDMA-Based DAS With
Maximum Ratio Transmission

maximum ratio transmission. As shown in Figure 7.16, a substantial capacity gain can be
achieved with the increase of m. Nevertheless, the maximum ratio transmission requires
the transmit power and phases to be jointly adjusted, according to the instantaneous CSI
of users, which will incur a huge amount of feedback information and is quite sensitive
to the feedback errors. This greatly restricts its application in fast fading channels.

So far we have studied the optimal power allocation strategy in a CDMA-based DAS
network. It is shown that if the transmit phases are not jointly adjusted, selective trans-
mission, i.e., to put all the transmit power on the best remote antenna, is the optimal.
Otherwise, maximum ratio transmission achieves the highest capacity where the transmit
power of each antenna is proportional to its channel gain. Actually, the selective trans-
mission strategy follows the water-filling principle. With one antenna at the mobile user,
only one degree of freedom of the channel is provided, no matter how many remote
antennas are included. Therefore, the water-filling strategy in this case suggests that the
transmission power should always be allocated to the antenna with the best channel. On
the other hand, the maximum ratio transmission is reminiscent of beamforming, although
there are no real beams towards users.

7.3.2 Opportunistic Transmission

In Section 7.3.1, we assume that each user is assigned with equal transmit power P , and
a spreading code with the same spreading factor φ. In this way the system resources are
equally allocated to users and the optimal power allocation is performed among multiple



P1: Binod

December 20, 2006 19:20 AU4288 AU4288˙C007

192 � Distributed Antenna Systems: Open Architecture for Future Wireless Communications

Base Station

At each time slot, the
base station only
serves the best user.

Figure 7.17 Opportunistic Transmission in Cellular Systems

antennas of each user’s virtual cell. In this subsection, we will further address how to
efficiently and fairly allocate resources among multiple users.

Opportunistic transmission has been proposed in [71], where in each time slot the
system resources are allocated only to the user with the highest instantaneous chan-
nel gain. As illustrated in Figure 7.17, the base station tracks the channel variations of
all users and schedules transmissions to the best one. Because users are expected to
experience independent fading, opportunistic transmission can adaptively exploit the
time-varying channel conditions of users and achieve the multi-user diversity gain; the
network throughput will increase with the number of users [72].

Despite the substantial throughput gain brought by multi-user diversity, opportunistic
transmission may not work well when multiple antennas are employed at base stations
[72,88]. As we know, multi-user diversity gain has its root in the independent fluctua-
tion of channels of different users, which in some extent exploits the channel fading.
However, the conventional multi-antenna transmission techniques aiming at maximizing
the diversity gain, i.e., space–time coding, beamforming, etc., are designed to counteract
the adverse effect of fading. Therefore, by decreasing the channel fluctuations of differ-
ent users, opportunistic transmission with multiple antennas may lead to an even lower
throughput than the one in the single-antenna scenario.6

In the above work, only the channel fluctuations introduced by small-scale fading are
taken into account. In cellular systems, power control is usually adopted to counteract
the large-scale fading, such as path loss and log-normal shadowing. Otherwise, the users
close to the base station will always occupy the system resources and severely impair
the performance of the users far away from the base station.7 In a DAS, however, the
large-scale fading can be exploited to amplify the fluctuations.

6 To address this issue, [75] proposed to induce large channel fluctuations by using multiple antennas,
which is called opportunistic beamforming using dumb antennas. In this case, the phases and power
allocated to transmit antennas randomly vary and at any time the transmission is scheduled to the
user, which is currently closest to the beam. In this way the rate of channel fluctuations is artificially
increased.

7 Viswanath et al. [75] proposed a proportional fair opportunistic scheduler to avoid such cases, where
data is transmitted to a user when it hits its own “peak.” We will discuss it in detail later.
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Figure 7.18 Each User Receives Independent Fading Signals from the m Remote Antennas of Its
Virtual Cell

We take the example of downlink transmissions. As shown in Figure 7.18, each user
receives independent fading signals from the m remote antennas of its virtual cell. Assume
only one antenna is employed at the mobile user. From (7.2) we know that for user k, the
m-dimension channel vector is given by hk = [ fk,1γk,1, . . . , fk,mγk,m ], where fk,i and γk,i

represent the large-scale fading and small-scale Rayleigh fading of the channel from user
k to the i-th remote antenna, respectively. In cellular systems, antennas are colocated at
the base station and the large-scale fading has been counteracted. Therefore, we have
‖ fk,i‖ = 1, for any k = 1, . . ., K, and i = 1, . . ., m.

Let ϕk = hkh∗
k. The variance of the sum channel gain is then given by

var(ϕk) = var(‖γk,i‖2)
m∑

i=1

‖ fk,i‖4. (7.25)

Equation (7.25) shows that when ‖ fk,1‖ = · · · = ‖ fk,m‖ = 1, ϕk has the minimum
variance. By introducing different levels of large-scale fading among the different paths,
the channel fluctuation will be boosted in distributed channels. Figure 7.19 presents the
fluctuations of the sum channel gain ϕk in distributed channels with η = 500 : 100 : 20 : 1
and multiple-input single-output (MISO) channels (multiple antennas at the base station
and one antenna at the mobile user) with m = 4. Obviously a much larger channel
fluctuation is observed in distributed channels.

It should be noticed that the channel fluctuation is amplified instead of sped up in
distributed channels, because the large-scale fading does not determine the time-varying
rate of the channel. Therefore, in DASs, it is still possible that some users with good
channels always occupy the system resources while others have no chances to transmit
at all (for example, in a slow fading environment). To meet the fairness constraints, a
proportional fair opportunistic scheduler has been proposed in [75] where the user with
the largest fraction of current channel data rate to its average throughput is scheduled
in each time slot, and the average throughput is updated using the following low-pass
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Figure 7.19 Channel Fluctuations in MISO Channels and Distributed Channels. m = 4 and η =
500 : 100 : 20 : 1

filter:

Tk [i + 1] =
{(

1 − 1
tc

)
Tk [i ] + 1

tc
Rk [i ] k = k ∗(

1 − 1
tc

)
Tk [i ] k �= k ∗ , (7.26)

where Rk [i ] is the current channel data rate of user k in time slot i. Clearly, if the
scheduling time scale tc is much larger than the correlation time scale of the channel, each
user’s throughput converges to the same quantity. Therefore, this scheduling algorithm
can guarantee fairness in the long term.

In a DAS, the fairness performance can be further improved by scheduling multiple
users simultaneously. An important characteristic of a DAS is that each user connects
to only a subset of the remote antennas, i.e., the ones in its virtual cell, instead of all
the antennas in the system. Therefore, the whole network usually can be decomposed
into several disjoint subnetworks. As shown in Figure 7.20, assume the active user set
includes users 1, 2, 4, 5, 7, 8 and 10. Obviously they can be divided into 3 subsets: {1, 2,
10}, {4, 5} and {7, 8}. The users in the same subset share part of the antennas while there
are no common antennas shared by different user subsets.8 In this case, different user
subsets can be scheduled at the same time, thanks to a natural frequency reuse pattern.
In cellular systems, multiple users can also be scheduled simultaneously [90]; however,
either multiple spreading codes or subcarriers are required to differentiate those users,
which leads to a lower spectral efficiency.

8 Given an arbitrary active user set, the network can be decomposed into x disjoint subnetworks,
1 ≤ x ≤ k̃, where k̃ is the number of active users. Obviously x depends on the network topology.
A network decomposition methodology has been proposed in [89]. A similar idea can be applied to
the distributed antenna case.
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Figure 7.20 In DAS, the Active User Set can be Usually Decomposed into Several Disjoint Subsets.
Multiple Users can be Scheduled at the Same Time

7.3.3 Summary

In this section, we considered the resource allocation in a multi-user DAS network. We
first studied the optimal power allocation strategy for each user in a CDMA-based DAS,
and then focused on efficient and fair resource allocation among multiple users. We took
the example of opportunistic transmission and showed that a DAS has a great potential
to fully exploit the multi-user diversity gain, and at the same time to achieve a good
balance between efficiency and fairness.

In a DAS, each remote antenna connects to only a small set of users and each user
only receives signals from its own virtual cell. This can bring huge performance gain,
i.e., better frequency reuse, larger channel fluctuation, better interference management,
and less transmit power; however, it also raises a great challenge: how to perform the
resource allocation with a reasonable level of complexity, for example, in a distributed
way. In addition, to perform a fair and efficient resource allocation among users, not
only the channel state information but the users’ QoS requirements need to be taken
into consideration. A comprehensive cross-layer model for DASs would be helpful for
jointly optimizing the resource allocation.

7.4 CONCLUSION

This chapter studied the optimal resource allocation strategies for DAS networks. In
contrast to MIMO systems where resource allocation is usually conducted as performance
enhancement, in DASs, resources must be allocated adaptively to the channel states
due to the large differences among subchannels. Equal allocation will lead to severe
performance degradation. Fortunately, only long-term channel statistics are required to
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perform the adaptive resource allocation. The resource allocation strategies in a multi-
user scenario were also checked, and a DAS is able to fully exploit the multi-user diversity
gain and achieve a good tradeoff between efficiency and fairness.

There are still quite a lot of open issues in this field. For example, to perform the pro-
posed resource allocation strategies in practical scenarios, the effect of Doppler spread
and frequency selectivity of the channels as well as synchronization and feedback errors
needs to be taken into consideration. Furthermore, distributed algorithms have to be
developed to realize the multi-user resource allocation in a large scale network, while at
the same time central control is also required to balance the efficiency and fairness. Fi-
nally, the cross-layer optimization with link layer techniques such as ARQ or application
layer requirements would be highly desired.
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