EE 4015 Digital Signal Processing

Semester A 2022-2023

Assignment 1

"It is not that I'm so smart. But I stay with the questions much longer." ~ Albert Einstein

Due Date: 11:00PM, Oct. 4, 2022 (Week 6)

1. Find the Continuous-Time Fourier Series coefficients for the following continuous-time signal:

$$
x(t)= \begin{cases}1, & 1>t>0 \\ 2, & 2>t>1\end{cases}
$$

with fundamental period of $T=2$.
[10 marks]
2. Compute the Continuous-Time Fourier Transform of $x(t)=e^{-2|t-1|}$.
[10 marks]
3. Consider a discrete-time system with input $x[n]$ and output $y[n]$, which is related by the following equation:

$$
y[n]=x[n] x[n-1]-3 x[n+2]
$$

(a) Is the system causal? Explain your answer.
(b) Is the system linear? Explain your answer.
(c) Is the system time-invariant? Explain your answer.
(d) Is the system stable? Explain your answer.
(e) Determine $y[n]$ when the input is $x[n]=2 u[n-2]+u[n-1]$. Write down the values of $y[0], y[1], y[2]$, and $y[3]$.
4. Consider two discrete-time signals $x[n]=u[-1-n]$ and $h[n]=(0.5)^{n} u[n]$, and compute $y[n]=x[n] * h[n]$ using the convolution formula.
[10 marks]
5. Let $x[n]=\{1,4,0,2\}$ and $h[n]=\{1,2,1\}$. Find their convolution with both of the sequence start at $n=0$.
[10 marks]
6. Given a continuous-time signal:

$$
x(t)=\sin \left(\frac{\pi}{2} t\right)
$$

We sample it with a sampling period $T=1 \mathrm{sec}$. to produce the discrete-time signal $x[n]$. Find $x[0], x[1], x[2], x[3]$ and $x[4]$. Is $x[n]$ a periodic signal?
[10 marks]
7. Figure 1 shows a discrete-time system which consists of an interconnection of four LTI systems with impulse responses $h_{1}[n], h_{2}[n], h_{3}[n]$, and $h_{4}[n]$. Determine the overall impulse response of the system, $h[n]$, in terms of $h_{1}[n], h_{2}[n], h_{3}[n]$, and $h_{4}[n]$.

Figure 1
[10 marks]
8. For an analog signal of $x(t)=3 \cos (70 \pi t)$, find the Nyquist sampling rate in Hz and also determine the discrete-time angular frequency and the discrete-time signal $x[n]$ mathematical expression of $x(t)$ sampled at the Nyquist rate.
[10 marks]
9. A difference equation for a particular discrete-time system is given by

$$
y[n]=0.1 x[n]-0.1 x[n-1]+0.8 x[n-3]+0.1 x[n-4]+0.6 x[n-6]
$$

Find the impulse response of the system.

