EE4015 Digital Signal Processing
 Semester A 2022-2023

Solution for Assignment 1

Solution of Question 1

The signal has period $T=2$ and fundamental frequency $\Omega_{o}=\pi$. Consider the period from $t=-1$ to $t=1$ and use Continuous-Time Fourier Series analysis equation:

$$
a_{k}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-k \Omega_{0} t} d t=\frac{1}{2}\left[\int_{-1}^{0} 2 e^{-j k \pi t} d t+\int_{0}^{1} e^{-j k \pi t} d t\right]
$$

For $k=0$,

$$
a_{0}=\frac{1}{2}\left[\int_{-1}^{0} 2 d t+\int_{0}^{1} 1 d t\right]=\frac{1}{2}[2+1]=1.5
$$

For $k \neq 0$,

$$
\begin{aligned}
a_{k} & =\frac{1}{2}\left[\int_{-1}^{0} 2 e^{-j k \pi t} d t+\int_{0}^{1} e^{-j k \pi t} d t\right] \\
& =\frac{1}{2}\left[\left.\frac{2}{-j k \pi} e^{-j k \pi t}\right|_{-1} ^{0}+\left.\frac{1}{-j k \pi} e^{-j k \pi t}\right|_{0} ^{1}\right] \\
& =-\frac{1}{2 j k \pi}\left[2-2 e^{j k \pi}+e^{-j k \pi}-1\right] \\
& =-\frac{1}{2 j k \pi}\left[1-2 e^{j k \pi}+e^{-j k \pi}\right]
\end{aligned}
$$

Combining the results, we have:

$$
a_{k}=\left\{\begin{array}{cc}
1.5, & k=0 \\
-\frac{1}{2 j k \pi}\left[1-2 e^{j k \pi}+e^{-j k \pi}\right] & k \neq 0
\end{array}\right.
$$

Solution of Question 2

We first re-express $x(t)$ as

$$
x(t)=e^{-2|t-1|}=\left\{\begin{array}{rr}
e^{-2(t-1)}, & t>1 \\
e^{2(t-1)}, & t<1
\end{array}\right.
$$

According to Continuous-Time Fourier transform, we obtain:

$$
\begin{aligned}
X(j \Omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t \\
& =\int_{-\infty}^{1} e^{2(t-1)} e^{-j \Omega t} d t+\int_{1}^{\infty} e^{-2(t-1)} e^{-j \Omega t} d t \\
& =\frac{e^{-j \Omega}}{2-j \Omega}+\frac{e^{-j \Omega}}{2+j \Omega} \\
& =\frac{4 e^{-j \Omega}}{4+\Omega^{2}}
\end{aligned}
$$

Solution of Question 3

$$
y[n]=x[n] x[n-1]-3 x[n+2]
$$

(a) The system is not causal.
(1 mark)
It is because $y[n]$ depends on future system input, e.g., $y[n]$ depends on the future input of $x[n+2]$.
(b) The system is not linear.

Let $y_{i}[n]=T\left\{x_{i}[n]\right\}, i=1,2,3$ with $x_{3}[n]=a x_{1}[n]+b x_{2}[n]$. The system outputs for $x_{1}[n]$ and $x_{2}[n]$ are $y_{1}[n]=x_{1}[n] x_{1}[n-1]-3 x_{1}[n+2]$ and $y_{2}[n]=x_{2}[n] x_{2}[n-1]-$ $3 x_{2}[n+2]$. Then
$y_{3}[n]=T\left\{x_{3}[n]\right\}=\left(a x_{1}[n]+b x_{2}[n]\right)\left(a x_{1}[n-1]+b x_{2}[n-1]\right)-3\left(a x_{1}[n+2]+\right.$ $\left.b x_{2}[n+2]\right)$

$$
\neq a T\left\{x_{1}[n]\right\}+b T\left\{x_{2}[n]\right\}
$$

$$
=a x_{1}[n] x_{1}[n-1]-3 b x_{1}[n+2]+b x_{2}[n] x_{2}[n-1]-3 b x_{2}[n+2]
$$

(c)

The system is time-invariant.
It is because

$$
y\left[n-n_{o}\right]=T\left\{x\left[n-n_{o}\right]\right\}=x\left[n-n_{o}\right] x\left[n-n_{o}-1\right]-3 x\left[n-n_{o}+2\right]
$$

(d)

The system is stable.
For bounded input $|x[n]| \leq S$, the output is bounded by $|y[n]| \leq S^{2}+3 S$.
(e)

The input is now:

$$
x[n]=2 u[n-2]+u[n-1]
$$

As a result,

$$
\begin{gathered}
y[n]=(2 u[n-2]+u[n-1])(2 u[n-3]+u[n-2])-3(2 u[n]+u[n+1]) \\
=4 u[n-3]+2 u[n-3]+2 u[n-2]+u[n-2]-6[u[n]-3 u[n+1] \\
=6 u[n-3]+3 u[n-2]-6[u]-3 u[n+1]
\end{gathered}
$$

(4 marks)
Hence, $y[0]=-9, y[1]=-9, y[2]=-6, y[3]=0$
(4 marks)

Solution of Question 4

Consider two discrete-time signals $x[n]=u[-1-n]$ and $h[n]=(0.5)^{n} u[n]$, and compute $y[n]=x[n] * h[n]$ using the convolution formula.

$$
\begin{aligned}
y[n] & =\sum_{m=-\infty}^{\infty} x[m] h[n-m]=\sum_{m=-\infty}^{\infty} u[-m-1] \cdot(0.5)^{n-m} u[n-m] \\
& =\sum_{m=-\infty}^{-1}(0.5)^{n-m} u[n-m] \\
& =\sum_{l=1}^{\infty}(0.5)^{n+l} u[n+l]
\end{aligned}
$$

For $n \geq-1$, all $\{u[n+l]\}$ correspond to 1 and we have:

$$
y[n]=\sum_{l=1}^{\infty}(0.5)^{n+l}=(0.5)^{n} \sum_{l=1}^{\infty}(0.5)^{l}=(0.5)^{n} \cdot \frac{0.5}{1-0.5}=(0.5)^{n}
$$

For $n<-1, u[n+l]=1$ when $n+l \geq 0$ or $l \geq-n$

$$
y[n]=\sum_{l=-n}^{\infty}(0.5)^{n+l}=(0.5)^{n} \sum_{l=-n}^{\infty}(0.5)^{l}=(0.5)^{n} \cdot \frac{(0.5)^{-n}}{1-0.5}=2
$$

Combining the results, we have:

$$
y[n]=\left\{\begin{array}{cc}
(0.5)^{n}, & n \geq-1 \\
2, & n<-1
\end{array}\right.
$$

Solution of Question 5

Let $x[n]=\{1,4,0,2\}$ and $h[n]=\{1,2,1\}$. Find their convolution with both of the sequence start at $n=0$.

$$
x[n] * h[n]=\{1,4,0,2\} *\{1,2,1\}=\{1,6,9,6,4,2\}
$$

Solution of Question 6

$x[0]=0, x[1]=1, x[2]=0, x[3]=-1$ and $x[4]=0$.
Yes. $x[n]$ is a periodic signal.

Solution of Question 7

$$
\begin{gathered}
h[n]=h_{1}[n] * h_{3}[n] * h_{4}[n]+h_{1}[n] * h_{2}[n] \\
h[n]=h_{1}[n] *\left(h_{3}[n] * h_{4}[n]+h_{2}[n]\right)
\end{gathered}
$$

Solution of Question 8

For an analog signal of $x(t)=3 \cos (70 \pi t)$, find the Nyquist sampling rate in Hz and also determine the discrete-time angular frequency and the discrete-time signal $x[n]$ mathematical expression of $x(t)$ sampled at the Nyquist rate.

The maximum frequency component of $x(t)$ is

$$
F_{\max }=\frac{70 \pi}{2 \pi}=35 \mathrm{~Hz}
$$

Therefore, according to sampling theorem, we the Nyquist sampling rate is

$$
F_{s}=2 F_{\max }=70 \mathrm{~Hz}
$$

The discrete-time angular frequency of the sampled signal is

$$
\omega=2 \pi \frac{35}{70}=\pi
$$

The discrete-time signal $x[n]$ can be expressed as

$$
x[n]=3 \cos (n \pi)
$$

Solution of Question 9

A difference equation for a particular discrete-time system is given by

$$
y[n]=0.1 x[n]-0.1 x[n-1]+0.8 x[n-3]+0.1 x[n-4]+0.6 x[n-6]
$$

This is a difference equation of an FIR discrete-time system, then the impulse response is $\{0.1,-0.1,0,0.8,0.1,0,0.6\}$, the first sample is the index $\mathrm{n}=0$. For $\mathrm{n}<0$ and $\mathrm{n}>6$ are zero.

