EE 4015 Digital Signal Processing

Semester A 2022-2023

Assignment 2

"It is not that I'm so smart. But I stay with the questions much longer." ~ Albert Einstein

Due Date: 11:00PM, Nov. 1, 2022 (Week 10)

1. A stable discrete-time system with input $x[n]$ and output $y[n]$ is described by the following difference equation:

$$
y[n]=0.1 y[n-1]+0.12 y[n-2]+7 x[n]
$$

(a) Determine the transfer function $H(z)$ of this system.
(b) Find all pole and zero locations of $H(z)$.
(c) Determine the impulse response $h[n]$ of the system.
(d) Compute the magnitude and phase responses of $H\left(e^{j \omega}\right)$ which is the discrete-time Fourier transform (DTFT) of $h[n]$.
2. Figure 1 shows the block diagram representation of a causal linear time-invariant system with input $x[n]$ and output $y[n]$. Note that a is a real number.

Figure 1
(a) Determine the system transfer function $H(z)$.
(b) Determine the system impulse response $h[n]$.
(c) For what range of values of a is the system stable?
3. Consider a causal LTI system whose system function is

$$
H(z)=\frac{1-\frac{1}{5} z^{-1}}{\left(1-\frac{1}{2} z^{-1}+\frac{1}{3} z^{-2}\right)\left(1+\frac{1}{4} z^{-1}\right)}
$$

Draw the signal flow graphs for the system in each of the following forms:
(a) Direct form
(b) Canonic form
(c) Cascade form using canonic form sections
(d) Parallel form using canonic form sections
[20 marks]
4. The impulse response of an LTI system is:

$$
h[n]=\delta[n]-\delta[n-1]
$$

Let the system input and output be $x[n]$ and $y[n]$, respectively.
(a) Does $h[n]$ correspond to a linear phase discrete-time system? Explain your answer.
[5 marks]
(b) Determine $H[k]$, which is the Discrete Fourier Transform (DFT) of $h[n]$.
[6 marks]
(c) Determine the system transfer function $H(z)$. Then find all pole and zero locations of $H(z)$.
[6 marks]
(d) Compute the system frequency response $H\left(e^{j \omega}\right)$. Then determine its magnitude and phase responses, that is, $\left|H\left(e^{j \omega}\right)\right|$ and $\angle H\left(e^{j \omega}\right)$.
[12 marks]
(e) Compute the maximum and minimum values of $\left|H\left(e^{j \omega}\right)\right|$. The system should be one of the following: lowpass, highpass, bandpass or bandstop filter. Which of them?
[10 marks]
(f) Compute $y[n]$ when $x[n]=\cos (\pi n / 2)$ for all n.

