Exercises for Week 2

1. Determine whether the following discrete-time system, with input signal $x[n]$ and output signal $y[n]$ is stable, causal, linear, and/or time-invariant:

$$
y[n]=a x[n+1]+b, \quad 0<|a|<\infty, 0<|b|<\infty
$$

2. Consider a linear time-invariant (LTI) discrete-time system with input $x[n]$, output $y[n]$ and impulse response $h[n]$. With the use of the convolution formula, show that the following two statements regarding causality are identical:
(i) Output at time n depends on input up to time n
(ii) $\quad h[n]=0$ for $n<0$
3. Describe the operation of a LTI discrete-time system whose impulse response is $h[n]=$ $0.5 \delta[n]+0.5 \delta[n-1]$ by relating the input and output. Is the system stable? Why? Is it causal? Why?
4. Compute $y[n]$ for all values of n :

$$
y[n]=a^{n} u[n] * a^{n} u[n]
$$

5. Determine the convolution of the following two discrete-time signals:

$$
x[n]=\left\{\begin{array}{lc}
n^{2}, & -2 \leq n \leq-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
h[n]= \begin{cases}n-1, & 2 \leq n \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

Solutions for Exercise 2

Question 1

$$
y[n]=a x[n+1]+b, \quad 0<|a|<\infty, 0<|b|<\infty
$$

Stability

If $x[n]$ is bounded, then $y[n]=a x[n+1]+b$ is bounded for bounded a and b. As a result, $y[n]$ is bounded and the system is stable. In a more rigorous manner, we have:

$$
\begin{aligned}
& |x[n]|<B_{x}<\infty \quad \text { (Bounded Input) } \\
& |y[n]|=|a x[n+1]+b| \leq|a| B_{x}+|b|=B_{y}<\infty \text { (Bounded Output) }
\end{aligned}
$$

where we see $|x[n+1]|<B_{x}<\infty$ or $|x[n]|<B_{x}<\infty$ must give $|y[n]|<B_{y}<\infty$.

Causality

It is not causal because $y[n]$ depends on future input, namely, $x[n+1]$.

Linearity

The system outputs for $x_{1}[n]$ and $x_{2}[n]$ are:

$$
y_{1}[n]=a x_{1}[n+1]+b \quad \text { and } \quad y_{2}[n]=a x_{2}[n+1]+b
$$

Consider $x_{3}[n]=\alpha x_{1}[n]+\beta x_{2}[n]$, its system output is then:

$$
\begin{aligned}
y_{3}[n] & =a x_{3}[n+1]+b=a\left(\alpha x_{1}[n+1]+\beta x_{2}[n+1]\right)+b \\
& =a \alpha x_{1}[n+1]+a \beta x_{2}[n+1]+b \\
& \neq \alpha y_{1}[n]+\beta y_{2}[n] \\
& =\alpha a x_{1}[n+1]+\alpha b+\beta a x_{2}[n+1]+\beta b
\end{aligned}
$$

As a result, this system is not linear.

Time-invariance

First, we have:

$$
\begin{aligned}
y[n] & =a x[n+1]+b \\
y\left[n-n_{0}\right] & =a x\left[n-n_{0}+1\right]+b
\end{aligned}
$$

Consider $x_{1}[n]=x\left[n-n_{0}\right]$, its system output is

$$
y_{1}[n]=a x\left[n-n_{0}+1\right]+b=y\left[n-n_{0}\right]
$$

Hence the system is time-invariant.

Question 2

Expanding the convolution formula as:

$$
\begin{aligned}
& y[n]=\sum_{k=-\infty}^{\infty} h[k][x[n-k] \\
& =\cdots+h[-2] \cdot x[n+2]+h[-1] \cdot x[n+1]+h[0] \cdot x[n]+h[1] \cdot x[n-1]+h[2] \cdot x[n-2]+\cdots
\end{aligned}
$$

If $y[n]$ does not depend on future inputs $x[n+1], x[n+2], \ldots$, we must have $h[-1]=h[-2]=$ $\cdots=0$ or $h[n]=0$ for $n<0$.

As a result, the two statements regarding causality are identical.

Question 3

Let $x[n]$ and $y[n]$ be the discrete-time input and output of the system with impulse response $h[n]$. Using the relationship of convolution, we have:

$$
\begin{aligned}
& \quad y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty} x[k] \cdot 0.5 \cdot(\delta[n-k]+\delta[n-1-k]) \\
& =0.5(x[n]+x[n-1])
\end{aligned}
$$

The system operates as an averager which gives an average value of $x[n]$ and $x[n-1]$ at time n. It is stable because

$$
\sum_{n=-\infty}^{\infty}|h[n]|=|0.5|+|0.5|=1<\infty
$$

It is causal because $h[n]=0$ when $n<0$. Note that the relationship between system input and output can be obtained from impulse response or vice versa.

Question 4

$$
\begin{aligned}
& y[n]=a^{n} u[n] * a^{n} u[n] \\
& y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty} a^{k} u[k] \cdot a^{n-k} u[n-k] \\
&= \sum_{k=0}^{\infty} a^{n} u[n-k]=a^{n} \sum_{k=0}^{\infty} u[n-k] \\
&=a^{n} \sum_{m=-\infty}^{n} u[k], \quad m=n-k
\end{aligned}
$$

Since $u[m]=0$ for $m<0, y[n]=0$ for $n<0$. For example,

$$
y[-1]=a^{n} \sum_{m=-\infty}^{-1} u[m]=a^{n}[\cdots+0+0]=0
$$

For $n \geq 0, y[n]$ is:

$$
y[n]=a^{n} \sum_{m=0}^{n} 1
$$

Evaluating $y[n]$ for some $n \geq 0$:

$$
\begin{aligned}
& y[0]=a^{n} \sum_{m=0}^{0} 1=a^{n} \\
& y[1]=a^{n} \sum_{m=0}^{1} 1=a^{n}(1+1)=2 a^{n} \\
& y[2]=a^{n} \sum_{m=0}^{2} 1=a^{n}(1+1+1)=3 a^{n} \\
& y[n]=a^{n} \sum_{m=0}^{n} 1=(n+1) a^{n}
\end{aligned}
$$

As a result, we have

$$
y[n]=(n+1) a^{n} u[n]
$$

Question 5

The convolution is computed as:

$$
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

From the signal description, we see that $x[n]$ and $h[n]$ are non-zero only for

$$
\begin{gathered}
x[-2]=4 \text { and } x[-1]=1 \\
h[2]=1 \text { and } h[3]=2
\end{gathered}
$$

Expanding the convolution sum, we have:

$$
\begin{aligned}
& y[n]= \sum_{k=-\infty}^{\infty} x[k][h[n-k] \\
&= \cdots+x[-2] \cdot h[n+2]+x[-1] \cdot h[n+1]+x[0] \cdot h[n]+x[1] \cdot h[n-2]+\cdots \\
& \Rightarrow \quad y[n]=x[-2] \cdot h[n+2]+x[-1] \cdot h[n+1]
\end{aligned}
$$

via considering the non-zero values of $x[n]$.
By considering the non-zero values of $h[n](h[2]=1$ and $h[3]=2)$ as well:
$y[0]=x[-2] \cdot h[0+2]+x[-1] \cdot h[0+1]=x[-2] \cdot h[2]+x[-1] \cdot h[1]=4 \cdot 1+1 \cdot 0=4$
$y[1]=x[-2] \cdot h[1+2]+x[-1] \cdot h[1+1]=x[-2] \cdot h[3]+x[-1] \cdot h[2]=4 \cdot 2+1 \cdot 1=9$
$y[2]=x[-2] \cdot h[2+2]+x[-1] \cdot h[2+1]=x[-2] \cdot h[4]+x[-1] \cdot h[3]=4 \cdot 0+1 \cdot 2=2$
As a result, we have:

$$
y[n]=\left\{\begin{array}{lc}
4, & n=0 \\
9, & n=1 \\
2, & n=2 \\
0, & \text { otherwise }
\end{array}\right.
$$

Or

$$
y[n]=4 \delta[n]+9 \delta[n-1]+2 \delta[n-2]
$$

