EE4015 Exercises for Week 6

1. Determine the z-transform of

$$
x[n]=(0.5)^{n}(u[n+5]-u[n-5])
$$

Specify its region of convergence (ROC).
2. A causal linear time-invariant (LTI) system has impulse response $h[n]$ and its z-transform is

$$
H(z)=\frac{1+z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+\frac{1}{4} z^{-1}\right)}
$$

(a) What is the ROC of $H(z)$?
(b) Is the system stable? Why?
(c) Find the impulse response $h[n]$ of the system.
3. If the input $x[n]$ to a LTI system is $x[n]=u[n]$, the system output $y[n]$ is

$$
y[n]=\left(\frac{1}{2}\right)^{n-1} u[n+1]
$$

(a) Find $H(z)$, the z-transform of the system impulse response, and plot its pole-zero diagram.
(b) Find the system impulse response $h[n]$.
(c) Is the system stable?
(d) Is the system causal?

Hint: Consider the z-transform convolution property:

$$
x_{1}[n] * x_{2}[n] \stackrel{Z}{\leftrightarrow} X_{1}(z) \cdot X_{2}(z), \quad \text { ROC includes } R_{x 1} \cap R_{x 2}
$$

Solution

1.

$$
\begin{aligned}
X(z) & =\sum_{n=-5}^{4}\left(0.5 z^{-1}\right)^{n} \\
& =\left(\frac{0.5}{z}\right)^{-5}+\left(\frac{0.5}{z}\right)^{-4}+\cdots+\left(\frac{0.5}{z}\right)^{4} \\
& =(0.5)^{-5} z^{5}+(0.5)^{-4} z^{4}+\cdots+(0.5)^{4} z^{-4} \\
& =\left(0.5 z^{-1}\right)^{-5} \frac{1-\left(0.5 z^{-1}\right)^{10}}{1-0.5 z^{-1}} \\
& =\frac{\left(0.5 z^{-1}\right)^{-5}-\left(0.5 z^{-1}\right)^{5}}{1-0.5 z^{-1}}
\end{aligned}
$$

Basically, this is a finite duration sequence with 10 non-zero samples. Thus, the ROC is $0<|z|<\infty$. In the last expression, the pole at $z=0.5$ is cancelled by the zero at $z=0.5$.
2.(a)

There are two poles, namely, 0.5 and -0.25 . Since the system is causal, $h[n]$ should be a right-sided sequence, hence the ROC should be $|z|>0.5$.
2.(b)

The system is stable since the ROC includes the unit circle.
2.(c)

$$
\begin{aligned}
& H(z)=\frac{1+z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+\frac{1}{4} z^{-1}\right)}=\frac{2}{1-\frac{1}{2} z^{-1}}-\frac{1}{1+\frac{1}{4} z^{-1}}, \quad|z|>0.5 \\
& \Rightarrow \quad h[n]=2\left(\frac{1}{2}\right)^{n} u[n]-\left(-\frac{1}{4}\right)^{n} u[n]
\end{aligned}
$$

3.(a)

The z-transform of the input signal is

$$
x[n] \stackrel{z}{\leftrightarrow} X(z)=\frac{1}{1-z^{-1}}, \quad|z|>1
$$

The output signal can be written as:

$$
y[n]=\left(\frac{1}{2}\right)^{n-1} u[n+1]=4\left(\frac{1}{2}\right)^{n+1} u[n+1]
$$

Using $a^{n} u[n] \stackrel{Z}{\leftrightarrow} \frac{1}{1-a z^{-1}}, \quad|z|>|a|$ and the time shifting property of $x[n+1] \stackrel{Z}{\leftrightarrow} z X(z)$, we have

$$
y[n] \stackrel{Z}{\leftrightarrow} Y(z)=\frac{4 z}{1-0.5 z^{-1}}, \quad|z|>0.5
$$

As a result, $H(z)$ is

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{4 z\left(1-z^{-1}\right)}{1-0.5 z^{-1}}=\frac{4 z(z-1)}{z-0.5}, \quad|z|>0.5
$$

Note that:

- One pole in $H(z)$ means that there are only two ROC possibilities: $|z|>0.5$ or $|z|<0.5$
- $|z|>0.5$ includes $|z|>1 \cap|z|>0.5$

3.(b)

$$
\begin{aligned}
& H(z)=\frac{4 z(z-1)}{z-0.5}=\frac{4 z}{1-0.5 z^{-1}}-\frac{4}{1-0.5 z^{-1}}, \quad|z|>0.5 \\
=> & h[n]=4(0.5)^{n+1} u[n+1]-4(0.5)^{n} u[n]=4 \delta[n+1]-2(0.5)^{n} u[n]
\end{aligned}
$$

3.(c)

It is stable because $\sum_{n=-\infty}^{\infty}|h[n]|<\infty$. (Or the ROC contains the unit circle)
3.(d)

It is not causal as $h[-1]=4 \neq 0$.
It is noteworthy that although $|z|>0.5$ implies the discrete-time signal is a right-sided sequence, it can be non-causal. That is, right-sided sequence is not necessarily a causal signal.

