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Discrete-Time Systems
• A discrete-time system is a device or algorithm that operates on a 

discrete-time signal (or sequence) 𝑥[𝑛] called the input to produce 
another discrete-time signal called the output or response 𝑦[𝑛] .

• where the symbol 𝑇 denotes the transformation or processing 
performed by the system on 𝑥[𝑛] to produce 𝑦[𝑛]

Discrete-Time
System
𝑇{ # }

𝑥[𝑛] 𝑦[𝑛]

}𝑦 𝑛 = 𝑇{𝑥 𝑛

3L.M. Po



Classification of Discrete-Time Systems
• In the system analysis, it is desirable to classify the systems according to their 

general properties. 

• General Categories of DT Systems are: 

§ Memoryless Systems 

§ Time-Invariant Systems 

§ Linear Systems 

§ Causal Systems 

§ Stable Systems 
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Memoryless Systems
• A discrete-time system is called memoryless if its output at any instant 𝑛

depends at most on the input sample at the same time, but not on past 
or future samples of the input.

• Example memoryless systems:
§ 𝑦 𝑛 = 𝑎 𝑥 𝑛
§ 𝑦 𝑛 = 𝑛 𝑥 𝑛 + 𝑏 𝑥 𝑛 !

• The output of these systems 𝑦 𝑛 are only depends on 𝑥 𝑛
• They are all memoryless systems
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Memory Systems
• On the other hand, the systems described by the following input/output 

relations, such as 

§ 𝑦 𝑛 = 2𝑥 𝑛 + 3𝑥 𝑛 − 1

§ 𝑦 𝑛 = ∑"#$% 𝑥[𝑛 − 𝑘]
• These are systems with memory as their outputs depend on previous 

input samples.
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Time-Invariant Systems
• A time-invariant system is defined as follows:

• Specifically, a system is time invariant if a time shift in the input signal 
results in an identical time shift in the output signal.  

𝑇{ # }𝑥 𝑛 𝑇 𝑥 𝑛 = 𝑦 𝑛

𝑇{ # }𝑥 𝑛 − 𝑛! 𝑇 𝑥 𝑛 − 𝑛! = 𝑦 𝑛 − 𝑛!
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Time-Invariant System Example 1
• Determine if the system is time variant or time invariant. 

§ 𝑦 𝑛 = 𝑇 𝑥 𝑛 = 𝑥 𝑛

• The response of this system to 𝑥 𝑛 − 𝑘 is 

§ 𝑇 𝑥 𝑛 − 𝑘 = 𝑥 𝑛 − 𝑘

• Now if we delay 𝑦 𝑛 by 𝑘 units in time, we obtain 

§ 𝑦 𝑛 − 𝑘 = 𝑥 𝑛 − 𝑘

• This system is time-invariant, since 

§ 𝑇 𝑥 𝑛 − 𝑘 = 𝑥 𝑛 − 𝑘 = 𝑦 𝑛 − 𝑘
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Time-Invariant System Example 2
• Determine if the system is time variant or time invariant. 

§ 𝑦 𝑛 = 𝑇 𝑥 𝑛 = 𝑛𝑥 𝑛

• The response of this system to 𝑥 𝑛 − 𝑘 is 

§ 𝑇 𝑥 𝑛 − 𝑘 = 𝑛𝑥 𝑛 − 𝑘

• Now if we delay 𝑦 𝑛 by 𝑘 units in time, we obtain 

§ 𝑦 𝑛 − 𝑘 = 𝑛 − 𝑘 𝑥 𝑛 − 𝑘

• This system is time-variant, since 

§ 𝑇 𝑥 𝑛 − 𝑘 = 𝑛𝑥 𝑛 − 𝑘 ≠ 𝑦 𝑛 − 𝑘 = 𝑛 − 𝑘 𝑥 𝑛 − 𝑘
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Superposition Condition
• A superposition system is defined as follows:

𝑇{ # }𝑥" 𝑛 𝑦" 𝑛 =𝑇{𝑥" 𝑛 }

𝑇{ # }𝑥# 𝑛 𝑦# 𝑛 =𝑇{𝑥# 𝑛 }

𝑇{ # }𝑥" 𝑛 + 𝑥# 𝑛 𝑦 𝑛 = 𝑦" 𝑛 + 𝑦# 𝑛
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Homogeneity Condition
• A homogeneity system is defined as follows:

• For arbitrary constants 𝑎:

𝑇{ # }𝑥" 𝑛 𝑦" 𝑛 =𝑇{𝑥" 𝑛 }

𝑇{ # }𝑎 𝑥" 𝑛 𝑦 𝑛 = 𝑎 𝑦" 𝑛
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Linear Systems : Superposition and Homogeneity
• Linear systems satisfy both superposition and homogeneous conditions:

• For arbitrary constants 𝑎& and 𝑎! :

𝑇{ # }𝑥" 𝑛 𝑦" 𝑛 =𝑇{𝑥" 𝑛 }

𝑇{ # }𝑥# 𝑛 𝑦# 𝑛 =𝑇{𝑥# 𝑛 }

𝑇{ # }𝑎"𝑥" 𝑛 + 𝑎#𝑥# 𝑛 𝑦 𝑛 = 𝑎"𝑦" 𝑛 + 𝑎#𝑦# 𝑛
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Linear System Example 1
• Determine the 3-sample average system is linear or Not. 

§ 𝑦 𝑛 = !
"
𝑥 𝑛 + 𝑥 𝑛 − 1 + 𝑥 𝑛 − 2 = 𝑇 𝑥 𝑛

• The response of this system to {𝑎!𝑥! 𝑛 + 𝑎#𝑥# 𝑛 } is 𝑇 𝑎!𝑥! 𝑛 + 𝑎#𝑥# 𝑛

=
1
3 𝑎!𝑥! 𝑛 + 𝑎#𝑥# 𝑛 + 𝑎!𝑥! 𝑛 − 1 + 𝑎#𝑥# 𝑛 − 1 + 𝑎!𝑥! 𝑛 − 2 + 𝑎#𝑥# 𝑛 − 2

= !
"
𝑎!𝑥! 𝑛 + 𝑎!𝑥! 𝑛 − 1 + 𝑎!𝑥! 𝑛 − 2 + !

"
𝑎#𝑥# 𝑛 + 𝑎#𝑥# 𝑛 − 1 + 𝑎#𝑥# 𝑛 − 2

= 𝑎!𝑦! 𝑛 + 𝑎#𝑦# 𝑛

• The 3-sample average is a linear system
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Linear System Example 2
• Determine the squared input system is linear or Not. 

§ 𝑦 𝑛 = 𝑇 𝑥 𝑛 = 𝑥 𝑛 !

• Let 𝑦" 𝑛 =𝑇 𝑥" 𝑛 = 𝑥" 𝑛 ! and  𝑦! 𝑛 =𝑇 𝑥! 𝑛 = 𝑥! 𝑛 !

• The response of this system to {𝑎"𝑥" 𝑛 + 𝑎!𝑥! 𝑛 } is 𝑇 𝑎"𝑥" 𝑛 + 𝑎!𝑥! 𝑛

= 𝑎!𝑥! 𝑛 + 𝑎#𝑥# 𝑛 # = 𝑎!𝑥! 𝑛 # + 𝑎#𝑥# 𝑛 # + 2𝑎!𝑎#𝑥! 𝑛 𝑥# 𝑛

• This is NOT equal to 𝑎"𝑦" 𝑛 + 𝑎!𝑦! 𝑛 = 𝑎" 𝑥" 𝑛 ! + 𝑎! 𝑥! 𝑛 !

• This system is non-linear.
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Linear System Example 3
• Determine this system is linear or Not. 

§ 𝑦 𝑛 = 𝑇 𝑥 𝑛 = 𝑛 𝑥 𝑛

• Let 𝑦" 𝑛 =𝑇 𝑥" 𝑛 = 𝑛𝑥" 𝑛 and  𝑦! 𝑛 =𝑇 𝑥! 𝑛 = 𝑛𝑥! 𝑛

• The response of this system to {𝑎"𝑥" 𝑛 + 𝑎!𝑥! 𝑛 } is

𝐻 𝑎!𝑥! 𝑛 + 𝑎#𝑥# 𝑛 = 𝑛 𝑎"𝑥" 𝑛 + 𝑎#𝑥# 𝑛 = 𝑎"𝑛𝑥" 𝑛 + 𝑎#𝑛𝑥# 𝑛

• This is equal to 𝑎"𝑦" 𝑛 + 𝑎!𝑦! 𝑛

• This system is linear.
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Causal Systems
• A system is said to be causal if the output of the system at any time ‘n’ 

depends only on present and past inputs but does not depend on future 
inputs. 

• If a system does not satisfy this definition, it is called noncausal. 

§ The noncausal systems have outputs that depend not only on present 
and past inputs but also on future inputs. 
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Causal and Noncausal System Examples
• Causal System Examples

§ 𝑦 𝑛 = 𝑥 𝑛 + 3𝑥 𝑛 − 1

§ 𝑦 𝑛 = 2𝑥 𝑛

• Noncausal System Examples
§ 𝑦 𝑛 = 𝑥 𝑛 + 3𝑥 𝑛 + 2

§ 𝑦 𝑛 = 𝑥 −𝑛

• Let n = -1 ⇒ y[-1]= x [1], the output at n = -1 depends on the input at n = 1. 
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Causal System Exercise

• Determine whether the following systems are causal or not.

1. 𝑦 𝑛 = 0.5𝑥 𝑛 + 2.5𝑥 𝑛 − 2 , 𝑓𝑜𝑟 𝑛 ≥ 0

2. 𝑦 𝑛 = 0.25𝑥 𝑛 − 1 + 2.5𝑥 𝑛 + 2 − 0.4𝑦[𝑛 − 1], 𝑓𝑜𝑟 𝑛 ≥ 0
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Causal System Exercise
• Determine whether the following systems are causal or not.

1. 𝑦 𝑛 = 0.5𝑥 𝑛 + 2.5𝑥 𝑛 − 2 , 𝑓𝑜𝑟 𝑛 ≥ 0

2. 𝑦 𝑛 = 0.25𝑥 𝑛 − 1 + 2.5𝑥 𝑛 + 2 − 0.4𝑦[𝑛 − 1], 𝑓𝑜𝑟 𝑛 ≥ 0

Solution

1) Causal
2) Non-causal 
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Stable Systems : BIBO Stable
• A discrete signal 𝑥 𝑛 is bounded if there exists a finite 𝐵' such that 
𝑥 𝑛 < 𝐵' for all 𝑛. 

• A discrete-time system in Bounded Input-Bounded Output (BIBO) stable 
if every bounded input sequence 𝑥 𝑛 produced a bounded output 
sequence. 

§ If  𝑥[𝑛]()* ≤ 𝐵', then 𝑦[𝑛]()* ≤ 𝐵+

Bounded Input Bounded Output 
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Stable System Example
• A discrete-time system with difference equation of

§ 𝑦 𝑛 = 𝑛𝑦 𝑛 − 1 + 𝑥 𝑛 , 𝑛 > 0

§ The system at rest (i.e. 𝑦 −1 = 0)

• Check if the system is BIBO stable?
• If 𝑥 𝑛 = 𝑢 𝑛 , then 𝑥 𝑛 ≤ 1. But for this bounded input, the output is

§ 𝑛 = 0 ⇒ 𝑦 0 = 𝑥 0 = 1
§ 𝑛 = 1 ⇒ 𝑦 1 = 1𝑦 0 + 𝑥 1 = 2
§ 𝑛 = 2 ⇒ 𝑦 2 = 2𝑦 1 + 𝑥 2 = 5
§ … => ∞

• The input of unit step sequence is bounded, but the output is unbounded. 
Hence the system is BIBO unstable.
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LTI Systems



Linear Time-Invariant (LTI) Discrete-Time Systems
• LTI discrete-time systems satisfy both Linear and Time-Invariant 

properties.

• For an integer 𝑛# and arbitrary constants 𝑎" and 𝑎!, LTI system property is

𝑇{ # }𝑥" 𝑛 𝑦" 𝑛 =𝑇{𝑥" 𝑛 }

𝑇{ # }𝑥# 𝑛 𝑦# 𝑛 =𝑇{𝑥# 𝑛 }

𝑇{ # }
𝑎!𝑥! 𝑛 − 𝑛" + 𝑎#𝑥# 𝑛 − 𝑛" 𝑦 𝑛 = 𝑇 𝑎!𝑥! 𝑛 − 𝑛" + 𝑎#𝑥# 𝑛 − 𝑛"

23L.M. Po
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LTI System Examples
• Absolute Magnitude System: 𝑦 𝑛 = 𝑥 𝑛

§ It is Time-Invariant but not Linear

• Time scaling System : 𝑦 𝑛 = 𝑛 𝑥 𝑛

§ It is Linear but not Time-Invariant

• 3-sample average System : 𝑦 𝑛 = "
*
𝑥 𝑛 + 𝑥 𝑛 − 1 + 𝑥 𝑛 − 2

§ It satisfies both Linear and Time-Invariant properties

§ It is an LTI system

24L.M. Po



LTI System Exercise 1
Determine whether the linear system 𝑦 𝑛 = 2𝑥 [𝑛 − 5] is time invariant. 

Solution

• Let the input and output be 𝑥&[𝑛] and 𝑦&[𝑛] , respectively, then the 
system output is
§ 𝑦" 𝑛 = 2𝑥"[𝑛 − 5]

• Again, let 𝑥! 𝑛 = 𝑥& 𝑛 − 𝑛$ be the shifted input and 𝑦![𝑛] be the 
output using the shifted input can be described as
§ 𝑦# 𝑛 = 2𝑥# 𝑛 − 5 = 𝑥"[𝑛 − 𝑛+ − 5] = 𝑦"[𝑛 − 𝑛+]

• As 𝑦! 𝑛 = 𝑦&[𝑛 − 𝑛$], then the system is time-invariant.
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Impulse Response and Convolution



Representation of Discrete-Time Signals by Sum of 
Scaled and Shifted Unit Impulse Signals (1)
• A discrete-time signal, 𝑥 𝑛 may be shifted in time (delayed or 

advanced) by replacing the variables 𝑛 with (𝑛 − 𝑘) where 𝑘 > 0 is an 
integer 
§ 𝑥[𝑛 − 𝑘] ⇒ 𝑥 𝑛 delayed by 𝑘 samples 
§ 𝑥[𝑛 + 𝑘] ⇒ 𝑥 𝑛 advanced by 𝑘 samples 

• For example, consider a shifted version of the unit impulse function. If 
we multiply an arbitrary signal 𝑥 𝑛 by this function, we obtain a signal 
that is zero everywhere, except at 𝑛 = 𝑘. 

§ 𝑦 𝑛 = 𝑥 𝑛 % 𝛿 𝑛 − 𝑘 = 𝑥 𝑘 % 𝛿[𝑛 − 𝑘]
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Representation of Discrete-Time Signals by Sum 
of Scaled and Shifted Unit Impulse Signals (2)

x =

𝑦 𝑛 = 𝑥 𝑘 = 𝛿[𝑛 − 𝑘]
𝛿[𝑛 − 𝑘] 𝑥[𝑛]

𝑦[𝑛]

28L.M. Po
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0 1 2-1-2

𝑥 0
𝑥 1𝑥 −1

0 1 2-1-2

𝑥[0]𝛿 𝑛

Unit Impulse based Composite Sequence Expression

𝑥 0

0 1 2-1-2

𝑥[1]𝛿 𝑛 − 1𝑥 1

𝑥 𝑛 = ⋯+ 𝑥 −1 𝛿 𝑛 + 1 + 𝑥 0 𝛿 𝑛 + 𝑥 1 𝛿 𝑛 − 1 +⋯

𝑥 𝑛 = ?
"#,-

-

𝑥 𝑘 ]𝛿[𝑛 − 𝑘

Any discrete-time signals can be 
expressed in terms of summation of 
scaled and shifted unit sample 
sequences 𝑥 𝑘 ]𝛿[𝑛 − 𝑘 .

0 1 2-1-2

𝑥 −1
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Impulse Response
• If the input is unit impulse (unit sample) sequence 𝛿[𝑛], the corresponding 

output is called the impulse response ℎ[𝑛] of the LTI system 

Unit impulse

𝛿[𝑛]

Impulse Response

ℎ 𝑛 = 𝑇 𝛿[𝑛]

30L.M. Po
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Convolution : Why Impulse Response is so important?

• The output of any LTI system is a convolution operation of the input 
signal with the unit impulse response:

• Any Discrete-Time LTI system can be completely characterized by its 
unit impulse response (h[n]).

LTI System
ℎ[𝑛]

𝑦 𝑛 = 𝑇 𝑥[𝑛] = 𝑇 /
$%&'

'

𝑥[𝑘] ]𝛿[𝑛 − 𝑘 = /
$%&'

'

𝑥 𝑘 𝑇 𝛿[𝑛 − 𝑘] = /
$%&'

'

𝑥[𝑘]ℎ[𝑛 − 𝑘] = 𝑥 𝑛 ∗ ℎ[𝑛]

𝑥 𝑛 = >
3456

6

𝑥 𝑘 ]𝛿[𝑛 − 𝑘

Linear Property Time-Invariant Property

31L.M. Po

𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]

Convolution 
operator



Performing the Convolution Algorithmically

• Ingredients

§ A sequence 𝑥 𝑘

§ A second sequence ℎ[𝑘]

𝑥 𝑛 ∗ ℎ[𝑛] = ?
"#,-

-

𝑥 𝑘 ℎ[𝑛 − 𝑘]

• The recipe:
§ Time-reverse ℎ[𝑘]
§ At each step 𝑛 (from -∞ to ∞):

• Center the time-reversed ℎ[𝑘] in 𝑛 (i.e.
shift by −𝑛)

• Compute the inner product
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Convolution Example 1
• Compute the 𝑥 𝑛 ∗ ℎ[𝑛]

2
3

1
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𝑥 𝑛 ∗ ℎ[𝑛] when n = -4

34L.M. Po

ℎ[−4 − 𝑘]



𝑥 𝑛 ∗ ℎ[𝑛] when n = -3
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ℎ[−3 − 𝑘]



𝑥 𝑛 ∗ ℎ[𝑛] when n = 0
2

1

2
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ℎ[−𝑘]



𝑥 𝑛 ∗ ℎ[𝑛] when n = 1

2
3

1
𝛼

2𝛼 + 3

37L.M. Po

ℎ[1 − 𝑘]



𝑥 𝑛 ∗ ℎ[𝑛] when n = 2
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ℎ[2 − 𝑘]

1𝛼𝛼#

2
3

1



𝑥 𝑛 ∗ ℎ[𝑛] when n = 3
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ℎ[3 − 𝑘]



𝑥 𝑛 ∗ ℎ[𝑛] for all n
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Convolution Example 2

What is the output y[n] of the LTI system?

Solution:

41L.M. Po

x[n], h[n]
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𝑦[0] = 1 𝑦[1] = 2 𝑦[2] = 3

𝑦[3] = 4 𝑦[4] = 3 𝑦[5] = 2

𝑦[6] = 1 𝑦[7] = 0 𝑦[8] = 0

𝑦 𝑛 = ℎ 𝑛 ∗ 𝑥[𝑛]



Convolution Example 3
• The impulse response of an LTI system is of the form:

§ ℎ 𝑛 = 𝑎(𝑢 𝑛 𝑎 < 1

• And the input to the system is of form:
§ 𝑥 𝑛 = 𝑏( 𝑢 𝑛 𝑏 < 1, 𝑏 ≠ 𝑎

• Determine the output of the system using discrete convolution operation.

Solution:

43L.M. Po

𝑦 𝑛 = ℎ 𝑛 ∗ 𝑥[𝑛] = /
$%&'

'

ℎ 𝑘 𝑥[𝑛 − 𝑘] = /
$%&'

'

𝑎$𝑢 𝑘 𝑏(&$𝑢[𝑛 − 𝑘]

= /
$%)

(

𝑎$𝑏(&$𝑢[𝑛] = 𝑏( /
$%)

(

𝑎$𝑏&$𝑢[𝑛] = 𝑏( /
$%)

(
𝑎
𝑏

$
𝑢[𝑛]

= 𝑏(
1 − 𝑎

𝑏
(*!

1 − 𝑎
𝑏

𝑢 𝑛 = 𝑏(
𝑏(*! − 𝑎(*!

𝑏(*!
𝑏 − 𝑎
𝑏

𝑢[𝑛] =
𝑏(*! − 𝑎(*!

𝑏 − 𝑎 𝑢[𝑛]



Convolution Example 4
• Consider a discrete-time system with finite-duration input 𝑥 𝑛 = {1,1,1,1} and 

impulse response ℎ 𝑛 = 𝑎3𝑢 𝑛 , 𝑎 < 1.
• Determine the response 𝑦 𝑛 of this LTI system.

Solution:
We recognize that x[n] can be written as the different between two unit-step 
sequences, i.e. 𝑥 𝑛 = 𝑢 𝑛 − 𝑢 𝑛 − 4 . Hence, we can solve for 𝑦 𝑛 as the difference 
between the output of the system with a step input and the output of the system with 
a delayed step input. Thus, we solve for the response to a unit step as:

𝑦! 𝑛 = ℎ 𝑛 ∗ 𝑢 𝑛 = /
$%&'

'

𝑎$𝑢 𝑘 𝑢[𝑛 − 𝑘] = /
$%)

(

𝑎$𝑢[𝑛] =
1 − 𝑎(*!

1 − 𝑎 𝑢[𝑛]

𝑦 𝑛 = ℎ 𝑛 ∗ 𝑢 𝑛 − ℎ 𝑛 ∗ 𝑢 𝑛 − 4 = 𝑦! 𝑛 − 𝑦! 𝑛 − 4 =
1 − 𝑎(*!

1 − 𝑎 𝑢 𝑛 −
1 − 𝑎(&+

1 − 𝑎 𝑢[𝑛 − 4]
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Convolution : Python Code
import matplotlib.pyplot as plt

from scipy import signal

import numpy as np

x = np.repeat([0., 1., 0.], 10)

h = signal.hann(10)

y = signal.convolve(x, h, mode='same') / sum(h)

fig, (ax_x, ax_h, ax_y) = plt.subplots(3, 1, sharex=True)
ax_x.stem(x)

ax_x.set_title('Input Sequence x[n]')

ax_x.margins(0, 0.1)

ax_h.stem(h)

ax_h.set_title('Unit Sample Response h[n]')

ax_h.margins(0, 0.1)

ax_y.stem(y)

ax_y.set_title('Output Sequence y[n]=x[n]*h[n]')

ax_y.margins(0, 0.1)

fig.tight_layout()

fig.show()

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html
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Convolution Properties
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More Complex System Interconnections
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Stability Analysis



Stability Analysis of LTI Systems
• Similar to the continuous-time LTI systems, we can analyze the stability 

of the system based on its impulse response.

• A Discrete-Time LTI system is Bounded-Input Bounded-Output (BIBO) 

stable if and only if its unit sample response ℎ 𝑘 is absolutely 

summable.

𝑆 = ?
"#,-

-

ℎ 𝑘 < ∞
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• Let 𝑥 𝑛 be a bounded input sequence {i.e. 𝑥 𝑛 < 𝐵A for all 𝑛, where𝐵A is a finite 
number}.  We must show that the output is bounded when 𝑆 is finite. To this end, we 
work again with the convolution formula. 

• If we take the absolute value of both sides of this equation, we obtain

• Now, the absolute value of the sum of terms is always less than or equal to the sum 
of the absolute values of the terms 

• Hence, since both 𝐵A and S are finite, the output is also bounded, i.e., an LTI system 
is stable if its unit sample response is absolutely summable.

𝑦[𝑛] = /
$%&'

'

ℎ 𝑘 𝑥[𝑛 − 𝑘]

]𝑦[𝑛 = B
$%&'

'

]ℎ 𝑘 𝑥[𝑛 − 𝑘

]𝑦[𝑛 ≤ 𝐵, /
$%&'

'

ℎ 𝑘 ≤ 𝐵,𝑆
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LTI System Stability Example (1)
• Check the stability of the first-order recursive system shown below:

§ 𝑦 𝑛 = 𝑎 𝑦 𝑛 − 1 + 𝑥 𝑛

• The impulse response of this system is
§ ℎ 𝑛 = 𝑎C𝑢[𝑛] for all formula

• Its stability factor S is

𝑆 = >
C456

6

ℎ 𝑛 < >
C4+

6

𝑎 C
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LTI System Stability Example (2)
• It is obvious that S is unbounded for |a| ≥ 1, since each term in the 

series are greater than or equal to 1. 

• For |a| < 1, we can apply the infinite geometric sum formula, to find 

𝑆 =
1

1 − 𝑎 𝑓𝑜𝑟 𝑎 < 1

• Since S is finite for |a| < 1, the system is stable. 
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Block Diagram Representation



Representations of LTI Discrete-Time Systems
In general, LTI discrete-Time systems can be represented by
• Unit Sample Response : ℎ[𝑛]
• Difference Equations with or without feedback :

§ 𝑦 𝑛 = 𝑏$𝑥 𝑛 + 𝑏!𝑥 𝑛 − 1 + 𝑏#𝑥 𝑛 − 2

§ 𝑦 𝑛 = 𝑎!𝑦 𝑛 − 1 + 𝑎#𝑦 𝑛 − 1 + 𝑏$𝑥 𝑛 + 𝑏!𝑥 𝑛 − 1 + 𝑏#𝑥 𝑛 − 2

• Block Diagram with basic operation elements
§ Adders, Constant Multipliers, and Unit Delay Elements

• Transfer Function in z-domain : 

§ 𝐻 𝑧 = $!%$"&#"%$$&#$

"%'"&#"%'$&#$
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Block Diagram Representation of DT System
Some basic blocks that can be interconnected to form complex systems. 
• An Adder : A system that performs the addition of two signal sequences to form another 

sequence

• A Constant Multiplier :This operation simply represents applying a scale factor on the input 
𝑥 𝑛 . 

• A Unit Delay Element : The unit delay is a special system that simply delays the signal 
passing through it by one sample. 

+ 𝑦 𝑛 = 𝑥! 𝑛 + 𝑥# 𝑛
𝑥! 𝑛

𝑥# 𝑛

a 𝑦 𝑛 = 𝑎 𝑥 𝑛𝑥 𝑛

𝑧&! 𝑦 𝑛 = 𝑥 𝑛 − 1𝑥 𝑛
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Difference Equation Representation of DT System
• Example 1: 𝑦 𝑛 = 𝑥 𝑛 − 2

• Example 2: 𝑦 𝑛 = 0.5𝑥 𝑛 + 0.25𝑥 𝑛 − 1 + 0.3𝑥 𝑛 − 2

𝑧&! 𝑧&!𝑥 𝑛
𝑥 𝑛 − 1

𝑦 𝑛 = 𝑥 𝑛 − 2

𝑧&! 𝑧&!
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Difference Equation with Feedback
• Example 3: 𝑦 𝑛 = 𝑥 𝑛 + 0.25𝑦 𝑛 − 1

𝑧5"
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Direct Form Structure (or Direct Form I)
• Draw a system implementation for the below difference equation.

§ 𝑦 𝑛 = 𝑏$𝑥 𝑛 + 𝑏&𝑥 𝑛 − 1 − 𝑎&𝑦 𝑛 − 1
• We can write the above difference equation as a set of two equations 

§ 𝑣 𝑛 = 𝑏$𝑥 𝑛 + 𝑏&𝑥 𝑛 − 1 and   𝑦 𝑛 = 𝑣 𝑛 − 𝑎&𝑦 𝑛 − 1

𝑦 𝑛
𝑣 𝑛

𝑥 𝑛

Direct Form I Structure

𝑧!" 𝑧!"
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Cascade Structure
• Without changing the input-output relationship, we can reverse the 

ordering of the two systems in the cascade representation. 
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Canonic Form Structure (or Direct Form II)

Direct Form II Structure

𝑧!" 𝑧!"
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Canonical Form
• There is no need for two delay operations in the Direct Form II structure, they can 

be combined into a single delay. 

• Since delay operations are implemented with memory in a computer, this Canonical 
Form implementation would require less memory compared to the implementation 
of Direct Form I and II structure.  

𝑧!"
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IIR and FIR Systems



Infinite Impulse Response (IIR) System 
• If the impulse response of an LTI system is of infinite duration, the 

system is said to be an Infinite Impulse Response (IIR) system. 
• Example

§ 𝑣 𝑛 = 𝑥 𝑛 + 𝑦 𝑛

§ 𝑦 𝑛 = 𝑣 𝑛 − 1
§ 𝑦 𝑛 = 𝑥 𝑛 − 1] + 𝑦[𝑛 − 1

• If 𝑥 𝑛 = 𝛿[𝑛], calculate ℎ 𝑛 for 𝑛 =0,1,2,… 

𝑧!"
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Find the Impulse Response based Difference Equation
• Find the impulse response h[n] of the following first-order recursive 

system. 

• To find h[n], we let x[n] = δ[n] and apply the zero-initial condition.

Infinite-duration unit sample 
response
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• y[n] = h[n] = 0 for n < 0, because δ[n] is zero for n < 0 and y[-1]= 0.
• Hence, ℎ 𝑛 = 𝑎.𝑢[𝑛] for all n 

𝑧!"
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Finite Impulse Response (FIR) System 
• Find the impulse response h[n] of the following fourth order non-recursive system.

𝑦 𝑛 = 𝑎+𝑥 𝑛 + 𝑎"𝑥 𝑛 − 1 + 𝑎#𝑥 𝑛 − 2 + 𝑎*𝑥 𝑛 − 3 + 𝑎H𝑥 𝑛 − 4

• To find ℎ 𝑛 ,we let 𝑥 𝑛 = 𝛿 𝑛

• For n ≥ 5, h[n] = 0, since the nonzero value of δ[n] has moved out of the memory of 
this system. 
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𝑧!" 𝑧!" 𝑧!" 𝑧!"

If the impulse response of an LTI system is of finite duration, the system is said to 
be an finite Impulse Response (FIR) system. In addition, non-recursive systems have 
finite impulse responses. 
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Summary (1)
• The definition of a discrete-time system 
• The definition of the memory, Time Invariant, Linear, Causal and Stable 

Systems
• Interpretation of a discrete-time signal as a weighted sum of delayed 

impulses
• Definition and understanding of convolution (including hand and 

graphical computation of convolution) 
• The impulse response of a linear and time-invariant system, and how to 

calculate it from a difference equation 
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Summary (2)
• Basic blocks of a discrete-time system: the adder, multiplier and unit delay 
• How to draw the block diagram of a discrete-time system given its difference 

equation 
• How to write the difference equation of a discrete-time system given its block 

diagram
• The difference between Direct Forms I and II and Canonical Form
• The difference between an FIR and an IIR system. In particular, that the impulse 

responses of FIR systems have identical values to the coefficients of the difference 
equation. 

• Given the impulse responses of two cascaded systems, be able to compute the 
overall impulse response. 
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