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A Digital Signal Processing System
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A Big Picture of Transformations for Signal Processing

Continuous-Time Signals
Periodic : !𝑥 𝑡
• Continuous-Time Fourier Series (CTFS) : 𝑎!

§ Commonly called Fourier Series (FS)

Non-Periodic (Aperiodic) : 𝑥 𝑡
• Continuous-Time Fourier Transform (CTFT) 

: 𝑋(𝑗Ω)
§ Commonly called Fourier Transform (FT)

Generalization
• Laplace Transform : 𝑋 𝑠 = 𝑋 𝜎 + 𝑗Ω

§ For system design

Discrete-Time Signals (Sequences)
Periodic : !𝑥[𝑛]
• Discrete Fourier Series (DFS) : 1𝑋 𝑘

§ also called Discrete-Time Fourier Series (DTFS)

Non-Periodic (Aperiodic) : 𝑥[𝑛]
• Discrete-Time Fourier Transform (DTFT) 

: 𝑋 𝑒"#

Finite-Duration Sequences : 𝑥[𝑛]
§ Discrete Fourier Transform (DTF) : 𝑋[𝑘]
§ Fast Fourier Transform (FFT) : 𝑋[𝑘]

Generalization
• The z-Transform : 𝑋 𝑧 = 𝑋 𝑟𝑒"#
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Continuous-Time Signal Analysis 
in Frequency Domain

Fourier series and Fourier transform are the tools for analyzing 
analog signals. 

Basically, they are used for signal conversion between time and 
frequency domains
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What are Fourier Series and Fourier Transform?
• Fourier Series and Fourier Transform, named after Joseph 

Fourier, are mathematical transformations employed to 
transform signals between time (or spatial) domain and 
frequency domain.

• They are tools that breaks a waveform (a function or 
signal) into alternate representations, characterized by 
sine and cosines.

• It shows that any waveform can be re-written as the 
weighted sum of sinusoidal functions.

Joseph Fourier
(1768-1830)

8L.M. Po



Sine and Cosine Functions
• They are periodic function with period of 2𝜋

§ sin 𝑥 + 𝑛2𝜋 = sin(𝑥)

§ cos 𝑥 + 𝑛2𝜋 = cos(𝑥)
• General form of sine and cosine signals:

§ 𝑦 𝑡 = 𝐴 sin Ω𝑡 + 𝜃

§ 𝑦 𝑡 = 𝐴 cos Ω𝑡 + 𝜃
where

𝐴 is Amplitude, 
Ω is angular frequency in radian/sec,
𝜃 is the phase angle in radians.
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Continuous-Time Fourier Series
(CTFS)

Frequency-Domain Representation of 

Periodic Continuous-Time Signals !𝑥 𝑡
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Continuous-Time Fourier Series
• Fourier Series is basically a way of approximating or 

representing a continuous-time periodic signal by a series 
of simple harmonic (sine and cosine) functions.

3𝑥 𝑡 = 𝑎! +5
"#$

%

𝑎" cos 𝑛Ω!𝑡 + 5
"#$

%

𝑏" sin 𝑛Ω!𝑡

• For a periodic signal with period 𝑇, then its fundamental harmonic frequency is 
Ω& = 2π/𝑇. 

• The Fourier Series is defined as

• Its Fourier Series coefficients are given by

𝑎$ =
1
𝑇8% ⁄' (

⁄' (
𝑥 𝑡 𝑑𝑡 𝑎) =

2
𝑇8% ⁄' (

⁄' (
𝑥 𝑡 cos 𝑛Ω$𝑡 𝑑𝑡 𝑏) =

2
𝑇8% ⁄' (

⁄' (
𝑥 𝑡 sin 𝑛Ω$𝑡 𝑑𝑡

'𝑥 𝑡 = '𝑥 𝑡 − 𝑇

−𝑇 𝑇
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Project of Function onto Sinusoids
• Projection onto bases works just like vectors in Rn

• Decomposes signal into frequencies

𝑎! = 𝑥 𝑡 , cos(𝑛Ω"𝑡)

𝑏! = )𝑥 𝑡 , sin(𝑛Ω"𝑡

𝑥 𝑡 = 𝑎" +3
!#$

%

𝑎! cos 𝑛Ω"𝑡 +3
!#$

%

)𝑏!si n( 𝑛Ω"𝑡
Fourier Series

Inner Products
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Interpretation of CT Fourier Series
• Any periodic function 𝑥 𝑡 can be expressed as a weighted sum (infinite) of sine and 

cosine functions of varying frequency:

𝑥 𝑡 = 𝑎" +3
!#$

%

𝑎! cos 𝑛Ω"𝑡 +3
!#$

%

)𝑏!si n( 𝑛Ω"𝑡

• Express periodic signals using 
harmonically related sinusoids with 
frequencies 0, Ω&, 2Ω&, ⋯, where Ω& is 
called the fundamental frequency, 2Ω&
is called the first harmonic,  3Ω& is 
called the second harmonic, and so on

'𝑥 𝑡

cos Ω!𝑡

-- - -cos 2Ω!𝑡

cos 3Ω!𝑡
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Fourier Series Example
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Complex Fourier Series
• Every periodic function with period 𝑇 can be 

expanded into a Fourier series as

where

• 𝑎! are called Fourier Series Coefficients.

3𝑥 𝑡 = 5
-#.%

%

𝑎-𝑒/-0&1

Time Domain

Frequency Domain

𝑎- =
1
𝑇
?
. ⁄3 4

⁄3 4
𝑥 𝑡 𝑒./-0&1 𝑑𝑡, 𝑘 = 0, ±1, ±2,⋯

'𝑥 𝑡

'𝑥 𝑡

Ω! =
2π
𝑇

𝑇−𝑇
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Fourier Series Example of Periodic Pulses

• The fundamental frequency is Ω" = 2𝜋/𝑇, we get: 

... ...

16L.M. Po

𝑎C =
1
𝑇
%
D ⁄F G

⁄F G
𝑥 𝑡 𝑒DHCI%J𝑑𝑡 =

1
𝑇
%
DF%

F%
𝑒DHCI%J𝑑𝑡



17L.M. Po

For 𝑘 ≠ 0

𝑎- =
1
𝑇
?
.3+

3+
𝑒./-5+1𝑑𝑡 =

1
𝑇
−

1
𝑗𝑘𝛺&

𝑒./-5+1
.3+

3+
= −

1
𝑗𝑘𝛺&𝑇

𝑒./-5+3+ − 𝑒/-5+3+

=
1
𝑘𝜋

N
1
2𝑗

𝑒/-5+3+ − 𝑒./-5+3+ =
sin 𝑘𝛺&𝑇&

𝑘𝜋
=
sin 2𝜋𝑘 ⁄𝑇& 𝑇

𝑘𝜋
𝛺& = 2𝜋/𝑇

For 𝑘 = 0

𝑎" =
1
𝑇/#$*

$*
1 𝑑𝑡 =

2𝑇%
𝑇



L’Hopital’s Rule
• The reason of separating the cases of 𝑘 = 0 and 𝑘 ≠ 0 is to facilitate 

the computation of 𝑎", whose value is not straightforwardly obtained 
from the general expression which involves “0/0”. Nevertheless, using 
L’Hopital’s rule

𝑎! =



Periodic Pulses Spectrum

... ...

Time Domain Frequency Domain

Continuous and Periodic

Discrete and Non-periodic

𝑎, =
sin 2𝜋𝑘𝑇"/𝑇

𝑘𝜋
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𝑥 𝑡 = 3
,#-%

%

𝑎,𝑒.,/(0



Fourier Series of Impulse Train

• Clearly, x(t) is a periodic signal with a period of  T.  
• The Fourier series coefficients are

1
𝑇

Frequency Domain

𝑥 𝑡 = 5
-#.%

%

𝑎-𝑒/-0&1 =
1

𝑇
7
!"#$

$

𝑒 %!&"'

Time Domain

𝑥 𝑡 = 5
-#.%

%

)𝛿(𝑡 − 𝑘𝑇

Fourier Series Representation
20L.M. Po

𝑎- =
1
𝑇
?
. ⁄3 4

⁄3 4
𝛿 𝑡 𝑒./-5+1 𝑑𝑡 =

1
𝑇



Continuous-Time Fourier Transform
(CTFT)



From Fourier Series to Fourier Transform
• Fourier Series is used to represent periodic signal as weighed sum of the complex 

exponentials with harmonic frequencies of Ω

• If we take the period 𝑇 →∞, then Ω → 0 and the periodic signal 𝑥 𝑡 become non-
periodic. Its corresponding Fourier Series can be expressed as

𝑥 𝑡 = 7
!"#$

$

𝑎! 𝑒%!&' 𝑎! =
1
𝑇
:
# ⁄) *

⁄) *
𝑥 𝑡 𝑒#%!&' 𝑑𝑡, 𝑘 = 0, ±1, ±2,⋯Ω =

2𝜋
𝑇with and

𝑥(𝑡) = lim
&→,

7
!"#$

$
Ω
2𝜋

:
# ⁄- &

⁄- &
𝑥 𝜏 𝑒#%!&. 𝑑𝜏 𝑒%!&' = :

#$

$ 1
2𝜋

:
#$

$
𝑥 𝜏 𝑒#%!&.𝑑𝜏 𝑒%&'𝑑Ω

𝑋(𝑗Ω)

𝑇/2−𝑇/2 𝑇/2 → ∞−∞ ← −𝑇/2

𝑇 → ∞ Non-periodicPeriodic
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Continuous-Time Fourier Transformation (CTFT)
• For analysis of continuous-time non-periodic signals
• Defined on a continuous range of Ω
• The CTFT of a continuous-time non-periodic signal 𝑥 𝑡 is:

which is also called spectrum.
• The inverse CTFT is given by

𝑋(𝑗Ω) = ?
.%

%
𝑥 𝑡 𝑒./01 𝑑𝑡

𝑥(𝑡) =
1
2𝜋

?
.%

%
𝑋 𝑗Ω 𝑒/01 𝑑Ω

Analysis Equation

Synthesis Equation
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Illustration of CT Fourier Transform

continuous and aperiodic continuous and aperiodic

time domain frequency domain

Continuous and Non-periodic Continuous and Non-periodic 
24L.M. Po



Delta Function δ(𝑡)
• The delta function δ(𝑡) can be expressed as

• It has the following characteristics

where 𝑥 𝑡 is a continuous-time signal.

• The Time shifting property

δ(𝑡) = R
∞, 𝑖𝑓 𝑡 = 0
0, 𝑖𝑓 𝑡 ≠ 0

?
.%

%
δ 𝑡 𝑑𝑡 = 1 𝑥 𝑡 δ 𝑡 − 𝑡! = 𝑥(𝑡!)δ 𝑡 − 𝑡!

𝑥 𝑡 = ?
.%

%
𝑥(𝜏)δ 𝑡 − 𝜏 𝑑𝜏

and 

25L.M. Po



Unit Step Function 𝑢(𝑡)
• The unit step function 𝑢(𝑡) can be expressed as

• As there is a sudden change from 0 to 1 at 𝑡 = 0, 𝑢(0) is not well 
defined. 

𝑢(𝑡) = -
1, 𝑖𝑓 𝑡 > 0
0, 𝑖𝑓 𝑡 < 0

26L.M. Po



Fourier Transform of Rectangular Pulse

• This signal is of finite length and corresponds to one period of the 
periodic function. Its Fourier Transform can be expressed as 

27L.M. Po

𝑋 𝑗Ω = /
#&

&
𝑥(𝑡)𝑒#'()𝑑𝑡 = /

#$0

$0
𝑒#'()𝑑𝑡 =

2 sin 𝑇"Ω
Ω

𝑥(𝑡) = R1, −𝑇! < 𝑡 < 𝑇!
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Fourier Transform Pair for Rectangular Pulse
• Define the sinc function as

• It is seen that 𝑋(𝑗Ω) is a scaled sinc function because

28L.M. Po

𝑋 𝑗Ω =
2 sin 𝑇!Ω

Ω
= 2𝑇! sinc

𝑇!Ω
π

sinc 𝜋𝑢 =
sin 𝜋𝑢
𝜋𝑢



Inverse Fourier Transform of Rectangular Pulse Spectrum

• The inverse Fourier Transform of this rectangular spectrum can be 
obtained by

29L.M. Po

𝑥 𝑡 =
1
2𝜋

?
.%

%
𝑋 Ω 𝑒/01𝑑Ω =

1
2𝜋

?
.P&

P&
𝑒/01𝑑Ω =

sin 𝑊!𝑡
𝜋𝑡

=
𝑊!
𝜋
sinc

𝑊!𝑡
𝜋



Fourier Transform Pair for Rectangular Pulse Spectrum  

• We can observe the duality property of Fourier Transform

30L.M. Po

𝑥 𝑡 =
𝑊,

𝜋
sinc

𝑊,𝑡
𝜋

𝑋 𝑗Ω = 2𝑇, sinc
𝑇,Ω
π



Fourier Transform of Exponential Function
• Right-sided Continuous-Time exponential function is defined as

• Its Fourier Transform can be obtained by

31L.M. Po
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Fourier Transform of Delta Function δ(𝑡)
• The Fourier Transform of delta Function can be obtained as

• Spectrum of δ(𝑡) has unit amplitude at all frequencies

1

Ω

𝑋(𝑗Ω)

32L.M. Po
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Impulse in Frequency Domain

• Based on δ(𝑡), Fourier transform can be used to represent continuous-time periodic 
signals. The inverse Fourier Transform of 2𝜋𝛿 Ω − Ω! can be calculated by

• As a results, the Fourier Transform Pair is:

33L.M. Po

𝑋 𝑗Ω = 2𝜋𝛿 Ω − Ω"

𝑒'(0) ↔ 2𝜋𝛿 Ω − Ω"

𝑥 𝑡 = ℱ.$ 2𝜋𝛿 Ω − Ω! =
1
2𝜋

?
.%

%
2𝜋𝛿 Ω − Ω! 𝑒/01𝑑Ω = 𝑒/0&1

𝑋 𝑗Ω



Fourier Transform Pair for CT Periodic Signal
• Based on the Fourier Transform pair of Impulse in Frequency Domain, we 

can express the Fourier pair for any Continuous-Time Periodic Signal as 

Periodic signal in 
Fourier Series Expression

and 𝑎, are Fourier Series Coefficients

1𝑥 𝑡 = 1𝑥 𝑡 − 𝑇

−𝑇 𝑇

'𝑥 𝑡

Ω/ =
2π
𝑇

𝑋(𝑗Ω)

34L.M. Po

5
-#.%

%

𝑎-𝑒/-0&1 ↔ 5
-#.%

%

2𝜋𝑎-𝛿 Ω − 𝑘Ω!
… …

2𝜋𝑎,
2𝜋𝑎0

2𝜋𝑎*

Ω" 2Ω"−Ω" 0−2Ω"



Fourier Transform of Impulse Train

• Clearly, 𝑥 𝑡 is a periodic signal with a period of  T. Using the previous example, the 
Fourier series coefficients are

• WithΩ! = 2𝜋/𝑇, the Fourier Transform is:

𝑠 𝑡 = 3
,#-%

%

𝑎,𝑒.,/(0 =
1
𝑇 3
,#-%

%

𝑒.,/(0

𝑠 𝑡 = 5
-#.%

%

)𝛿(𝑡 − 𝑘𝑇

35

𝑎, =
1
𝑇<- ⁄3 4

⁄3 4
𝛿 𝑡 𝑒-.,5+0 𝑑𝑡 =

1
𝑇

𝑒/0&1 ↔ 2𝜋𝛿 Ω − Ω! 𝑠 𝑡 ↔
2𝜋
𝑇 3

,#-%

%

𝛿 Ω −
2𝜋𝑘
𝑇 = Ω" 3

,#-%

%

𝛿 Ω − 𝑘Ω"

𝑠 𝑡

Ω/ =
2π
𝑇



Fourier Transform Pair For Impulse Train
Time Domain Frequency Domain

𝑠 𝑡 = 3
,#-%

%

)𝛿(𝑡 − 𝑘𝑇 =
1
𝑇 3
,#-%

%

𝑒.,/(0

Fourier Series
Expression
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𝑠 𝑡 𝑆 𝑗Ω

𝑆 𝑗Ω = Ω! 5
-#.%

%

𝛿 Ω − 𝑘Ω!



Important CTFT Pairs
• Rectangular Pulse: A rectangular pulse transform to 

a sinc function
§ rect 𝑡 ↔ sinc(𝑗Ω)

• Cosin : A cosine signal transforms to two impulses
§ cos Ω"𝑡 ↔ 𝜋 δ Ω + Ω" + δ Ω − Ω"

• Sine : A sine transforms to two (imaginary) impulses
§ sin Ω"𝑡 ↔ 𝑗𝜋 δ Ω + Ω" − δ Ω − Ω"

• Gaussian : A Gaussian transforms to a Gaussian

§ 𝑒#*5/,-5 ↔ 2𝜋𝜎𝑒#,.5-5(5

37L.M. Po
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Key Properties of the CTFT
1. Linearity : 𝑥/(𝑡) ⟷ 𝑋/ 𝑗Ω 𝑎𝑛𝑑 𝑥,(𝑡) ⟷ 𝑋, 𝑗Ω

𝑎𝑥$(𝑡) + 𝑏𝑥$(𝑡) ⟷ 𝑎𝑋$(𝑗Ω) + 𝑏𝑋4(𝑗Ω)

2. Time Shifting :  𝑥(𝑡 − 𝑡%) ⟷ 𝑒#'()*𝑋(𝑗Ω)

3. Convolution :  𝑥(𝑡) ∗ ℎ(𝑡)⟷ 𝑋 𝑗Ω J 𝐻 𝑗Ω

4. Modulation : 𝑥 𝑡 ℎ(𝑡)⟷ /
,.𝑋 𝑗Ω ∗ 𝐻 𝑗Ω

5. Time Scaling : 𝑥(𝑎𝑡)⟷ /
0 𝑋

'(
0

6. Differentiation : 1*())
1)

⟷ 𝑗Ω𝑋 𝑗Ω
38L.M. Po



Convergence of CTFT
Dirichlet’s sufficient conditions for the convergence of Continuous-Time Fourier 
Transform are 

1. 𝑥 𝑡 must be absolutely integrable

2. 𝑥 𝑡 must have a finite number of maxima and minima within any finite interval.

3. 𝑥 𝑡 must have a finite number of discontinuities, all of finite size, within any finite 
interval.

Not all CT signals can have CTFT representations

𝑥 𝑡 = ?
.%

%

𝑥 𝑡 𝑑𝑡 < ∞

39L.M. Po



Laplace Transform



Laplace Transform
The French Newton Pierre-Simon Laplace
• Developed mathematics in astronomy, physics, and 

statistics
• Began work in calculus which led to the Laplace 

Transform
• Today, Laplace Transform is widely used to solve ODE 

(Ordinal Differential Equation) in many application of 
Electrical Engineering.

• It is also widely used for Signal Processing in Analog 
Digital Filter Design. Pierre-Simon Laplace

(1749-1827)

41L.M. Po



Definition of Laplace Transform
• Laplace transform maps a function 𝑥(𝑡) of time to a function of 𝑠 = 𝜎 + 𝑗Ω in 

complex domain.

• There are two important variants:

§ Unilateral

§ Bilateral

• Both share important properties. We will focus on bilateral version.

𝑋(𝑠) = ?𝑥(𝑡)𝑒.X1 𝑑𝑡

𝑋(𝑠) = ?
!

%
𝑥(𝑡)𝑒.X1 𝑑𝑡

𝑋(𝑠) = ?
.%

%
𝑥(𝑡)𝑒.X1 𝑑𝑡

42L.M. Po



Laplace Transform Example
• Find the Laplace transform of 𝑥$ 𝑡

• Region of Convergence (ROC) : Provided Re(s+1) > 0 which implies that Re(s) >-1

𝑥$ 𝑡 = A𝑒
-0 𝑖𝑓 𝑡 ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑋$ 𝑠 = <
-%

%
𝑥$ 𝑡 𝑒-60 𝑑𝑡 = <

"

%
𝑒-0𝑒-60 𝑑𝑡 = K

𝑒-(68$)0

)−(𝑠 + 1
"

%

=
1

𝑠 + 1

𝑋$ 𝑥 =
1

𝑠 + 1
; Re s > −1

ROC

43L.M. Po



Regions of Convergence
• Left-sided signals have left-sided Laplace transforms (bilateral only)

• Example

• Provided Re(s+1) < 0 which implies that Re(s) < -1

𝑥4 𝑡 = A−𝑒
-0 𝑖𝑓 𝑡 ≤ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑥* 𝑡

𝑋4 𝑠 = <
-%

%
𝑥4 𝑡 𝑒-60 𝑑𝑡 = <

-%

"
𝑒-0𝑒-60 𝑑𝑡 = K

−𝑒-(68$)0

)−(𝑠 + 1
-%

"

=
1

𝑠 + 1

1
𝑠 + 1

; Re s < −1

44L.M. Po



Left-Sided and Right-Sided ROCs
Laplace transforms of 
left- and right-sided 
exponentials have the 
same form (except −); 
with left- and right-sided 
ROCs, respectively.

45L.M. Po



Laplace Transform of Both-Sided Signals (1)
• Find the Laplace transform of a both-sided signals of

𝑥4 𝑡 = 𝑒# )

𝑥1 𝑡

𝑋Y 𝑠 = ?
.%

%
𝑒. 1 𝑒.X1 𝑑𝑡 = ?

.%

!
𝑒($.X)1 𝑑𝑡 + ?

!

%
𝑒.($ZX)1 𝑑𝑡

= j
𝑒($.X)1

1 − 𝑠
.%

!

+ j
𝑒.(XZ$)1

)−(1 + 𝑠
!

%

=
1

1 − 𝑠
+

1
1 + 𝑠

=
1 + s + 1 − s
(1 − 2)(1 + 𝑠)

=
2

1 − 𝑠4

Re(s)<1 Re(s)>1

• The ROC is the intersection of Re(s) < 1 and Re(s) > -1
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Laplace Transform of Both-Sided Signals (1)
• the Laplace transform of a signal is both-sided is a vertical strip. 

𝑥4 𝑡 = 𝑒# )
𝑥1 𝑡

𝑋Y 𝑠 =
2

1 − 𝑠4

-1 < Re(s) < 1 
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Time-Domain 
Interpretation of 
ROC

𝑋(𝑠) = /
#&

&
𝑒#5) 𝑑𝑡

𝑥1 𝑡

𝑥* 𝑡
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Fourier Transform Interpretation of Laplace Transform
• In Laplace Transform, 𝑠 = 𝜎 + 𝑗Ω is a complex number, then we can express the 

transform as

• Thus, the Laplace Transform can be interpreted as CTFT of the signal 𝑥(𝑡) that 
weighted by 𝑒.[1 . This is equivalent to taking CTFT of the signal 𝑥(𝑡)𝑒.[1 as

• If we set 𝜎 = 0, then 𝑠 = 𝑗Ω . The Laplace Transform of 𝑋 0 + 𝑗Ω is corresponding 
to the CTFT for 𝜎 = 0 (Imaginal axis) is within the ROC in s-plane

𝑋 𝑠 = 𝑋 𝜎 + 𝑗Ω = ?
.%

%
𝑥(𝑡)𝑒. [Z/0 1 𝑑𝑡 = ?

.%

%
𝑥(𝑡)𝑒.[1𝑒./01 𝑑𝑡

𝔍{𝑥(𝑡)𝑒.[1} = ?
.%

%
𝑥(𝑡)𝑒.[1𝑒./01 𝑑𝑡

𝑋 𝑠 = 𝑋 𝑗Ω = ?
.%

%
𝑥(𝑡) 𝑒./01 𝑑𝑡

𝑗Ω

𝜎
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Laplace Transform is Generalization of Fourier Transform

• For some signals, they cannot converge for CFTF, but we still can transform them to 
Laplace transform in the s-plane for analysis and system design.

• The inverse Laplace Transform can be considered as inverse CTFT of the signal 
𝑥(𝑡)𝑒.[1

𝑋 𝑠 = 𝑋 𝜎 + 𝑗Ω = ?
.%

%
𝑥(𝑡)𝑒.[1𝑒./01 𝑑𝑡 = 𝔍{𝑥(𝑡)𝑒.[1}

𝑥(𝑡)𝑒.[1 =
1
2𝜋

?
.%

%
𝔍{𝑥(𝑡)𝑒.[1}𝑒/01 𝑑Ω =

1
2𝜋

?
.%

%
𝑋(𝑠) 𝑒/01 𝑑Ω

𝑥 𝑡 = 𝑥 𝑡 𝑒.[1𝑒Z[1 =
1
2𝜋

?
.%

%
𝑋 𝑠 𝑒 [Z/0 1 𝑑Ω =

1
2𝜋𝑗

?
[.%

[Z%
𝑋(𝑠) 𝑒]1 𝑑s
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Important Laplace Transform Pairs

Function Laplace Transform
𝑎 𝑎

s
𝑒0) 1

𝑠 − 𝑎
𝑡𝑒0) 1

𝑠 − 𝑎 4

sinΩ𝑡 Ω
s4 + Ω4

cosΩ𝑡 𝑠
s4 + Ω4
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Key Properties of the Laplace Transform
1. Linearity : 𝑥/(𝑡) ⟷ 𝑋/ s 𝑎𝑛𝑑 𝑥,(𝑡) ⟷ 𝑋, 𝑠

𝑎𝑥/(𝑡) + 𝑏𝑥/(𝑡) ⟷ 𝑎𝑋/(𝑠) + 𝑏𝑋,(𝑠)

2. Time Shifting :  𝑥(𝑡 − 𝑡%) ⟷ 𝑒#5)*𝑋(𝑠)
3. Convolution :  𝑥(𝑡) ∗ ℎ(𝑡)⟷ 𝑋 𝑠 J 𝐻 𝑠

4. Scaling Property : 𝑥(𝑎𝑡)⟷ /
|0|
𝑋 7

0

5. Time Differentiation : 1*())
1)

⟷ 𝑠𝑋 𝑠 − 𝑥(0)
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Continuous-Time Differential Equations
• CT systems whose input-output response can be described by linear constant-

coefficient  ordinary differential equations with a forced response

• If the equation involves derivative operators on y(t) (N>0) or x(t), it has memory.
• The system stability depends on the coefficients 𝑎-.  For example, a 1st order LTI 

differential equation with 𝑎! = 1:

• If a1>0, the system is unstable as its impulse response represents a growing 
exponential function of time

• If a1<0 the system is stable as its impulse response corresponds to a decaying 
exponential function of time
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=>

7
!",

2

𝑎!
𝑑!𝑦 𝑡
𝑑𝑡!

= 7
!",

3

𝑏!
𝑑!𝑥 𝑡
𝑑𝑡!

𝑑𝑦 𝑡
𝑑𝑡 − 𝑎$𝑦 𝑡 = 0 𝑦 𝑡 = 𝐴𝑒`:1



Differential Equations
• Analog systems can be represented by differential equations

𝐼a sin 𝛺𝑡 = 𝐿
𝑑 𝑖 𝑡
𝑑𝑡

+ 𝑅 𝑖 𝑡 +
1
𝐶
?𝑖 𝑡 𝑑𝑡

𝐼aΩ cos 𝛺𝑡 = 𝐿
𝑑4𝑖 𝑡
𝑑4𝑡

+ 𝑅
𝑑 𝑖 𝑡
𝑑𝑡

+
1
𝐶
𝑖(𝑡)

This is a second order Ordinal Differential Equation (ODE). 

𝑉4 𝑡 = 𝐼5 sin 𝛺𝑡



Solving ODE by Laplace Transform 
Ordinal Differential Equations (ODEs) can be easily solved by Laplace Transform 
using differential property. It can transform an ODE to Algebraic expression.

§
;<(0)
;0

⟷ 𝑠𝑋 𝑠 − 𝑥(0)

§
;,<(0)
;0,

⟷ 𝑠4𝑋 𝑠 − 𝑠𝑥 0 − 𝑥′ 0

• For example, e
=f(1)
e1=

+ 5 ef(1)
e1

+ 4𝑥 𝑡 = 0 can be expressed in Laplace transform as

§ 𝑠4𝑋 𝑠 − 𝑠𝑥 0 − 𝑥g(0) + 5 𝑠𝑋 𝑠 − 𝑥(0) + 4𝑋 𝑠 = 0
§ For 𝑥 0 = 2 and 𝑥g 0 = −5, then

• 𝑠4 + 5𝑠 + 4 𝑋 𝑠 = 2𝑠 − 5 + 10 ⇒ 𝑠4 + 5𝑠 + 4 𝑋 𝑠 = 2𝑠 + 5

§ 𝑋 𝑠 = 4]Zh
]=Zh]Zi

= 4]Zh
(]Zi)(]Z$)

= $
]Zi

+ $
]Z$

• Inverse Laplace Transform of 𝑋 𝑠 , we have the solution 𝑥 𝑡 = 𝑒.i1𝑢 𝑡 + 𝑒.1𝑢(𝑡)
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Summary
• Continuous-Time Fourier Series (CTFS) is used for Continuous-Time 

Periodic Signals analysis in frequency domain

• Continuous-Time Fourier Transform (CTFT) is used for both Continuous-
Time periodic and non-periodic signals analysis in frequency domain

• Laplace Transform is a generalization transformation of CTFT.

• In signal processing, we always use Laplace Transform for LTI system 
design such as analog filter design and system stability analysis.
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