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Message 1 : Submission of Project Proposal
• This is just a friendly reminder to submit group project proposals. Students must 

submit their group project proposal in PDF format to the CANVAS group project 
proposal assignment by September 27, 2022 at 11pm, with the project title and list 
of members. The details of the group project can be found in the course website:

• http://www.ee.cityu.edu.hk/~lmpo/ee4015/pdf/projects.htmlLinks to an external 
site.

• This is a group submission, so each project team needs to assign a project leader to 
submit the proposal to CANVAS.
• Filename format : Proposal_GroupNumber_ProjectName.pdf

• Filename example: Proposal_Group01_Audio_Classification.pdf

http://www.ee.cityu.edu.hk/~lmpo/ee4015/pdf/projects.html


Message 2 : Quiz
• Canvas Quiz on Week 7

• Canvas quiz with 30 multiple choice questions released on October 11, 
2022 at 5:00pm.

• Students must perform the CANVAS Quiz in the classroom of P4701.

• Students must complete this quiz by 6:00 PM.
• This quiz is open-book and covers course content from Weeks 1 to 4.



Message 3 : Arrangement of Leave
Hi students,

If you are unable to return to CityU due to a quarantine order or 
illness, please email me your medical certificate as an attachment to 
eelmpo@cityu.edu.hk .
With approval, you may stay at home for the lecture by Zoom.

Dr. LM Po

mailto:eelmpo@cityu.edu.hk


A Big Picture of Transformations for Signal Processing

Continuous-Time Signals
Periodic : !𝑥 𝑡
• Continuous-Time Fourier Series (CTFS) : 𝑎!

§ Commonly called Fourier Series (FS)

Non-Periodic (Aperiodic) : 𝑥 𝑡
• Continuous-Time Fourier Transform (CTFT) 

: 𝑋(𝑗Ω)
§ Commonly called Fourier Transform (FT)

Generalization
• Laplace Transform : 𝑋 𝑠 = 𝑋 𝜎 + 𝑗Ω

§ For system design

Discrete-Time Signals (Sequences)
Periodic : !𝑥[𝑛]
• Discrete Fourier Series (DFS) : 1𝑋 𝑘

§ also called Discrete-Time Fourier Series (DTFS)

Non-Periodic (Aperiodic) : 𝑥[𝑛]
• Discrete-Time Fourier Transform (DTFT) 

: 𝑋 𝑒"#

Finite-Duration Sequences : 𝑥[𝑛]
§ Discrete Fourier Transform (DTF) : 𝑋[𝑘]
§ Fast Fourier Transform (FFT) : 𝑋[𝑘]

Generalization
• The z-Transform : 𝑋 𝑧 = 𝑋 𝑟𝑒"#
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Content
Fourier Transforms For Discrete-Time Signal Analysis
• Discrete-Time Fourier Transform (DTFT) for Non-Periodic Sequences
• Properties of DTFT
• Discrete Fourier Series (DSF) for Periodic Sequences
• Properties of DSF
• Periodic Convolution

DFT and FFT (Next Week)
• Discrete Fourier Transform (DFT) : Finite-Duration Sequences
• Properties of DFT
• Circular Convolution
• Zero-Padding for DFT computation of Linear Convolution
• Fast Fourier Transform (FFT) : Fast Algorithms for computing DFT
• Signal Analysis using FFT
• Signal Processing using FFT
• Spectrogram (Optional)



𝑒!"# Sequences are Eigen Functions of LTI System

LTI System
ℎ[𝑛]𝑒!"# 𝑦 𝑛 = 𝐻 𝑒!" 𝑒!"#

𝑦 𝑛 = 𝑒!"# ∗ ℎ 𝑛 = (
$%&'

('

ℎ[𝑘]𝑒!" #&$ = 𝑒!"# (
$%&'

('

ℎ[𝑘]𝑒&!"$

𝐻 𝑒,- is the Frequency Response of the Discrete-Time LTI 
system with impulse response of ℎ[𝑛]



Two Properties of Frequency Response 𝐻 𝑒!"

1. Frequency response is a function of continuous variable 𝜔

2. Frequency response is periodic with period of 2𝜋

𝐻 𝑒!" = '
#$%&

'&

ℎ[𝑛]𝑒%!"#

𝐻 𝑒,- = 𝐻 𝑒,(-/012)

LTI System
ℎ[𝑛]

𝑒!"# 𝐻 𝑒!" 𝑒!"#

𝐻 𝑒!"

𝐻 𝑒!" is a  periodic function of continuous variable 𝜔



Fourier Series Analysis of Frequency Response

• We can consider h[n] as Continuous-Time Fourier Series coefficients 
(𝑎#) of the frequency response 𝐻 𝑒!" , which is periodic with 2𝜋

𝑎# =
1
2𝜋.%(

(
𝐻 𝑒!" 𝑒!"#𝑑𝜔 =

1
2𝜋

7
&,

,
(
$%&'

('

ℎ[𝑘]𝑒&!"$ 𝑒!"#𝑑𝜔

= '
)$%&

'&

ℎ[𝑘]
1
2𝜋.%(

(
𝑒!"(#%)) 𝑑𝜔 = ℎ 𝑛

𝑛 ≠ 𝑘 → 0
𝑛 = 𝑘 → 1

CTFS 
coefficients 
of 𝐻 𝑒!"
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Discrete-Time Fourier Transform (DTFT)
• DTFT is defined as

• 𝜔 is the discrete-time angular frequency (−𝜋 ≤ 𝜔 ≤ 𝜋) 
• 𝜔 = Ω𝑇 (T is the sample period and Ω is the analog frequency)

• 𝑋 𝑒!" is continuous and periodic in 𝜔 with period with 2𝜋, 
i.e. 𝑋 𝑒!" = 𝑋 𝑒!"(-,

𝑋 𝑒!" = '
#$%&

'&

𝑥[𝑛]𝑒%!"#

𝑥[𝑛] =
1
2𝜋.%(

(
𝑋 𝑒!" 𝑒!"#𝑑𝜔

Analysis 
Equation

Synthesis 
Equation

𝜔

|𝑋 𝑒!" |

Continuous and periodic in 𝜔



DFTT Example 1
• A unit impulse signal ]𝛿[𝑛 is transformed into its frequency domain counterpart 

using the DTFT as follows: 

𝑥 𝑛 = 𝛿[𝑛]

𝑋 𝑒!" = '
#$%&

&

𝛿[𝑛]𝑒%!#" = 1

𝑋 𝑒!"

𝜔

𝐹#/2−𝐹#/2
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DTFT Example 2
• Determine the DTFT of a right-sided power sequence

• The DTFT is given by

𝑥 𝑛 = A 0 𝑛 < 0
𝑎# 𝑛 ≥ 0, 𝑎 < 1

𝑋 𝑒!" = (
#%.

('

𝑎#𝑒&!"# = (
#%.

('

𝑎𝑒&!"
#
=

1
1 − 𝑎𝑒&!"

𝑋 𝑒!" =
1

1 − 𝑎 cos𝜔 + 𝑗𝑎 sin𝜔
=

1 − 𝑎 cos𝜔 − 𝑗𝑎 sin𝜔
1 + 𝑎# − 2𝑎 𝑐𝑜𝑠 𝜔

𝜔

𝑋 𝑒!" #

𝑋 𝑒!"
-
=

1
1 + 𝑎- − 2𝑎 𝑐𝑜𝑠 𝜔 ∠𝑋 𝑒!" = − tan&>

𝑎 𝑠𝑖𝑛 𝜔
1 − 𝑎 𝑐𝑜𝑠 𝜔Magnitude Response Phase Response
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DTFT Example 3 
• Find the DTFT of both-sided sequence 𝑥 𝑛 = 𝑎% #

𝑋 𝑒!" = (
#%&'

&>

𝑎#𝑒&!"# +(
#%.

'

𝑎&#𝑒&!"#

= −1 +
1

1 − 𝑎&>𝑒!"
+

1
1 − 𝑎&>𝑒&!"

=
𝑎- − 1

1 − 2𝑎 𝑐𝑜𝑠 𝜔 + 𝑎-

= (
?%>

'

𝑎&?𝑒!"? +(
#%.

'

𝑎&#𝑒&!"# = −1 + (
?%.

('

𝑎&>𝑒!"
?
+(
#%.

('

𝑎&>𝑒&!"
#

. . .. . .

𝑥 𝑛

0

1

𝑛
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𝑋 𝑒!" =
𝑎# − 1

1 − 2𝑎 𝑐𝑜𝑠 𝜔 + 𝑎# ∠𝑋 𝑒!" = 0Magnitude Response Phase Response



DTFT Example 3 (Detail Calculation) 
• Find the DTFT of 𝑥 𝑛 = 𝑎% #

𝑋 𝑒!" = <
%&'(

')

𝑎%𝑒'!"% +<
%&*

(

𝑎'%𝑒'!"%

= −1+
1

1− 𝑎$%𝑒!" +
1

1− 𝑎$%𝑒$!" = −1+
1

1− 𝑎$%𝑒!"
1 − 𝑎$%𝑒$!"

1 − 𝑎$%𝑒$!" +
1

1− 𝑎$%𝑒$!"
1 − 𝑎$%𝑒!"

1 − 𝑎$%𝑒!"

= <
+&)

(

𝑎'+𝑒!"+ +<
%&*

(

𝑎'%𝑒'!"% = −1 + <
+&*

,(

𝑎')𝑒!" + +<
%&*

,(

𝑎')𝑒'!" %

= −1 +
2𝑎- − 2𝑎 𝑐𝑜𝑠 𝜔
𝑎- − 2𝑎 𝑐𝑜𝑠 𝜔 + 1

=
𝑎- − 1

1 − 2𝑎 𝑐𝑜𝑠 𝜔 + 𝑎-

= −1 +
2 − 𝑎$% 𝑒!" +𝑒$!"

1 − 𝑎$% 𝑒!" +𝑒$!" + 𝑎$#
= −1 +

2 − 2𝑎$% 𝑐𝑜𝑠𝜔
1 − 2𝑎$% 𝑐𝑜𝑠𝜔 + 𝑎$#

14L.M. Po

. . .. . .

𝑥 𝑛

0

1

𝑛



DTFT Example 4
• Determine the DTFT of a non-casual rectangular pulse sequence

𝑥 𝑛 = A1, 𝑛 ≤ 𝑁
0, 𝑛 > 𝑁

𝑋 𝑒!" = (
#%&D

D

𝑒&!"#

= 𝑒!"D + 𝑒!"(D&>) +⋯+ 𝑒!"+ 𝑒!"(.)+ 𝑒&!" +⋯+ 𝑒&!"(D&>)+ 𝑒&!"D

= 𝑒!"D 1 + 𝑒&!" + 𝑒&-!" +⋯+ 𝑒&!"-D = 𝑒!"D
1 − 𝑒&!"(-D(>)

1 − 𝑒&!"

𝑋 𝑒!" =
𝑒!"D𝑒&!"(D(

>
-)

𝑒&!"/-
𝑒!"(D(

>
-) − 𝑒&!"(D(

>
-)

𝑒!"/- − 𝑒&!"/-
=
sin𝜔(𝑁 + 12)
sin𝜔/2

. . .. . .

𝑥 𝑛

𝑁−𝑁 0

1

15L.M. Po
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𝑋 𝑒!" of Rectangular Pulse Sequence

𝑋 𝑒!" =
sin𝜔(𝑁 + 12)
sin𝜔/2

𝑁 = 11
𝑋 𝑒!"

16L.M. Po
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DTFT Example 5
• Determine the DTFT of a causal rectangular pulse sequence

𝑥 𝑛 = A1, 0 ≤ 𝑛 ≤ 𝑁 − 1
0, O𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑋 𝑒!" = (
#%.

D&>

𝑒&!"# = 1 + 𝑒&!" + 𝑒&-!" +⋯+ 𝑒&!"(D&>)

=
1 − 𝑒&!"D

1 − 𝑒&!"
=
𝑒&!"

D
-

𝑒&!"
>
-

𝑒!"
D
- − 𝑒&!"

D
-

𝑒!"
>
- − 𝑒&!"

>
-

= 𝑒&!"
D&>
-
sin 𝜔𝑁2
sin𝜔2

. . .

𝑥 𝑛

𝑁 − 10

1

17L.M. Po



Existence of DTFT
• For a given sequence the DTFT exist if the infinite sum convergence

• Or

• Therefore, the DTFT exists if a given sequence is absolute summable.

• All stable discrete-time systems are absolute summable and have DTFTs.

𝑋 𝑒!" = (
#%&'

('

𝑥[𝑛]𝑒&!"#

𝑋 𝑒!" < ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔

𝑋 𝑒!" = (
#%&'

('

𝑥[𝑛]𝑒&!"# ≤ (
#%&'

('

]𝑥[𝑛 𝑒&!"# = (
#%&'

('

]𝑥[𝑛 < ∞

18L.M. Po



Properties of the DTFT (1)

𝑥 𝑛 ⟷ 𝑋 𝑒!" 𝑎𝑛𝑑 𝑦 𝑛 ⟷ 𝑌 𝑒!"

1. Linearity : 𝑎𝑥[𝑛] + 𝑏𝑦[𝑛] ⟷ 𝑎𝑋(𝑒!") + 𝑏𝑌(𝑒!")

2. Time Shift :  𝑥 𝑛 − 𝑛, ⟷ 𝑒%!"#,𝑋(𝑒!")

3. Frequency Shift :  𝑥 𝑛 𝑒!"#, ⟷𝑋(𝑒!("%",))

4. Frequency Differentiation : 𝑛𝑥 𝑛 ⟷ 𝑗 -.(/
-.)

-"

19L.M. Po



Properties of the DTFT (2)

4. Convolution :  𝑥[𝑛] ∗ 𝑦[𝑛]⟷ 𝑋 𝑒!" · 𝑌(𝑒!")

5. Modulation :  𝑥 𝑛 · 𝑦[𝑛]⟷ 0
1(
𝑋 𝑒!" ∗ 𝑌(𝑒!")

6. Parseval’s Theorem :

(
#%&'

('

𝑥 𝑛 - ↔
1
2𝜋

7
&,

,
𝑋 𝑒!"

-
𝑑𝜔

20L.M. Po



Convolution Property of DTFT
• 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]

• 𝑌 𝑒!" = 𝑋 𝑒!" 𝐻 𝑒!"

• Proof

LTI System
𝐻(𝑒!")

𝑋 𝑒!" 𝑌 𝑒!"

LTI
System
𝐻(𝑒!")

𝑒!"!& 𝐻(𝑒!"!)𝑒!"!&

J
'

(
𝑎'𝑒!""& J

'

(
𝑎'𝐻(𝑒!"!)𝑒!""&

𝑥[𝑛] =
1
2𝜋

N
$)

)
𝑋 𝑒!" 𝑒!"&𝑑𝜔 𝑦[𝑛] =

1
2𝜋

N
$)

)
𝑋 𝑒!" 𝐻(𝑒!")𝑒!"&𝑑𝜔

21L.M. Po



DTFT Symmetry Property (1)

• 𝑋 𝑒,- = 𝑋^ 𝑒,- + 𝑗𝑋_ 𝑒,-

• 𝑋∗ 𝑒,- = 𝑋^ 𝑒`,- − 𝑗𝑋_ 𝑒`,-

• 𝑋^ 𝑒,- = 𝑋^ 𝑒`,- => Even function => f(x) = f(-x)

• 𝑋_ 𝑒,- = −𝑋_ 𝑒`,- => Odd function => f(x) = -f(-x)

• 𝑋 𝑒,- => Even function

• ∠𝑋 𝑒,- => Odd func4on

22L.M. Po



DTFT Symmetry Property (2)

• 𝑥 𝑛 ⟷ 𝑋 𝑒,-

• 𝑥 −𝑛 ⟷ 𝑋 𝑒`,-

• 𝑥∗ 𝑛 ⟷ 𝑋∗ 𝑒`,-

• 𝑅𝑒 𝑥 𝑛 ⟷ a
0
𝑋 𝑒,- + 𝑋∗ 𝑒`,-

• 𝐼𝑚 𝑥 𝑛 ⟷ a
0,

𝑋 𝑒,- − 𝑋∗ 𝑒`,-

23L.M. Po



DTFT Symmetry Property Proof Example
• 𝒙 𝒏 𝒊𝒔 𝒓𝒆𝒂𝒍
• 𝑿 𝒆𝒋𝝎 = 𝑿∗ 𝒆%𝒋𝝎

• Proof
𝑋 𝑒!" = (

#%&'

('

𝑥[𝑛]𝑒&!"# 𝑋 𝑒&!" = (
#%&'

('

𝑥[𝑛]𝑒(!"#

𝑋∗ 𝑒&!" = (
#%&'

('

𝑥∗[𝑛]𝑒&!"# = (
#%&'

('

𝑥[𝑛]𝑒&!"# = 𝑋 𝑒!"

𝑥 𝑛 𝑖𝑠 𝑟𝑒𝑎𝑙
𝑥∗ 𝑛 = 𝑥[𝑛]

24L.M. Po



Inverse DTFT



Example: Impulse Response of Idea Lowpass Filter

𝐻(𝑒!") = B
1
2 0 ≤ 𝜔 ≤ 𝜔5
0 𝜔5 < 𝜔 ≤ 𝜋

• A discrete-time ideal lowpass filter is specificities in the fundamental 
interval of discrete frequency interval −𝜋 ≤ 𝜔 ≤ 𝜋 as 

• Find the impulse response of this ideal lowpass filter.

• Sketch the impulse response for 𝜔5 =
(
6

|𝐻 𝑒!" |

𝜔𝜔*−𝜔*
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Using Inverse DTFT to find the Impulse Response

=
1
4𝜋

𝑒!"#

𝑗𝑛 &".

".

=
1
4𝜋

𝑒!".# − 𝑒&!".#

𝑗𝑛

|𝐻 𝑒!" |

𝜔𝜔*−𝜔*

ℎ 𝑛 =
1
2𝜋.%(

(
𝐻 𝑒!" 𝑒!"#𝑑𝜔 =

1
2𝜋.%"8

"8 1
2 𝑒

!"#𝑑𝜔

=
1
2𝜋𝑛

𝑒!".# − 𝑒&!".#

2𝑗
=

1
2𝜋

sin(𝜔R𝑛)
𝑛

=
𝜔R
2𝜋

sin(𝜔R𝑛)
𝜔R𝑛

=
𝜔R
2𝜋

sinc(𝜔R𝑛)

27L.M. Po



Impulse Response for 𝜔# =
$
%

ℎ 𝑛 =
𝜔e
2𝜋

sinc(𝜔e𝑛) =
1
8
sinc(

𝜋
4
𝑛)

28L.M. Po



Example: Impulse Response of Idea Bandstop Filter

• A discrete-time ideal bandstop filter is specificities in the fundamental 
interval of discrete frequency interval −𝜋 ≤ 𝜔 ≤ 𝜋 as 

• Find the impulse response of this ideal band stop filter.

𝐻 𝑒!" =

1 𝜔 ≤
𝜋
6

0
𝜋
6
< 𝜔 ≤

𝜋
3

1
𝜋
3
≤ 𝜔 ≤ 𝜋

𝐻+ 𝑒!"



The Impulse Response of Ideal Bandstop Filter
ℎ 𝑛 =

1
2𝜋

N
$)

)
𝐻 𝑒!" 𝑒!"&𝑑𝜔 =

1
2𝜋

N
$)

$)/-
𝑒!"&𝑑𝜔 + N

$)/.

)/.
𝑒!"&𝑑𝜔 + N

)/-

)
𝑒!"&𝑑𝜔

=
1
2𝜋

𝑒!"&

𝑗𝑛 $)

$ ⁄) -

+
𝑒!"&

𝑗𝑛 $ ⁄) .

⁄) .

+
𝑒!"&

𝑗𝑛 ⁄) -

)

=
1
2𝜋

𝑒$!
)
-& − 𝑒$!)&

𝑗𝑛
+
𝑒!
)
.& − 𝑒$!

)
.&

𝑗𝑛
+
𝑒!)& − 𝑒!

)
-&

𝑗𝑛

where 
)sin(𝜋𝑛

𝜋𝑛
= 1 for 𝑛 = 0 and zero elsewhere

ℎ 𝑛 = δ 𝑛 +
sin 𝜋

6 𝑛
𝜋𝑛 −

sin(𝜋3 𝑛)
𝜋𝑛

30L.M. Po

=
𝑒!)& − 𝑒$!)&

𝑗2𝜋𝑛
+
𝑒!
)
.& − 𝑒$!

)
.&

𝑗2𝜋𝑛
−
𝑒!
)
-& − 𝑒$!

)
-&

𝑗2𝜋𝑛
=

)sin(𝜋𝑛
𝜋𝑛

+
sin(𝜋6 𝑛)
𝜋𝑛

−
sin(𝜋3 𝑛)
𝜋𝑛



Discrete Fourier Series (DFS)



Why DFS, DFT and FFT?
• DTFT 𝐻 𝑒!" provides great insights in discrete-time signal processing, but it not 

suitable for practical digital signal processing or analysis.
§ It is because 𝐻 𝑒!" is a function of the continuous frequency variable 𝜔
§ It is difficult to use computers to calculate a continuum of functional values.

• Discrete Fourier Series (DFS) h𝑋 𝑘 is closely related to DTFT but allows practical 
computation as it is discrete in frequency for analyzing periodic sequence i𝑥[𝑛] . DFS 
is also called as Discrete-Time Fourier Series (DTFS)

• Discrete Fourier Transform (DFT) 𝑋 𝑘 is also closely related to DTFT and discrete in 
frequency, but it is used for analyzing finite-length sequence 𝑥[𝑛] .

• Fast Fourier Transform (FFT) 𝑋 𝑘 is the fast algorithms to compute DFT for efficient 
implementation of DFT in real applications.
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Discrete Fourier Series (DFS)
• Given a periodic sequence  i𝑥[𝑛] with period 𝑁 so that  E𝑥 𝑛 = E𝑥[𝑛 + 𝑟𝑁]

• The Fourier Series representation can be written as

• The Fourier Series representation of continuous-time periodic signals require infinite 
number of complex exponentials. Note that for discrete-time periodic signals, we 
have 

• Due to the periodicity of the complex exponential, we only need N exponentials for 
DFS:

i𝑥 𝑛 =
1
𝑁

(
$%&'

'

h𝑋 𝑘 𝑒!
-,
D $#

𝑒!
-,
D ($(?D)# = 𝑒!

-,
D $#𝑒 )!(-,?# = 𝑒!

-,
D $#

i𝑥 𝑛 =
1
𝑁
(
$%.

D&>

h𝑋 𝑘 𝑒!
-,
D $#

Y𝑥[𝑛]

ω* =
-/
0

is the fundamental angular frequency

𝑁
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DFS : Representation of Periodic Sequence
• A periodic sequence i𝑥[𝑛] with period 𝑁 in terms of DFS coefficients as

• The DFS coefficients can be obtained via

• For convenience we sometimes use 𝑊0 = 𝑒'!
()
*

h𝑋 𝑘 = (
#%.

D&>

i𝑥 𝑛 𝑊D
$# i𝑥 𝑛 =

1
𝑁
(
$%.

D&>

h𝑋 𝑘 𝑊D
&$#

DFS Analysis Equation DFS Synthesis Equation

Y𝑥[𝑛]E𝑥 𝑛 =
1
𝑁<

1&*

0')

K𝑋 𝑘 𝑒!
-/
0 1%

K𝑋 𝑘 = <
%&*

0')

E𝑥 𝑛 𝑒'!
-/
0 1%

N samples

34L.M. Po



discrete and periodic discrete and periodic

time domain frequency domain

... ...... ...

Illustration of DFS

h𝑋 𝑘 = (
#%.

D&>

i𝑥 𝑛 𝑊D
$#

i𝑥 𝑛 =
1
𝑁
(
$%.

D&>

h𝑋 𝑘 𝑊D
&$#

Y𝑥 𝑛 Z𝑋 𝑘
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DFS Example 1 : Sinusoidal Sequence
Find the DFS of the sequence L𝑥 𝑛 = cos 1(

7
𝑛 for N=8.

• Using the Euler’s Formula, this sequence can be expressed as

E𝑥 𝑛 = cos -/
2
𝑛 = )

-
𝑒!

()
+ % + 𝑒'!

()
+ % = )

-
𝑒!

()
+ % + )

-
𝑒'!

()
+ %

• Compared with the DFS synthesis equation with N=8,

• We can find that only k=1 and 7 are non-zero of the DFS h𝑋 𝑘

Y𝑥 𝑛 =
1
𝑁
J
'01

2$%

Z𝑋 𝑘 𝑒!
#)
2 '& =

1
2
𝑒!
#)
3 & +

1
2
𝑒$!

#)
3 & =

1
8
4𝑒!

#)
3 (%)& + 4𝑒!

#)
3 (3$%)& =

1
8 4𝑒!

-/
2 ())% + 4𝑒!

-/
2 (5)%

h𝑋 1 = h𝑋 7 = 4 h𝑋 0 = h𝑋 2 = h𝑋 3 = h𝑋 4 = h𝑋 5 = h𝑋 6 = 0

=
1
8
:𝑋 0 𝑒!

#,
- . / + :𝑋 1 𝑒!

#,
- % / + :𝑋 2 𝑒!

#,
- # / + :𝑋 3 𝑒!

#,
- 0 / + :𝑋 4 𝑒!

#,
- 1 / + :𝑋 5 𝑒!

#,
- 2 / + :𝑋 6 𝑒!

#,
- 3 / + :𝑋 7 𝑒!

#,
- 4 /
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DFS Example 2 : A Periodic Impulse Train
• DFS of a periodic impulse train

• Since the period of the signal is N

• We can represent the signal with the DFS coefficients as

E𝑥 𝑛 = <
6&'(

(

𝛿 𝑛 − 𝑟𝑁 = O1, 𝑛 = 𝑟𝑁
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

h𝑋 𝑘 = (
#%.

D&>

i𝑥 𝑛 𝑒&!
-,
D $# = (

#%.

D&>

𝛿 𝑛 𝑒&!
-,
D $# = 𝑒&!

-,
D $. = 1

i𝑥 𝑛 = (
^%&'

'

𝛿 𝑛 − 𝑟𝑁 =
1
𝑁
(
$%.

D&>

𝑒!
-,
D $#

Z𝑋 𝑘

Y𝑥 𝑛
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DFS Example 3 : A Periodic Rectangular Pulse Train
• DFS of a periodic rectangular pulse train with period N=10

• The DFS coefficients 

K𝑋 𝑘 = <
%&*

7

E𝑥 𝑛 𝑒'!
-/
)*1% = <

%&*

8

𝑒'!
-/
)*1% =

1 − 𝑒'!
-/
)*19

1 − 𝑒'!
-/
)*1

= 𝑒'!
8/
)*1

)sin( 𝜋𝑘/2
sin 𝜋/10

Y𝑥 𝑛

:𝑋 𝑘 ∠ :𝑋 𝑘Magnitude  Response Phase  Response
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DTFT of Causal Rectangular Pulse Sequence
• Determine the DTFT of a causal rectangular pulse sequence

𝑥 𝑛 = A1, 0 ≤ 𝑛 ≤ 𝑁> − 1
0, O𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑋 𝑒!" = (
#%.

D>&>

𝑒&!"# = 1 + 𝑒&!" + 𝑒&-!" +⋯+ 𝑒&!"(D>&>)

=
1 − 𝑒&!"D>

1 − 𝑒&!"
=
𝑒&!"

D>
-

𝑒&!"
>
-

𝑒!"
D>
- − 𝑒&!"

D>
-

𝑒!"
>
- − 𝑒&!"

>
-

= 𝑒&!"
D>&>
-

sin 𝜔𝑁>2
sin𝜔2

. . .

𝑥 𝑛

𝑁% − 10

1
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Relationship between DFS and DTFT
𝑋 𝑒!" = <

%&*

8

𝑥 𝑛 𝑒'!"% =𝑒'!-"
sin 5 ⁄𝜔 2
sin ⁄𝜔 2

h𝑋[𝑘] = 𝑒&!
_,
>.$

sin 𝜋𝑘/2
sin 𝜋𝑘/10

Sampling

Magnitude

Phase

𝜔 =
2𝜋
10

𝑘

𝑁% = 5
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Relationship between DFS and DTFT
• Comparing the DFS N𝑋[𝑘] and DTFT 𝑋 𝑒!" , we have:

• This is, N𝑋[𝑘] is equal to 𝑋 𝑒!" sampled at N distinct frequencies 
between 𝜔 ∈ [0,2𝜋] with a uniform frequency spacing of 2𝜋/N.

• Samples of 𝑋 𝑒!" or DTFT of a finite-duration sequence 𝑥 𝑛 can be 
computed using the DFS of an infinite-duration periodic sequence L𝑥 𝑛 , 
which is a periodic extension of 𝑥 𝑛 .

N𝑋[𝑘] = Q𝑋 𝑒!"
"$1(8 )
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Properties of the DFS

L𝑥 𝑛 ⟷ N𝑋 𝑘 𝑎𝑛𝑑 L𝑦 𝑛 ⟷ N𝑌[𝑘]

1. Linear Property : 𝑎 L𝑥 𝑛 + 𝑏 L𝑦 𝑛 ⟷ 𝑎 N𝑋 𝑘 + 𝑏 N𝑌[𝑘]

2. Time Shift Property :  L𝑥 𝑛 − 𝑛, ⟷ 𝑒%!
BC
D #, N𝑋[𝑘]

3. Duality : L𝑥 𝑛 ⟷ N𝑋[𝑘], then  N𝑋 𝑛 ⟷ 𝑁L𝑥[−𝑘]

4. Symmetry : $𝑥 𝑛 ⟷ (𝑋[𝑘], then $𝑥∗ 𝑛 ⟷ (𝑋∗[−𝑘] and $𝑥∗ −𝑛 ⟷ (𝑋∗[𝑘]
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5. Periodicity Property of DFS

Periodicity : L𝑥 𝑛 = L𝑥 𝑛 + 𝑟𝑁 ⟷ N𝑋 𝑘 = N𝑋[𝑘 + 𝑟𝑁] r is integer.

Proof
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6. Periodic Convolution Property of the DFS
• Let L𝑥0[𝑛] ⟷ N𝑋0[𝑘] 𝑎𝑛𝑑 L𝑥1 𝑛 ⟷ N𝑋1[𝑘] be two DFS pairs with same 

period of N, We have

• Analogous to conventional convolution, S⊗ denotes discrete-time 
convolution within one period of the periodic sequences L𝑥0[𝑛] and 
L𝑥1[𝑛]

L𝑥0 𝑛 S⊗ L𝑥1 𝑛 ＝'
9$:

8%0

L𝑥0 𝑚 L𝑥1 𝑛 −𝑚 ⟷ N𝑋0 𝑘 N𝑋1 𝑘
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Proof of Periodic Convolution

• To compute L𝑥 𝑛 S⊗ L𝑦 𝑛 where both L𝑥 𝑛 and L𝑦 𝑛 are of period N, we 
indeed only need the samples with n = 0,1,2,…,N-1
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Calculation of Periodic Convolution (1)
• Let �̃� 𝑛 = L𝑥 𝑛 S⊗ L𝑦 𝑛 , which can be expressed as
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Calculation of Periodic Convolution (2)
• A period �̃� 𝑛 of can be computed in matrix form as



Periodic Convolution Example
• Given two periodic sequences i𝑥 𝑛 and i𝑦 𝑛 , with period 4 :

§ [ i𝑥 0 , i𝑥 1 , i𝑥 2 , i𝑥 3 ] = [4, −3, 2, −1]

§ [ i𝑦 0 , i𝑦 1 , i𝑦 2 , m𝑦 3 ] = [1, 2, 3, 4]

• Compute �̃� 𝑛 = i𝑥 𝑛 p⊗ i𝑦 𝑛 , which can be computed as

�̃� 0
�̃� 1
�̃� 2
�̃� 3

=

i𝑦 0 i𝑦 3 i𝑦 2 i𝑦 1
i𝑦 1 i𝑦 0 i𝑦 3 i𝑦 2
i𝑦 2 i𝑦 1 i𝑦 0 i𝑦 3
i𝑦 3 i𝑦 2 i𝑦 1 i𝑦 0

i𝑥 0
i𝑥 1
i𝑥 2
i𝑥 3

=
1 4 3 2
2 1 4 3
3 2 1 2
4 3 2 1

4
−3
2
−1

=
−4
10
4
10
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Convolution of Finite-Duration Sequences
Periodic convolution can be utilized to compute convolution of finite-
duration sequences as follows. 

• Let 𝑥 𝑛 and 𝑦 𝑛 be finite-duration sequences with lengths  M and N , 
respectively, and 𝑧 𝑛 = 𝑥 𝑛 ⊗ 𝑦 𝑛 which has a length of (M+N-1)

• We append (N-1) and (M-1)  zeros at the ends of 𝑥 𝑛 and 𝑦 𝑛 for 
constructing periodic L𝑥 𝑛 and L𝑦 𝑛 where both are of period (M+N-1)
𝑧 𝑛 is then obtained from one period of L𝑥 𝑛 S⊗ L𝑦 𝑛 .
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Example
• Compute the convolution of 𝑥 𝑛 and 𝑦 𝑛 with the use of periodic convolution.
• The lengths of 𝑥 𝑛 and 𝑦 𝑛 are 2 and 3 as

§ [𝑥 0 , 𝑥 1 ] = [2, 3]

§ [𝑦 0 , 𝑦 1 , 𝑦 2 ] = [1, −4, 5]

• The length of 𝑥 𝑛 ⊗ 𝑦 𝑛 is (2+3-1)=4. As a result, we append two zeros and one 
zero in of 𝑥 𝑛 and 𝑦 𝑛 , respectively. Then,

• 𝑥 𝑛 ⊗ 𝑦 𝑛 = 2, 3, 0, 0 p⊗ 1,−4, 5, 0 = [2, −5, −2, 15]

50L.M. Po



Python : scipy.signal.convolve
from scipy import signal

x = np.array([2, 3])

y = np.array([1, -4, 5])

z = signal.convolve(x, y)

print("z = ", z)

z = [ 2 -5 -2 15]

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html
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