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Frequency Response Estimation 

• 𝑌 𝑧 = 𝑋 𝑧 𝐻 𝑧
• 𝐻 𝑧 is referred as Transfer Function of the system.

• Frequency Response 𝐻 𝑒!" of the transfer 
function corresponds to the unit circle

§ |𝐻 𝑧 #$%!" = 𝐻 𝑒!"

LTI System
ℎ 𝑛 ⟷ 𝐻 𝑧

𝑋 𝑧

𝑥[𝑛] 𝑦[𝑛]

𝑌 𝑧
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Geometry Interpretation in z-plane

• For example, 𝐻 𝑧 = &
&'(##$ = #

#'(
§ It has a zero at 0 and a pole at 𝑎

• Given a point 𝑧& on the z-plane,
§ The vector of 𝑧) corresponds to the vector from zero 

to the point 𝑧)
§ The vector of (𝑧)−𝑎) corresponds to the vector from 

the pole at 𝑎 to the point 𝑧)

§ The magnitude 𝑋 𝑧) = *!
*!+,

§ The angle ∠𝑋 𝑧) = ∠𝑧) − ∠(𝑧) − 𝑎)
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Geometry Interpretation of Frequency Response

• 𝐻 𝑧 = &
&'(##$ = #

#'(

• The frequency response 𝐻 𝑒!" corresponds to 
all the points on the unit circle

§ The magnitude 𝐻 𝑒12 = )
3"#+,

§ The angle ∠𝐻 𝑒12 = ∠𝑒12 − ∠(𝑒12 − 𝑎)

z-planeIm

Re1
o

a

o
𝜔

2𝜋𝜋0

𝐻 𝑒"#

x

Unit
circle
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Two Poles Example

• 𝐻 𝑒!" = ∏ *%+,-. #%/0/
∏ *%+,-. 10*%

• ∠𝐻 𝑒!" = ∑∠𝑧𝑒𝑟𝑜𝑟 − ∑∠𝑝𝑜𝑙𝑒

z-plane

Im

Re
1

unit circle

x

x

This transfer function has two 
poles (complex conjugate poles)

2𝜋𝜋0

𝐻 𝑒"#

o

Im

Re1

unit circle

x
𝜔$

x
o

𝜔$ 2𝜋 − 𝜔$
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Example of 𝐻 z with only one zero
• Sketch the magnitude response of 𝐻 z = 1 − z'&

𝐻 𝑒!" = 1𝐻 𝑧
#$%!"

= 1 − 𝑒'!" = 1 − cosω − 𝑗 sin𝜔

𝐻 𝑒!" = 1 − cos𝜔 2 + −sin𝜔 2 = 2 − 2cos𝜔

𝐻 𝑒"#

𝜔
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Magnitude and Phase Responses
• We can show that the magnitude response 𝐻 𝑒12 is an even function 

of frequency

• The phase response ∠𝐻 𝑒12 is an odd function of frequency

𝐻 𝑒"#

𝜔

∠𝐻 𝑒"#

𝜔
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Group Delay

Learn how to calculate the group delay 
a Discrete-Time system



Phase Response of a Linear-Phase Filter

A diagram comparing the performance of a 
linear phase filter and a non-linear phase filter.

)𝜙(𝜔 = −𝜔

𝜔

Phase Response of a Linear-Phase Filter

∠𝐻 𝑒$%

∠𝐻 𝑒$% = −𝜔
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Group Delay
• Frequency response:

1𝐻 𝑧
#$%!"

= 𝐻 𝑒!" = 𝐻 𝑒!" ∠𝐻 𝑒!"

• Group delay (Delay generally varies with frequency):

𝜏 𝜔 = 𝑔𝑟𝑎𝑑 𝐻 𝑒!" = −
𝑑 ∠𝐻 𝑒!"

𝑑𝜔

• Note: Phase plots normally limited in range to ±𝜋
§ Ignore discontinuities when evaluating derivative 

Magnitude
Response

Phase
Response

Phase shift is 
due to a delay 
through the 

system

Negative slope of phase response

𝐻 𝑧𝑋 𝑧 𝑌 𝑥



Group Delay Example 1
• Determine the group delay of a DT system with unit impulse response of 
ℎ 𝑛 = 𝛿 𝑛 − 5 . This system is an ideal delay of 5 sample times.

𝐻 𝑧 = $
%&'(

(

ℎ 𝑛 𝑧'% = $
%&'(

(

𝛿 𝑛 − 5 𝑧'% = 𝑧')

𝐻 𝑒!" = 𝑒!" #$ = 1 * 𝑒#!$"

• Phase Response : ∠𝐻 𝑒!" = −5𝜔
• Group Delay : 

𝜏 𝜔 = −
𝑑 ∠𝐻 𝑒!"

𝑑𝜔 = −
𝑑 −5𝜔
𝑑𝜔 = 5

• 𝜏 𝜔 = 5 samples



Group Delay Example 2
• Determine the group delay of a causal 5-point moving average with unit impulse 

response of ℎ 𝑛 = )
@
, )
@
, )
@
, )
@
, )
@

with the first sample at 𝑛 = 0.

ℎ 𝑛 =
1
5
𝛿 𝑛 + 𝛿 𝑛 − 1 + 𝛿 𝑛 − 2 + 𝛿 𝑛 − 3 + 𝛿 𝑛 − 4 ⇒ 𝐻 𝑧 =

1
5
𝑧!" + 𝑧!# + 𝑧!$ + 𝑧!% + 𝑧!&

𝐻 𝑒"# =
1
5
𝑒"% + 𝑒&"# + 𝑒&"'# + 𝑒&"(# + 𝑒&")# =

1
5
𝑒&"'# 𝑒"'# + 𝑒"# + 𝑒&"% + 𝑒&"# + 𝑒&"'#

𝐻 𝑒$% = 𝑒,$-%
1
5 1 + 2 cos 2𝜔 + 2 cos𝜔

• Phase Response : ∠𝐻 𝑒$% = −2𝜔
• Group Delay : 

𝜏 𝜔 = − 3 '2"
3"

= 2 => 𝜏 𝜔 = 2 samples

Real value function



Frequency Response of 
FIR Systems



Frequency Response of FIR Systems
• Determine the magnitude and phase response of the 3-sample averager given by

• Precautions must be taken when determining the phase response of a filter having a 
real-valued transfer function, because negative real values produce an additional 
phase of π radians.

ℎ 𝑛 = *
1
3 −1 ≤ 𝑛 ≤ 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐻 𝑧 = $
%&'(

(

ℎ 𝑛 𝑧'8 =$
%&9

9

ℎ 𝑛 𝑧'8 =
1
3𝑧

'9 +
1
3𝑧

: +
1
3𝑧

9 =
1
3 𝑧'9 + 𝑧 + 𝑧9

𝐻 𝑒;< = 𝐻 𝑧 7
=&>*+

=
1
3 𝑒';< + 𝑒;(:) + 𝑒;< =

1
3 1 + 𝑒';< + 𝑒;< =

1
3 [1 + 2cos𝜔]

Non-casual System

15L.M. Po

0 n1-1

ℎ 𝑛
1
3

1
3

1
3



Linear Phase Response Characteristics 
• A linear-phase transfer function can be expressed as

• Real-valued function 𝐵 𝑒12 of that can take positive and negative values.

• Let phase angle is 𝜃

𝐻 𝑒12 = 𝑒+1E2𝐵 𝑒12 = 𝐵 𝑒12 cos −𝑘𝜔 − 𝑗 𝐵 𝑒12 sin 𝑘𝜔

tan 𝜃 = −
𝐵 𝑒12 sin 𝑘𝜔
𝐵 𝑒12 cos 𝑘𝜔

= − tan 𝑘𝜔 𝜃 = −𝑘𝜔
∠𝐻 𝑒12 = −𝑘𝜔

è Phase 
Response

The phase function includes linear phase term and accommodates for the sign changes in 𝐵 𝑒$% . 
Since -1 can be expressed as phase jumps of ±π, This will occur at frequencies where 𝐵 𝑒$% changes 
sign.

If 𝐵 𝑒$% > 0, the ∠𝐻 𝑒$% = −𝑘𝜔 If 𝐵 𝑒$% < 0, then  ∠𝐻 𝑒$% = −𝑘𝜔 ± 𝜋

16L.M. Po



Magnitude Response of the 3-Sample Averager

𝐻 𝑒12 =
1
3
[1 + 2 cos𝜔]

𝐻 𝑒$%

𝜔

Even Function

Magnitude Response 𝐻 𝑒$% : 

𝐻 𝑒12 =
1
3
[1 + 2 cos𝜔]
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Zero Phase Response of the 3-Sample Averager

Odd Function

Zero Phase Response ∠𝐻 𝑒$% : 

𝜔

∠𝐻 𝑒"#

∠𝐻 𝑒"# =
0 𝐵 𝑒"# > 0 −

2𝜋
3
< 𝜔 <

2𝜋
3

0 ± 𝜋 𝐵 𝑒"# < 0 −𝜋 ≤ 𝜔 ≤ −
2𝜋
3
𝑎𝑛𝑑

2𝜋
3
< 𝜔 < π

𝐻 𝑒12 = 𝑒1 N 2
1
3
[1 + 2 cos𝜔] = 𝑒1 N 2𝐵 𝑒12
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Casual 3-Point Weighted Averager Example
• Find the magnitude and phase responses of the 3-point weighted average with the 

impulse response as

ℎ 0 =
1
2 , ℎ 1 = 1, ℎ 2 =

1
2

𝐻 𝑧 =
1
2 𝑧

. + 𝑧,/ +
1
2 𝑧

,-

𝐻 𝑒$% =
1
2 + 𝑒

,$% +
1
2 𝑒

,-$% = 𝑒,$%(
1
2 𝑒

$% + 1 +
1
2 𝑒

,$%)

𝐻 𝑒12 = 𝑒+12 [1 + cos𝜔]

∠𝐻 𝑒12 = −𝜔
𝐵 𝑒"#

The amplitude function 
is never negative 
(therefore there is no 
phase jumps of ±𝜋) 

𝐻 𝑒$% = 1 + cos𝜔

𝜔

𝜔

∠𝐻 𝑒$% = −𝜔

Casual System

Linear Phase
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Magnitude and Phase Responses of Unit Sample

Case 1

Case 2

ℎ 𝑛 = 𝛿 𝑛 = D1 𝑛 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℎ 𝑛 = 𝛿 𝑛 − 𝑘

𝐻(𝑧) = 𝑧+E

𝐻 𝑒12 = 𝑒+1E2

𝐻 𝑒'(

𝐻 𝑒'(
∠𝐻 𝑒"# = −3𝜔

∠𝐻 𝑒"# = 0

Note: When phase exceeds ±π range a jump of ±2π is needed to bring the phase back 
into ±π range. 

𝜔 𝜔
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Phase Jumps
• From the previous examples, we note that there are two occasions for 

which the phase function experiences discontinuities or jumps. 

1. A jump of ±2π occurs to maintain the phase function within the 
principal value range of [-π and π] 

2. A jump of ± π occurs when 𝐵 𝑒!" undergoes a change of sign 

• The sign of the phase jump is chosen such that the resulting phase 
function is odd and, after the jump, lies in the range [-π and π]. 

21L.M. Po



Causal 3-Sample Averager
• Determine the magnitude and phase response of the 3-sample averager given by

ℎ 𝑛 = <
1
3

0 ≤ 𝑛 ≤ 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐻 𝑧 =
1
3𝑧

: +
1
3𝑧

'9 +
1
3𝑧

'C =
1
3 1 + 𝑧'9 + 𝑧'C

𝐻 𝑒;< =
1
3 1 + 𝑒';< + 𝑒';C< = 𝑒';<

1
3 1 + 𝑒;< + 𝑒';< = 𝑒';<

1
3 [1 + 2cos𝜔]

𝐻 𝑒$% =
1
3 [1 + 2 cos𝜔]

Magnitude Response 𝐻 𝑒"#

22L.M. Po
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Linear Phase Response of the Causal 3-Sample Averager

𝐻 𝑒$% = 𝑒,$%
1
3 [1 + 2 cos𝜔]

∠𝐻 𝑒"# =
−𝜔 𝐵 𝑒"# > 0 −

2𝜋
3
< 𝜔 <

2𝜋
3

−𝜔 ± 𝜋 𝐵 𝑒"# < 0 −𝜋 ≤ 𝜔 ≤ −
2𝜋
3
𝑎𝑛𝑑

2𝜋
3
< 𝜔 < 𝜋

∠𝐻 𝑒"#

𝐵 𝑒"#

Note: Phase is undefined at points 𝐻 𝑒"# = 0 or B 𝑒"# =0. 

𝜔
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Four Types of Causal Linear Phase FIR Systems

• For casual FIR systems, if their impulse response ℎ 𝑛 satisfied the 
symmetrical property, then the systems will have linear phase responses.

• The symmetrical impulse response property is defined as

• There 4 types of linear phase FIR systems:
§ Type I : Odd Positive Symmetric – 𝑀 is odd  and ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

§ Type II : Even Positive Symmetric – 𝑀 is even and ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

§ Type III : Odd Negative Symmetric – 𝑀 is odd and ℎ 𝑛 = −ℎ 𝑀 − 1 − 𝑛

§ Type IV : Even Negative Symmetric – 𝑀 is even and ℎ 𝑛 = −ℎ 𝑀 − 1 − 𝑛

ℎ 𝑛 = ±ℎ 𝑀 − 1 − 𝑛 , 𝑛 = 0,1,… ,𝑀 − 1

24L.M. Po



Positive Symmetry Impulse Responses

ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

𝐻 𝑒$% = 𝑒($(
% *(+

, ) ℎ
𝑀 − 1
2 + 2 8

./+

(*(0)/,

ℎ
𝑀 − 1
2 − 𝑘 cos 𝑘𝜔

Odd Positive Symmetry 
(Type I)

M=13
(odd)

ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

𝐻 𝑒$% = 𝑒($(
% *(+

, ) 2 8
./+

(*(0)/,

ℎ
𝑀 − 1
2 − 𝑘 cos((𝑘 −

1
2)𝜔)

Even Positive Symmetry 
(Type II)

M=12
(even)

9 11
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Negative Symmetry Impulse Responses

ℎ 𝑛 = −ℎ 𝑀 − 1 − 𝑛

𝐻 𝑒$% = 𝑒($(
% *(+

, (2,) 2 8
./+

(*(+)/,

ℎ
𝑀 − 1
2 − 𝑘 sin 𝑘𝜔

Even Negative Symmetry
(Type IV)

ℎ 𝑛 = −ℎ 𝑀 − 𝑛 − 1

M=12
(even)

𝐻 𝑒$% = 𝑒($(
% *(+

, (2,) 2 8
./+

(*(+)/,

ℎ
𝑀
2 − 𝑘 sin((𝑘 −

1
2)𝜔)

Odd Negative Symmetry 
(Type III)

9 11

M=13
(odd)
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Inverse Systems for LIT Systems



Inverse Systems for LIT Systems

• In terms of system functions in z-transforms:
𝑌 𝑧 = 𝐻 𝑧 𝑋 𝑧 and 𝑋 𝑧 = 𝐻P 𝑧 𝑌 𝑧 => 𝐻 𝑧 𝐻P 𝑧 = 1

Þ𝐻4 𝑧 = &
5 #

• For a stable inverse system, ROC of 𝐻P 𝑧 must include the unit circle ( 𝑧 = 1)
§ For causal system, the poles of the 𝐻D 𝑧 must inside the unit circle
§ The poles of 𝐻D 𝑧 are the zeros of 𝐻 𝑧

• For a stable system with inverse system exit:
§ Both of the zeros and poles have to be insider the unit circle.

ℎ 𝑛𝑥 𝑛 𝑦 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛 ℎP 𝑛 𝑥 𝑛 = ℎP 𝑛 ∗ 𝑦 𝑛

Inverse System

z-plane



Inverse Systems for LIT Systems
• Rational Transfer functions of LTI systems can be expressed as

§ 𝛽E are zeros and the 𝛼E are poles of the system 𝐻(𝑧)

• The inverse system

§ 𝛽E become the poles and the 𝛼E become zeros of the inverse system

• Stable/Causal 𝐻(𝑧) => 𝛼6 < 1
• Stable/Causal 𝐻4(𝑧) => 𝛽6 < 1

𝐻(𝑧) =
𝑏% + 𝑏!𝑧&! + ⋯+ 𝑏,&!𝑧,&! + 𝑏,𝑧&,

𝑎% + 𝑎!𝑧&! + ⋯+ 𝑎-&!𝑧-&! + 𝑎-𝑧&-
= 𝐾

∏>?/
@ 1 − 𝛽>𝑧,>

∏>?/
A 1 − 𝛼>𝑧,>

𝐻P(𝑧) =
1
𝐾
∏ES)
T 1 − 𝛼E𝑧+E

∏ES)
U 1 − 𝛽E𝑧+E

For a stable/causal system with 
an inverse system, both zeros 
and poles must be inside the 

unit circle.



Inverse System Example 1
• Multipath Communication: 

§ Difference Equation Model

§ 𝑦 𝑛 = 𝑥 𝑛 + 𝛽𝑥 𝑛 − 1

• Does a stable/causal inverse system exist?
𝐻 𝑧 = 1 + 𝛽𝑧#$

with Pole at 𝑧 = 0 and Zero at 𝑧 = −𝛽

• If 𝛽 < 1 (Zero of 𝐻 𝑧 is inside the unit circle)

§ The inverse system exit

𝐻& 𝑧 = $
$'()!"

=> 𝑦 𝑛 = 𝑥 𝑛 − 𝛽𝑦 𝑛

Im

Re
1

x

Unit
circle

o
−𝛽

𝑥 𝑛 𝑦 𝑛



Inverse System Example 2
• Does a stable/causal inverse system exist?

• The transfer function of the inverse system is given by

• For ROC 𝑧 < 2, it is stable but non-causal

• For ROC 𝑧 > 2, it is causal but unstable

• A stable/causal inverse system does not exist.

Im

Re
1

x

Unit
circle

o

𝐻 𝑧 =
𝑧+) − 0.5
1 − 0.9𝑧+)

𝐻P 𝑧 =
1 − 0.9𝑧+)

𝑧+) − 0.5
= −2

1 − 0.9𝑧+)

1 − 2𝑧+)

20.9



Inverse System Example 3
• Does a stable/causal inverse system exist?

• The transfer function of the inverse system is given by

• For ROC 𝑧 < 0.5, it is unstable and non-causal

• For ROC 𝑧 > 0.5, it is causal and stable

• A stable/causal inverse system exist.

Im

Re
1

x

Unit
circle

o

𝐻 𝑧 =
𝑧+) − 2

1 − 0.9𝑧+)

𝐻P 𝑧 =
1 − 0.9𝑧+)

𝑧+) − 2
= −

1
2
1 − 0.9𝑧+)

1 − 0.5𝑧+)

0.5 0.9



Minimum Phase Systems
• A stable/causal system has a stable/causal inverse system if and only if 

all poles and zeros are inside unit circle.
§ This is called Minimum Phase System.

• Can show that phase lag of a system with poles/zero inside the unit 
circle is less than that of any other system with identical magnitude 
response

• Any rational system function 

𝐻 𝑧 = 𝐻78, 𝑧 𝐻(1 𝑧
Minimum

Phase
All Pass



All-Pass Systems



All-Pass Systems
• An all-pass filter is one whose magnitude response 𝐻,W 𝑒12 is 

constant for all frequencies: 

§ All pass : 𝐻(1 𝑒!" = 𝟏 𝑜𝑟 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

§ However, the phase response is not identically zero.
• Poles and Zeros of all-pass systems in conjugate reciprocal 

pairs

𝐻(1 𝑧 =U
8$&

9
𝑧'& − 𝑐8∗

1 − 𝑐8𝑧'&

35L.M. Po

Im

Re
1

o

𝜙𝑟 x
𝑃𝑜𝑙𝑒𝑠 ∶ 𝑐B = 𝑟𝑒$C

𝑍𝑒𝑟𝑜𝑠:
1
𝑐B∗
=
1
𝑟 𝑒

$C

𝑐.

1
𝑐.∗



Magnitude Response of All-Pass Systems

• To show : 𝐻(1 𝑒!" = 1, consider 𝑃 = 1

𝐻,W 𝑒12 =
𝑒+12 − 𝑐∗

1 − 𝑐𝑒+12
=

𝑒+12 1 − 𝑐∗𝑒12

1 − 𝑐𝑒+12
=

𝑒+12 1 − 𝑐∗𝑒12

1 − 𝑐𝑒+12

𝐻,W 𝑧 =V
[S)

\
𝑧+) − 𝑐[∗

1 − 𝑐[𝑧+)

𝑃𝑜𝑙𝑒𝑠 ∶ 𝑐B = 𝑟𝑒$C

𝑍𝑒𝑟𝑜𝑠: 𝑐B∗ =
1
𝑟
𝑒$C

=
1 − 𝑐∗𝑒12

1 − 𝑐𝑒+12
=

1 − 𝑐𝑒+12
∗

1 − 𝑐𝑒+12
=

𝑏∗

𝑏
= 1



Pole-Zero Patterns of All-Pass Systems
• If 𝑧* is the modulus of a pole of 𝐻 𝑧 , then 1/ 𝑧* is the modulus of a zero 

of 𝐻 𝑧 {i.e. the modulus of poles and zeros are reciprocals of one another}. 
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Example of All-Pass System

• 𝐻 𝑧 = ##$'(
&'(##$

• Magnitude Response

𝐻 𝑒12 = 𝐻 𝑧 X
*S3"#

𝐻 𝑒12 =
𝑒+12 − 𝑎
1 − 𝑎𝑒+12

=
𝑒+12 1 − 𝑎𝑒12

1 − 𝑎𝑒+12
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1 − 𝑎𝑒+12
= 1



Phase Responses of All-Pass Systems
• When 0 < a < 1, the zero lies on the 

positive real axis. The phase over 0 
≤ θ ≤ π is positive, at 𝜔 = 0 it is 
equal to π and decreases until ω = 
π, where it is zero. 

• When -1< a < 0, the zero lies on the 
negative real axis. The phase over 0 
≤ 𝜔 ≤ π is negative, starting at 0 for 
𝜔 = 0 and decreases to -π at ω = π. 

𝜔

∠𝐻 𝑒12

𝜔 = 0 
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The Transfer Function of All-Pass Systems
• A more interesting all-pass filter is one that is described by

where 𝑎; = 1
• If we define the polynomial 𝐴 𝑧 as

• i.e. all-pass filter 

𝐻,W 𝑧 =
𝑎] + 𝑎]+)𝑧+) +⋯+ 𝑎)𝑧+]^) + 𝑎N𝑧+]

1 + 𝑎)𝑧+) +⋯+ 𝑎]+)𝑧+]^) + 𝑎]𝑧+]
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𝐴 𝑧 = [
ESN

]

𝑎E𝑧+E 𝑎. = 1

𝐻,W 𝑧 = 𝑧+]
𝐴 𝑧+)

𝐴 𝑧
⇒ 𝐻 𝑒12

_
= 𝐻 𝑧 · 𝐻 𝑧+) X

*S3"#
= 1



All-Pass System Example
Show that the following transfer function 𝐻 𝑧 can be obtained using a parallel 
connection of two all-pass filters. 

41L.M. Po

𝐻 𝑧 =
10 − 6𝑧+)

3 + 𝑧+)

𝐻 𝑧 =
9 + 3𝑧+) + 1 + 3𝑧+)

3 + 𝑧+)
= 3 +

1 + 3𝑧+)

3 + 𝑧+)

𝐻 𝑧 = 3 +
1
3

1 + 3𝑧+)

1 + 13 𝑧
+)

All-pass 
Filter All-pass 

Filter



A Second Order Resonant System
(Complex Poles)



A Second Order Resonant System
• The transfer function of a 2nd order resonant system can be expressed as

• It has a pair of complex conjugate poles 

𝐻 z =
1

1 + 𝑎/𝑧,/ + 𝑎-𝑧,-
=

𝑧-

𝑧- + 𝑎/𝑧 + 𝑎-

𝑝) = 𝑟𝑒12E = 𝑟 cos𝜔N + 𝑗 𝑟 sin𝜔N

𝑝_ = 𝑟𝑒+12E = 𝑟 cos𝜔N − 𝑗 𝑟 sin𝜔N
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• All pole system has poles only (without counting the zeros at the origin)

• Comparing with the two equations, we have

• 𝜔; is resonant frequency

𝐻 z = #E

#E<($#<(E
= #E

#'1$ #'1E
= #E

#'/%!"F #'/%#!"F

𝐻 z = #E

#E'/ %!"F<%#!"F #</E =
#E

#E'2/ =>?"F#</E

𝑎) = −2𝑟 cos𝜔N 𝑎_ = 𝑟_

cos 𝜔N = −
𝑎)
2 𝑎_

𝜔N =
2𝜋𝑓N
𝐹

and

Then,
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Magnitude Response of 2nd Order Resonant System

𝐻 z =
𝑧_

𝑧_ + 𝑎)𝑧 + 𝑎_
𝑎) = −2𝑟 cos𝜔N

𝑎_ = 𝑟_
𝜔N = cos+) −

𝑎)
2 𝑎_

𝑎! 𝑎' = 𝑟'

𝜔%
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Example 1
Sketch the magnitude response for the system having the transfer function

• The system has a zero at 𝑧 = −1 and complex conjugate poles at 𝑧 = 0.9𝑒±$
0
1

• Thus, the magnitude response will be zero at 𝜔% = 𝜋 and large at𝜔% =±𝑗
&
'

because the poles 
are close to the unit circle.

𝐻 z =
1 + 𝑧&!

1 − 0.9𝑒"
2
)𝑧&! 1 − 0.9𝑒&"

2
)𝑧&!

d𝐻(𝑒"#

𝜔

𝜔 = −𝜋
𝜔 = 0

𝜔 = 𝜋

𝜔

2
)
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Example 2
Sketch the approximate magnitude response from the pole-zero map given below:

𝜔

Band-Pass Filter 

−
𝐹!
2

𝐹!
2
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Example 3
Sketch the approximate magnitude response from the pole-zero map given below:

𝜔

d𝐻(𝑒"# in dB

Band-Stop Filter (Notch Filter)
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Notch Filter Design
Using

Pole-Zero Placement



Notch Filters
• When a zero is placed at a given point on the z-plane, the 

frequency response will be zero at the corresponding 
point. 

• A pole on the other hand produces a peak at the 
corresponding frequency point. 

• Poles that are close to the unit circle give rise large peaks, 
whereas zeros close to or on the unit circle produces 
troughs or minima. 

• Thus, by strategically placing poles and zeros on the z-plane, 
we can obtain sample lowpass or other frequency selective 
filters such as notch filters. 

z-plane

Im

Re
1

unit circle

o
x
𝜔
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Pole-Zero Placement Notch Filter Design
• Obtain, by the pole-zero placement method, the 

transfer function of a sample digital notch filter that 
meets the following specifications: 
§ Notch frequency 𝑓efghi : 50 Hz
§ 3 dB bandwidth of the Notch Δ𝑓 : ±5Hz
§ Sampling frequency 𝐹 : 500Hz

• The radius, 𝑟 of the poles is determined by

50 2500

𝐻 𝑓

𝑟 = 1 −
Δ𝑓
𝐹L

𝜋

Im

Re
1

unit circle

o

𝜔
𝑟 x
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Use of a Pair of Complex Zeros
• To reject the component at 50Hz, place a pair of 

complex zeros at points on the unit circle corresponds 
to 50Hz. i.e. at angle of 

§ 𝜔 = Ω𝑇 = 2𝜋 · 50 · )
@NN

= ±0.2𝜋

• To achieve a sharp notch filter and improved amplitude 
response on either side of the notch frequency, a pair of 
complex conjugate zeros are placed at a radius 𝑟 < 1.

Im

Re
1

unit circle

o

𝜔
𝑟

o
−𝜔

x𝑟

𝑟 = 1 −
Δ𝑓
𝐹

𝜋 = 1 −
10
500

𝜋 = 0.937

x
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Notch Filter Transform Function
• Based on the pole-zero locations, we can obtain the transfer function of the notch 

filter by

𝐻 𝑧 =
𝑧 − 𝑒+1N._k 𝑧 − 𝑒1N._k

𝑧 − 0.937𝑒+1N._k 𝑧 − 0.937𝑒1N._k

=
𝑧_ + 1 − 𝑒1N._k + 𝑒+1N._k

𝑧_ + 0.878 − 0.937 𝑒1N._k + 𝑒+1N._k 𝑧

=
𝑧_ + 1 − 2 cos 0.2𝜋

𝑧_ + 0.878 − 2×0.937 cos 0.2𝜋

=
1 − 1.6180𝑧+) + 𝑧+_

1 − 1.5161𝑧+) + 0.878𝑧+_
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Python Code : Notch Filter’s Pole-Zero Plot
import matplotlib.pyplot as plt

import numpy as np
import cmath
import control

# Define the Poles and Zeros of the Notch Filter

p1 = cmath.rect(0.937,np.pi*0.2)
p2 = cmath.rect(0.937,-np.pi*0.2)
z1 = cmath.rect(1,np.pi*0.2)

z2 = cmath.rect(1,-np.pi*0.2)

poles = [p1, p2]

zeros = [z1, z2]

# Determine the polynomial of the transfer function 
H(z)=B(z)/A(z) from the poles and zeros
b = np.poly(zeros) 

a = np.poly(poles)

tf = control.TransferFunction(b,a)

control.pzmap(tf)
plt.show()

𝐻(𝑧) =
1 − 1.6180𝑧+) + 𝑧+_

1 − 1.5161𝑧+) + 0.878𝑧+_



Python Code : Notch Filter’s Magnitude Response
from scipy import signal
import numpy as np

w, h = signal.freqz(b, a, fs=500)

import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
ax1.set_title(' Notch Filter : Magnitude Response')

ax1.plot(w, abs(h), 'r')
ax1.set_ylabel('Magnitude', color='b')
ax1.set_xlabel('Frequency [Hz]')
ax1.grid()

plt.axis('tight')
plt.show()


