Frequency Response Analysis

EE4015 Digital Signal Processing

Dr. Lai-Man Po
Department of Electrical Engineering
City University of Hong Kong

Content

Frequency Response Analysis

- Frequency Response Estimation
- Magnitude and Phase Responses
- Frequency Response of FIR Systems
- All-Pass Filters
- Second Order Resonant Filter
- Notch Filter Design using Pole-Zero Placement

Structures for Discrete-Time Systems

- Block Diagram Representation
- Signal Flow Graph Representation
- Non-Recursive Structures for FIR System
- Direct Form and Cascade From
- Recursive Structures for IIR System
- Direct Form, Canonic Form, Cascade Form and Parallel Form
- Comparison of Different Structures

Frequency Response Estimation

- $Y(z)=X(z) H(z)$
- $H(z)$ is referred as Transfer Function of the system.
- Frequency Response $H\left(e^{j \omega}\right)$ of the transfer function corresponds to the unit circle

- $\left.H(z)\right|_{z=e^{j \omega}}=H\left(e^{j \omega}\right)$

Geometry Interpretation in z-plane

- For example, $H(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}$
z-plane
- It has a zero at 0 and a pole at a
- Given a point z_{1} on the z-plane,
- The vector of z_{1} corresponds to the vector from zero to the point z_{1}
- The vector of $\left(z_{1}-a\right)$ corresponds to the vector from the pole at a to the point z_{1}

- The magnitude $\left|X\left(z_{1}\right)\right|=\frac{\left|z_{1}\right|}{\left|z_{1}-a\right|}$
- The angle $\angle X\left(z_{1}\right)=\angle z_{1}-\angle\left(z_{1}-a\right)$

Geometry Interpretation of Frequency Response

- $H(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}$
- The frequency response $H\left(e^{j \omega}\right)$ corresponds to all the points on the unit circle
- The magnitude $\left|H\left(e^{j \omega}\right)\right|=\frac{1}{\left|e^{j \omega}-a\right|}$

- The angle $\angle H\left(e^{j \omega}\right)=\angle e^{j \omega}-\angle\left(e^{j \omega}-a\right)$

Two Poles Example

- $\left|H\left(e^{j \omega}\right)\right|=\frac{\text { Ilegnth } \overline{\text { zeror }}}{\Pi \text { legnth } \overline{\text { pole }}}$
- $\angle H\left(e^{j \omega}\right)=\sum \angle \overrightarrow{\text { zeror }}-\sum \angle \overrightarrow{\text { pole }}$

This transfer function has two
poles (complex conjugate poles)

Example of $H(\mathrm{z})$ with only one zero

- Sketch the magnitude response of $H(\mathrm{z})=1-\mathrm{z}^{-1}$

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}=1-e^{-j \omega}=(1-\cos \omega)-j \sin \omega \\
& \left|H\left(e^{j \omega}\right)\right|=\sqrt{(1-\cos \omega)^{2}+(-\sin \omega)^{2}}=\sqrt{2-2 \cos \omega}
\end{aligned}
$$

Magnitude and Phase Responses

- We can show that the magnitude response $\left|H\left(e^{j \omega}\right)\right|$ is an even function of frequency
- The phase response $\angle H\left(e^{j \omega}\right)$ is an odd function of frequency

Group Delay

Learn how to calculate the group delay a Discrete-Time system

Phase Response of a Linear-Phase Filter

A diagram comparing the performance of a
linear phase filter and a non-linear phase filter.

Group Delay

- Frequency response:

$$
\left.H(z)\right|_{z=e^{j \omega}}=H\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right| \angle H\left(e^{j \omega}\right)
$$

Phase shift is due to a delay through the system

- Group delay (Delay generally varies with frequency):

$$
\tau(\omega)=\operatorname{grad}\left\{H\left(e^{j \omega}\right)\right\}=-\frac{d\left\{\angle H\left(e^{j \omega}\right)\right\}}{d \omega}
$$

Negative slope of phase response

- Note: Phase plots normally limited in range to $\pm \pi$
- Ignore discontinuities when evaluating derivative

Group Delay Example 1

- Determine the group delay of a DT system with unit impulse response of $h[n]=\delta[n-5]$. This system is an ideal delay of 5 sample times.

$$
\begin{gathered}
H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}=\sum_{n=-\infty}^{\infty} \delta[n-5] z^{-n}=z^{-5} \\
H\left(e^{j \omega}\right)=\left(e^{j \omega}\right)^{-5}=1 \cdot e^{-j 5 \omega}
\end{gathered}
$$

- Phase Response : $\angle H\left(e^{j \omega}\right)=-5 \omega$
- Group Delay :

$$
\tau(\omega)=-\frac{d\left\{\angle H\left(e^{j \omega}\right)\right\}}{d \omega}=-\frac{d\{-5 \omega\}}{d \omega}=5
$$

- $\tau(\omega)=5$ samples

Group Delay Example 2

- Determine the group delay of a causal 5-point moving average with unit impulse response of $h[n]=\left[\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right]$ with the first sample at $n=0$.

$$
\begin{aligned}
& h[n]=\frac{1}{5}(\delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]+\delta[n-4]) \Rightarrow H(z)=\frac{1}{5}\left(z^{-0}+z^{-1}+z^{-2}+z^{-3}+z^{-4}\right) \\
& H\left(e^{j \omega}\right)=\frac{1}{5}\left(e^{j 0}+e^{-j \omega}+e^{-j 2 \omega}+e^{-j 3 \omega}+e^{-j 4 \omega}\right)=\frac{1}{5} e^{-j 2 \omega}\left(e^{j 2 \omega}+e^{j \omega}+e^{-j 0}+e^{-j \omega}+e^{-j 2 \omega}\right)
\end{aligned}
$$

$$
H\left(e^{j \omega}\right)=e^{-j 2 \omega} \frac{1}{5}(1+2 \cos 2 \omega+2 \cos \omega)
$$

- Phase Response : $\angle H\left(e^{j \omega}\right)=-2 \omega$

Real value function

- Group Delay :

$$
\tau(\omega)=-\frac{d\{-2 \omega\}}{d \omega}=2 \quad \Rightarrow \tau(\omega)=2 \text { samples }
$$

Frequency Response of FIR Systems

Frequency Response of FIR Systems

- Determine the magnitude and phase response of the 3 -sample averager given by

$$
\begin{aligned}
& h[n]=\left\{\begin{array}{cc}
\frac{1}{3} & -1 \leq n \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
& H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-k}=\sum_{n=1}^{1} h[n] z^{-k}=\frac{1}{3} z^{-1}+\frac{1}{3} z^{0}+\frac{1}{3} z^{1}=\frac{1}{3}\left[z^{-1}+z+z^{1}\right] \\
& H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}=\frac{1}{3}\left[e^{-j \omega}+e^{j(0)}+e^{j \omega}\right]=\frac{1}{3}\left[1+e^{-j \omega}+e^{j \omega}\right]=\frac{1}{3}[1+2 \cos \omega]
\end{aligned}
$$

- Precautions must be taken when determining the phase response of a filter having a real-valued transfer function, because negative real values produce an additional phase of π radians.

Linear Phase Response Characteristics

- A linear-phase transfer function can be expressed as

$$
H\left(e^{j \omega}\right)=e^{-j k \omega} B\left(e^{j \omega}\right)=\left[B\left(e^{j \omega}\right) \cos (-k \omega)\right]-j\left[B\left(e^{j \omega}\right) \sin (k \omega)\right]
$$

- Real-valued function $B\left(e^{j \omega}\right)$ of that can take positive and negative values.
- Let phase angle is θ

$$
\tan \theta=-\frac{B\left(e^{j \omega}\right) \sin (k \omega)}{B\left(e^{j \omega}\right) \cos (k \omega)}=-\tan (k \omega) \quad \rightarrow \begin{gathered}
\text { Phase } \\
\text { Response }
\end{gathered} \quad \angle H\left(e^{j \omega}\right)=-k \omega
$$

The phase function includes linear phase term and accommodates for the sign changes in $B\left(e^{j \omega}\right)$.
Since -1 can be expressed as phase jumps of $\pm \pi$, This will occur at frequencies where $B\left(e^{j \omega}\right)$ changes sign.

$$
\text { If } B\left(e^{j \omega}\right)>0 \text {, the } \angle H\left(e^{j \omega}\right)=-k \omega \quad \text { If } B\left(e^{j \omega}\right)<0 \text {, then } \angle H\left(e^{j \omega}\right)=-k \omega \pm \pi
$$

Magnitude Response of the 3-Sample Averager

$$
H\left(e^{j \omega}\right)=\frac{1}{3}[1+2 \cos \omega]
$$

Magnitude Response $\left|H\left(e^{j \omega}\right)\right|$:
$\left|H\left(e^{j \omega}\right)\right|=\left|\frac{1}{3}[1+2 \cos \omega]\right|$

Even Function

Zero Phase Response of the 3-Sample Averager

$$
H\left(e^{j \omega}\right)=e^{j(0) \omega} \frac{1}{3}[1+2 \cos \omega]=e^{j(0) \omega} B\left(e^{j \omega}\right)
$$

Zero Phase Response $\angle H\left(e^{j \omega}\right)$:
$\angle H\left(e^{j \omega}\right)=\left\{\begin{array}{ccc}0 & B\left(e^{j \omega}\right)>0 & -\frac{2 \pi}{3}<\omega<\frac{2 \pi}{3} \\ 0 \pm \pi & B\left(e^{j \omega}\right)<0 & -\pi \leq \omega \leq-\frac{2 \pi}{3} \text { and } \frac{2 \pi}{3}<\omega<\pi\end{array}\right.$

Odd Function

Casual 3-Point Weighted Averager Example

- Find the magnitude and phase responses of the 3-point weighted average with the
impulse response as

$$
\begin{aligned}
& h[0]=\frac{1}{2}, h[1]=1, h[2]=\frac{1}{2} \\
& H(z)=\frac{1}{2} z^{0}+z^{-1}+\frac{1}{2} z^{-2} \\
& H\left(e^{j \omega}\right)=\frac{1}{2}+e^{-j \omega}+\frac{1}{2} e^{-2 j \omega}=e^{-j \omega}\left(\frac{1}{2} e^{j \omega}+1+\frac{1}{2} e^{-j \omega}\right) \\
& H\left(e^{j \omega}\right)=e^{-j \omega} \underbrace{1+\cos \omega]}_{B\left(e^{j \omega}\right)}] \begin{array}{l}
\text { The amplitude function } \\
\text { is never negative } \\
\text { (therefore there is no } \\
\text { phase jumps of } \pm \pi)
\end{array}
\end{aligned}
$$

Casual System

Linear Phase

Magnitude and Phase Responses of Unit Sample

Case 1

$$
h[n]=\delta[n]=\left\{\begin{array}{cc}
1 & n=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Case 2

$$
\begin{aligned}
& h[n]=\delta[n-k] \\
& H(z)=z^{-k} \\
& H\left(e^{j \omega}\right)=e^{-j k \omega}
\end{aligned}
$$

Note: When phase exceeds $\pm \pi$ range a jump of $\pm 2 \pi$ is needed to bring the phase back into $\pm \pi$ range.

Phase Jumps

- From the previous examples, we note that there are two occasions for which the phase function experiences discontinuities or jumps.

1. A jump of $\pm 2 \pi$ occurs to maintain the phase function within the principal value range of $[-\pi$ and $\pi]$
2. A jump of $\pm \pi$ occurs when $B\left(e^{j \omega}\right)$ undergoes a change of sign

- The sign of the phase jump is chosen such that the resulting phase function is odd and, after the jump, lies in the range $[-\pi$ and π].

Causal 3-Sample Averager

- Determine the magnitude and phase response of the 3-sample averager given by

$$
\begin{aligned}
h[n] & = \begin{cases}\frac{1}{3} & 0 \leq n \leq 2 \\
0 & \text { otherwise }\end{cases} \\
H(z) & =\frac{1}{3} z^{0}+\frac{1}{3} z^{-1}+\frac{1}{3} z^{-2}=\frac{1}{3}\left[1+z^{-1}+z^{-2}\right] \\
H\left(e^{j \omega}\right) & =\frac{1}{3}\left[1+e^{-j \omega}+e^{-j 2 \omega}\right]=e^{-j \omega} \frac{1}{3}\left[1+e^{j \omega}+e^{-j \omega}\right]=e^{-j \omega} \frac{1}{3}[1+2 \cos \omega]
\end{aligned}
$$

Linear Phase Response of the Causal 3-Sample Averager

Note: Phase is undefined at points $\left|H\left(e^{j \omega}\right)\right|=0$ or $B\left(e^{j \omega}\right)=0$.

Four Types of Causal Linear Phase FIR Systems

- For casual FIR systems, if their impulse response $h[n]$ satisfied the symmetrical property, then the systems will have linear phase responses.
- The symmetrical impulse response property is defined as

$$
h[n]= \pm h[M-1-n], \quad n=0,1, \ldots, M-1
$$

- There 4 types of linear phase FIR systems:
- Type I: Odd Positive Symmetric - M is odd and $h[n]=h[M-1-n]$
- Type II : Even Positive Symmetric $-M$ is even and $h[n]=h[M-1-n]$
- Type III: Odd Negative Symmetric $-M$ is odd and $h[n]=-h[M-1-n]$
- Type IV : Even Negative Symmetric $-M$ is even and $h[n]=-h[M-1-n]$

Positive Symmetry Impulse Responses

Negative Symmetry Impulse Responses

Inverse Systems for LIT Systems

Inverse Systems for LIT Systems

- In terms of system functions in z-transforms:

$$
\begin{gathered}
Y(z)=H(z) X(z) \text { and } X(z)=H_{I}(z) Y(z)=>H(z) H_{I}(z)=1 \quad \text { z-plane } \\
\Rightarrow H_{I}(z)=\frac{1}{H(z)}
\end{gathered}
$$

- For a stable inverse system, ROC of $H_{I}(z)$ must include the unit circle $(|z|=1)$
- For causal system, the poles of the $H_{I}(z)$ must inside the unit circle
- The poles of $H_{I}(z)$ are the zeros of $H(z)$
- For a stable system with inverse system exit:
- Both of the zeros and poles have to be insider the unit circle.

Inverse Systems for LIT Systems

- Rational Transfer functions of LTI systems can be expressed as

$$
H(z)=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M-1} z^{M-1}+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\cdots+a_{N-1} z^{N-1}+a_{N} z^{-N}}=K \frac{\prod_{k=1}^{M}\left(1-\beta_{k} z^{-k}\right)}{\prod_{k=1}^{N}\left(1-\alpha_{k} z^{-k}\right)}
$$

- β_{k} are zeros and the α_{k} are poles of the system $H(z)$
- The inverse system

$$
H_{I}(z)=\frac{1}{K} \frac{\prod_{k=1}^{N}\left(1-\alpha_{k} z^{-k}\right)}{\prod_{k=1}^{M}\left(1-\beta_{k} z^{-k}\right)}
$$

- β_{k} become the poles and the α_{k} become zeros of the inverse system
- Stable/Causal $H(z)=>\left|\alpha_{k}\right|<1$
- Stable/Causal $H_{I}(z)=>\left|\beta_{k}\right|<1$

> For a stable/causal system with an inverse system, both zeros and poles must be inside the unit circle.

Inverse System Example 1

- Multipath Communication:
- Difference Equation Model
- $y[n]=x[n]+\beta x[n-1]$

- Does a stable/causal inverse system exist?

$$
H(z)=1+\beta z^{-1}
$$

with Pole at $z=0$ and Zero at $z=-\beta$

- If $|\beta|<1$ (Zero of $H(z)$ is inside the unit circle)
- The inverse system exit

$$
H_{I}(z)=\frac{1}{1+\beta z^{-1}} \Rightarrow y[n]=x[n]-\beta y[n]
$$

Inverse System Example 2

- Does a stable/causal inverse system exist? $H(z)=\frac{z^{-1}-0.5}{1-0.9 z^{-1}}$
- The transfer function of the inverse system is given by

$$
H_{I}(z)=\frac{1-0.9 z^{-1}}{z^{-1}-0.5}=-2 \frac{1-0.9 z^{-1}}{1-2 z^{-1}}
$$

- For ROC $|z|<2$, it is stable but non-causal
- For ROC $|z|>2$, it is causal but unstable
- A stable/causal inverse system does not exist.

Inverse System Example 3

- Does a stable/causal inverse system exist? $H(z)=\frac{z^{-1}-2}{1-0.9 z^{-1}}$
- The transfer function of the inverse system is given by

$$
H_{I}(z)=\frac{1-0.9 z^{-1}}{z^{-1}-2}=-\frac{1}{2} \frac{1-0.9 z^{-1}}{1-0.5 z^{-1}}
$$

- For ROC $|z|<0.5$, it is unstable and non-causal
- For ROC $|z|>0.5$, it is causal and stable
- A stable/causal inverse system exist.

Minimum Phase Systems

- A stable/causal system has a stable/causal inverse system if and only if all poles and zeros are inside unit circle.
- This is called Minimum Phase System.
- Can show that phase lag of a system with poles/zero inside the unit circle is less than that of any other system with identical magnitude response
- Any rational system function

$$
H(z)=\underset{\substack{\text { Minimum } \\ \text { Phase }}}{\min _{\text {All Pass }}(z)} H_{\text {ap }}(z)
$$

All-Pass Systems

All-Pass Systems

- An all-pass filter is one whose magnitude response $\left|H_{a p}\left(e^{j \omega}\right)\right|$ is constant for all frequencies:
- All pass : $\left|H_{a p}\left(e^{j \omega}\right)\right|=\mathbf{1}$ or Constant
- However, the phase response is not identically zero.
- Poles and Zeros of all-pass systems in conjugate reciprocal pairs

$$
H_{a p}(z)=\prod_{i=1}^{P} \frac{z^{-1}-c_{i}^{*}}{1-c_{i} Z^{-1}} \quad \text { Poles : } c_{i}=r e^{j \phi} \quad \text { Zeros: } \frac{1}{c_{i}^{*}}=\frac{1}{r} e^{j \phi}, ~ l
$$

Magnitude Response of All-Pass Systems

$$
H_{a p}(z)=\prod_{i=1}^{P} \frac{z^{-1}-c_{i}^{*}}{1-c_{i} Z^{-1}} \quad \text { Poles : } c_{i}=r e^{j \phi}, \text { Zeros: } c_{i}^{*}=\frac{1}{r} e^{j \phi}
$$

- To show : $\left|H_{a p}\left(e^{j \omega}\right)\right|=1$, consider $P=1$

$$
\begin{aligned}
\left|H_{a p}\left(e^{j \omega}\right)\right| & =\left|\frac{e^{-j \omega}-c^{*}}{1-c e^{-j \omega}}\right|=\left|\frac{e^{-j \omega}\left(1-c^{*} e^{j \omega}\right)}{1-c e^{-j \omega}}\right|=\frac{\left|e^{-j \omega}\right|\left|1-c^{*} e^{j \omega}\right|}{\left|1-c e^{-j \omega}\right|} \\
& =\frac{\left|1-c^{*} e^{j \omega}\right|}{\left|1-c e^{-j \omega}\right|}=\frac{\left|\left(1-c e^{-j \omega}\right)^{*}\right|}{\left|1-c e^{-j \omega}\right|}=\frac{\left|b^{*}\right|}{|b|}=1
\end{aligned}
$$

Pole-Zero Patterns of All-Pass Systems

- If $\left|z_{0}\right|$ is the modulus of a pole of $H(z)$, then $1 /\left|z_{0}\right|$ is the modulus of a zero of $H(z)$ \{i.e. the modulus of poles and zeros are reciprocals of one another\}.

Example of All-Pass System

- $H(z)=\frac{z^{-1}-a}{1-a z^{-1}}$
- Magnitude Response

$$
\begin{aligned}
\left|H\left(e^{j \omega}\right)\right| & =\left.H(z)\right|_{z=e^{j \omega}} \\
\left|H\left(e^{j \omega}\right)\right| & =\left|\frac{e^{-j \omega}-a}{1-a e^{-j \omega}}\right|=\left|\frac{e^{-j \omega}\left(1-a e^{j \omega}\right)}{1-a e^{-j \omega}}\right| \quad\left|e^{-j \omega}\right|=1 \\
& =\left|\frac{1-a e^{j \omega}}{1-a e^{-j \omega}}\right|=1 \quad \text { The Magnitude Response is constant }
\end{aligned}
$$

Phase Responses of All-Pass Systems

- When $0<a<1$, the zero lies on the positive real axis. The phase over 0 $\leq \theta \leq \pi$ is positive, at $\omega=0$ it is equal to π and decreases until $\omega=$ π, where it is zero.
- When $-1<a<0$, the zero lies on the negative real axis. The phase over 0 $\leq \omega \leq \pi$ is negative, starting at 0 for $\omega=0$ and decreases to $-\pi$ at $\omega=\pi$.

The Transfer Function of All-Pass Systems

- A more interesting all-pass filter is one that is described by

$$
H_{a p}(z)=\frac{a_{L}+a_{L-1} z^{-1}+\cdots+a_{1} z^{-L+1}+a_{0} z^{-L}}{1+a_{1} z^{-1}+\cdots+a_{L-1} z^{-L+1}+a_{L} z^{-L}}
$$

where $a_{0}=1$

- If we define the polynomial $A(z)$ as

$$
\begin{aligned}
& A(z)=\sum_{k=0}^{L} a_{k} z^{-k} \quad a_{0}=1 \\
& H_{a p}(z)=z^{-L} \frac{A\left(z^{-1}\right)}{A(z)} \Rightarrow\left|H\left(e^{j \omega}\right)\right|^{2}=\left.H(z) \cdot H\left(z^{-1}\right)\right|_{z=e^{j \omega}}=1
\end{aligned}
$$

- i.e. all-pass tilter

All-Pass System Example

Show that the following transfer function $H(z)$ can be obtained using a parallel connection of two all-pass filters.

$$
\begin{aligned}
& H(z)=\frac{10-6 z^{-1}}{3+z^{-1}} \\
& H(z)=\frac{9+3 z^{-1}+1+3 z^{-1}}{3+z^{-1}}=3+\frac{1+3 z^{-1}}{3+z^{-1}} \\
& H(z)=\underbrace{3+\left(\frac{1}{3}\right)}_{\substack{\text { All-pass } \\
\text { Filter }}} \underbrace{\frac{1+3 z^{-1}}{1+\frac{1}{3} z^{-1}}}_{\substack{\text { Alll-pass } \\
\text { Filter }}}
\end{aligned}
$$

A Second Order Resonant System (Complex Poles)

A Second Order Resonant System

- The transfer function of a 2 nd order resonant system can be expressed as

$$
H(\mathrm{z})=\frac{1}{1+a_{1} z^{-1}+a_{2} z^{-2}}=\frac{z^{2}}{z^{2}+a_{1} z+a_{2}}
$$

- It has a pair of complex conjugate poles

$$
\begin{aligned}
& p_{1}=r e^{j \omega_{0}}=r \cos \omega_{0}+j r \sin \omega_{0} \\
& p_{2}=r e^{-j \omega_{0}}=r \cos \omega_{0}-j r \sin \omega_{0}
\end{aligned}
$$

- All pole system has poles only (without counting the zeros at the origin)

$$
\begin{aligned}
& H(\mathrm{z})=\frac{z^{2}}{z^{2}+a_{1} z+a_{2}}=\frac{z^{2}}{\left(z-p_{1}\right)\left(z-p_{2}\right)}=\frac{z^{2}}{\left(z-r e^{j \omega_{0}}\right)\left(z-r e^{-j \omega_{0}}\right)} \\
& H(\mathrm{z})=\frac{z^{2}}{z^{2}-r\left(e^{j \omega_{0}}+e^{-j \omega_{0}}\right) z+r^{2}}=\frac{z^{2}}{z^{2}-2 r \cos \omega_{0} z+r^{2}}
\end{aligned}
$$

- Comparing with the two equations, we have

$$
a_{1}=-2 r \cos \omega_{0} \quad \text { and } \quad a_{2}=r^{2}
$$

Then, $\cos \omega_{0}=-\frac{a_{1}}{2 \sqrt{a_{2}}} \quad \omega_{0}=\frac{2 \pi f_{0}}{F_{S}}$

- ω_{0} is resonant frequency

Magnitude Response of $\mathbf{2}^{\text {nd }}$ Order Resonant System

$$
\begin{aligned}
& H(\mathrm{z})=\frac{z^{2}}{z^{2}+a_{1} z+a_{2}} \\
& a_{1}=-2 r \cos \omega_{0} \quad \omega_{0}=\cos ^{-1}\left[-\frac{a_{1}}{2 \sqrt{a_{2}}}\right] \\
& a_{2}=r^{2} \quad
\end{aligned}
$$

	a_{1}	$a_{2}=r^{2}$
I	-0.94	0.5
II	-1.16	0.7
III	-1.34	0.9
IV	-1.41	0.99

Example 1

Sketch the magnitude response for the system having the transfer function

$$
H(\mathrm{z})=\frac{1+z^{-1}}{\left(1-0.9 e^{j \frac{\pi}{4}} Z^{-1}\right)\left(1-0.9 e^{-j \frac{\pi}{4}} z^{-1}\right)}
$$

- The system has a zero at $z=-1$ and complex conjugate poles at $z=0.9 e^{ \pm j \frac{\pi}{4}}$
- Thus, the magnitude response will be zero at $\omega_{0}=\pi$ and large at $\omega_{0}= \pm j \frac{\pi}{4}$ because the poles are close to the unit circle.

Example 2

Sketch the approximate magnitude response from the pole-zero map given below:

Example 3

Sketch the approximate magnitude response from the pole-zero map given below:

Notch Filter Design Using
 Pole-Zero Placement

Notch Filters

- When a zero is placed at a given point on the z-plane, the frequency response will be zero at the corresponding point.
- A pole on the other hand produces a peak at the corresponding frequency point.
- Poles that are close to the unit circle give rise large peaks, whereas zeros close to or on the unit circle produces troughs or minima.
- Thus, by strategically placing poles and zeros on the z-plane, we can obtain sample lowpass or other frequency selective

z-plane filters such as notch filters.

Pole-Zero Placement Notch Filter Design

- Obtain, by the pole-zero placement method, the transfer function of a sample digital notch filter that meets the following specifications:
- Notch frequency $f_{\text {notch }}: 50 \mathrm{~Hz}$
- 3 dB bandwidth of the Notch $\Delta f: \pm 5 \mathrm{~Hz}$
- Sampling frequency $F_{S}: 500 \mathrm{~Hz}$
- The radius, r of the poles is determined by

$$
r=1-\left(\frac{\Delta f}{F_{S}}\right) \pi
$$

Use of a Pair of Complex Zeros

- To reject the component at 50 Hz , place a pair of complex zeros at points on the unit circle corresponds to 50 Hz . i.e. at angle of

$$
\omega=\Omega T=2 \pi \cdot 50 \cdot \frac{1}{500}= \pm 0.2 \pi
$$

- To achieve a sharp notch filter and improved amplitude response on either side of the notch frequency, a pair of complex conjugate zeros are placed at a radius $r<1$.

$$
r=1-\left(\frac{\Delta f}{F_{S}}\right) \pi=1-\left(\frac{10}{500}\right) \pi=0.937
$$

Notch Filter Transform Function

- Based on the pole-zero locations, we can obtain the transfer function of the notch filter by

$$
\begin{aligned}
H(z) & =\frac{\left(z-e^{-j 0.2 \pi}\right)\left(z-e^{j 0.2 \pi}\right)}{\left(z-0.937 e^{-j 0.2 \pi}\right)\left(z-0.937 e^{j 0.2 \pi}\right)} \\
& =\frac{z^{2}+1-\left(e^{j 0.2 \pi}+e^{-j 0.2 \pi}\right)}{z^{2}+0.878-0.937\left(e^{j 0.2 \pi}+e^{-j 0.2 \pi}\right) z} \\
& =\frac{z^{2}+1-2 \cos (0.2 \pi)}{z^{2}+0.878-2 \times 0.937 \cos (0.2 \pi)} \\
& =\frac{1-1.6180 z^{-1}+z^{-2}}{1-1.5161 z^{-1}+0.878 z^{-2}}
\end{aligned}
$$

Python Code : Notch Filter's Pole-Zero Plot

import matplotlib.pyplot as plt
import numpy as np
import cmath
import control
\# Define the Poles and Zeros of the Notch Filter
$\mathrm{p} 1=$ cmath.rect (0.937,np.pi*0.2)
p2 = cmath.rect(0.937,-np.pi*0.2)
z1 = cmath.rect(1,np.pi*0.2)
z2 $=$ cmath.rect(1,-np.pi*0.2)
poles $=[p 1, p 2]$
zeros $=[\mathrm{z} 1, \mathrm{z} 2]$
\# Determine the polynomial of the transfer function
$\mathrm{H}(\mathrm{z})=\mathrm{B}(\mathrm{z}) / \mathrm{A}(\mathrm{z})$ from the poles and zeros
$\mathrm{b}=\mathrm{np} \cdot \mathrm{poly}(\mathrm{zeros})$
$a=n p \cdot p o l y(p o l e s)$
tf $=$ control.TransferFunction(b,a)
control.pzmap (tf)
plt.show()

$$
H(z)=\frac{1-1.6180 z^{-1}+z^{-2}}{1-1.5161 z^{-1}+0.878 z^{-2}}
$$

Python Code : Notch Filter's Magnitude Response

```
from scipy import signal
import numpy as np
w, h = signal.freqz(b, a, fs=500)
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add subplot(1, 1, 1)
ax1.set_title(' Notch Filter : Magnitude Response')
ax1.plot(w, abs(h), 'r')
ax1.set ylabel('Magnitude', color='b')
ax1.set_xlabel('Frequency [Hz]')
ax1.grid()
plt.axis('tight')
plt.show()
```


