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EE4015 Face-to-Face Mid-Term Exam
• The Face-to-Face Mid-Term Exam will be held on November 8, 2022 (Tuesday of Week 11).
• The exam time is 2 hours. Students should arrive at the venue at least 5 minutes before the 

start of the exam.
• The Mid-Term Exam is an open-note exam. Students can use "Scientific Calculator" and "All 

Handouts", including exercises and assignments.
§ In addition to hard copies of handouts, students can also use smartphones, tablets or 

iPads to read notes, but the electronic device must be set to airplane mode. During the 
exam, you are not allowed to communicate with others and search on the Internet. 
During the exam, investigators will check from time to time whether your electronic 
device is in airplane mode.

• Students need to use their own answer sheets (such as A4 paper) to answer the questions.
• The mid-term exam will cover up to week 8 (Lecture L07B will not be covered in Mid-Term 

Exam).
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Step in Digital Filter Design

1. Specification Determination

2. Filter Coefficient Calculation

3. Implementation
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1. Specification Determination
• The first step is to obtain the filter specifications or 

requirements which are determined by the 
applications. 
§ Suppose we have observations 𝑟 𝑛 = 𝑠 𝑛 + 𝑞[𝑛]

where 𝑠 𝑛 is the signal of interest and 𝑞[𝑛] is the 
additive noise. The 𝑠 𝑛 only has low-frequency 
components such that 𝑆 𝑒!" = 0 for 𝜔 > 𝜔# while 𝑞[𝑛]
is of wideband such that 𝑄 𝑒!" ≠ 0 for the whole 
frequency range.

§ If our task is to find 𝑠 𝑛 from 𝑟 𝑛 , we can use a lowpass 
filter with cutoff frequency of 𝜔# to obtain a noise-
reduced version of 𝑠 𝑛 .
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Four Types of Ideal Filters (Continuous-Time)
Lowpass Highpass

Bandpass Bandstop

ΩΩ

Ω Ω
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Ideal Discrete-Time Lowpass Filter Specification

• The filter specification can be described by discrete-time Fourier 
Transform (DTFT) 𝐻 𝑒%& as 

• Which specifies both the magnitude and phase.
§ Unity gain for the whole range of 𝜔 ∈ (0, 𝜔')

§ Complete suppression for 𝜔 ∈ (𝜔' , 𝜋)

§ Step change in frequency response at 𝜔 = 𝜔'

𝐻 𝑒%& = +1, 𝜔 < 𝜔'
0, −𝜋 < 𝜔 < −𝜔' , 𝜔'< 𝜔 < 𝜋

𝜔#
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Practical Magnitude Response Specification

passband transition stopbandPassband Stopband

𝜔$ 𝜔%

/𝐻(𝑒%& 𝜔# is cuffoff frequency

Δ is transition bandwidth 𝜔$ −𝜔%

𝜔% = 𝜔# −
Δ𝜔
2

𝜔$ = 𝜔# +
Δ𝜔
2
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𝜔#

𝛿& is the passband ripple 

𝛿' is the stopband ripple 



Passband, Stopband and Transition band
• Passband corresponds to 𝜔 ∈ (0,𝜔!) where 𝜔! is the passband 

frequency and 𝛿" is the passband ripple or tolerance which is the 
maximum allowable deviation from unity in this band

• Stopband corresponds to 𝜔 ∈ (𝜔#, 𝜋) where 𝜔# is the stopband 
frequency and 𝛿$ is the stopband ripple or tolerance which is the 
maximum allowable deviation from zero in this band

• Transition band corresponds to 𝜔 ∈ (𝜔!, 𝜔#) where there are no 
restrictions on 𝐻 𝑒%& in this band 
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2. Filter Coefficients Calculation Method
• We then use digital signal processing techniques to obtain a filter 

description in terms of transfer function 𝐻 𝑧 or impulse response ℎ[𝑛]
that fulfills the given specifications

• FIR Filter Design
§ Windowing Method

§ Frequency Sampling Method

§ The Optimal Parks-McCellan Method

• IIR Filter Design
§ Mapping from analog filter

§ Impulse Invariant Method

§ Bilinear Transform Method

𝐻 𝑧 =
𝑏& + 𝑏'𝑧(' +⋯+ 𝑏)('𝑧)(' + 𝑏)𝑧)

𝑎& + 𝑎'𝑧(' +⋯+ 𝑎*('𝑧*(' + 𝑎*𝑧*
𝐻 𝑧 = ℎ& + ℎ'𝑧(' +⋯+ ℎ)('𝑧)(' + ℎ)𝑧)
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Choose Between FIR and IIR Filters
FIR Filters IIR Filters

• Less Efficient

• No Analog Equivalent

• Always stable

• Linear Phase Response

• Less Ringing on Glitches

• CAD Design Packages Available

• Decimation Increases Efficiency
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• More Efficient

• Analog Equivalent

• May be Unstable

• Non-Linear Phase Response

• More Ringing on Glitches

• CAD Design Packages Available

• No Efficiency Gained by Decimation



FIR and IIR Filter Selection
• We choose the methods that best suits the applications.

§ In most cases, if the FIR properties (e.g. linear phase) are vital then a 
good candidate is the  optimization method

§ If IIR  properties (e.g. low complexity) are desirable, then the  bilinear 
method will in most cases  suffice.
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3. Implementation
• When 𝐻 𝑧 or ℎ[𝑛] are known, the filter can then be realized in 

hardware or software according to a given structure 

• FIR Filter Structures
§ Direct Form

§ Linear Phase Direct Form

§ Cascade Structure 

• IIR Filter Design
§ Direct Form (Direct Form I)

§ Canonic Form (Director Form II)

§ Cascade Structure 

§ Parallel Structure

13L.M. Po



Linear-Phase FIR Filter



Stability of FIR Filter 
• Transfer function of a causal FIR filter 𝐻 𝑧 with length 𝑁 is:

where ℎ[𝑛] is the finite-duration impulse response
• A property of the FIR filter is that it will always be stable as the transfer 

function 𝐻(z) has only zeros with no poles.
§ ∑,-./01 ℎ[𝑛] < ∞ for finite 𝑁

𝐻(𝑧) =
𝑌(𝑧)
𝑋(𝑧)

= :
2-.

/01

𝑏2𝑧02 = :
2-.

/01

ℎ 𝑛 𝑧02

𝑦 𝑛 = 𝑏(𝑥 𝑛 + 𝑏&𝑥 𝑛 − 1 +⋯+ 𝑏)𝑥 𝑛 −𝑁

ℎ 0 ℎ 1 ℎ 𝑁

15L.M. Po



Linear-Phase FIR Filter
• Phase response of FIR system can be exactly linear which results in 

computation reduction and zero phase distortion. 

• A linear-phase filter gives same time delay to all frequency components of the 
input signal. 

• A filter with a nonlinear phase characteristic will cause a phase distortion in 
the signal that passes through it. 
§ This is because the frequency components in the signal will each be delayed by an 

amount not proportional to frequency, thereby altering their harmonic relationship. 

§ Such a distortion is undesirable in many applications, for example music, video etc. 
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Phase Response of a Linear-Phase Filter

A diagram comparing the performance of a 
linear phase filter and a non-linear phase filter.

)𝜙(𝜔 = −𝜔

𝜔

Phase Response of a Linear-Phase Filter

∠𝐻 𝑒+,

∠𝐻 𝑒!" = −𝜔
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Group Delay
• Frequency response:

1𝐻 𝑧
%&'*+

= 𝐻 𝑒() = 𝐻 𝑒() ∠𝐻 𝑒()

• Group delay (Delay generally varies with frequency):

𝜏 𝜔 = 𝑔𝑟𝑎𝑑 𝐻 𝑒() = −
𝑑 ∠𝐻 𝑒()

𝑑𝜔

• Note: Phase plots normally limited in range to ±𝜋
§ Ignore discontinuities when evaluating derivative 

Magnitude
Response

Phase
Response

Phase shift is 
due to a delay 
through the 

system

Negative slope of phase response

𝐻 𝑧𝑋 𝑧 𝑌 𝑧



Group Delay
• The group delay of the filter provides a useful measure of how the filter 

modified the phase characteristic of the signal. 
• If we consider a signal that consists of several frequency components, 

the group delay of the filter is the amount of time delay each frequency 
component of the signal suffers in going through the filter

• The group delay on the other hand is the average time delay the 
composite signal suffers at each frequency as it passes from the input to 
the output of the filter.
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Linear-Phase Filter
• Basically, a linear-phase filter gives same time delay to all frequency 

components of the input signal. 
• A filter is said to have a linear-phase response if its phase response 

satisfies one of the following relationships: 

• where 𝑘 and 𝑏 are constants

∠𝐻 𝑒() = −𝑘 𝜔

∠𝐻 𝑒() = 𝑏 − 𝑘 𝜔

20L.M. Po



Four Types of Causal Linear Phase FIR Systems

• For casual FIR systems, if their impulse response ℎ 𝑛 satisfied the 
symmetrical property, then the systems will have linear phase responses.

• The symmetrical impulse response property is defined as

• There 4 types of linear phase FIR systems:
§ Type I : Odd Positive Symmetric – 𝑀 is odd  and ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

§ Type II : Even Positive Symmetric – 𝑀 is even and ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

§ Type III : Odd Negative Symmetric – 𝑀 is odd and ℎ 𝑛 = −ℎ 𝑀 − 1 − 𝑛

§ Type IV : Even Negative Symmetric – 𝑀 is even and ℎ 𝑛 = −ℎ 𝑀 − 1 − 𝑛

ℎ 𝑛 = ±ℎ 𝑀 − 1 − 𝑛 , 𝑛 = 0,1,… ,𝑀 − 1

21L.M. Po



FIR Filter Structures
• Direct Form structure for an FIR filter:

𝐻 𝑧 = 𝑏. + 𝑏1𝑧01 +⋯+ 𝑏<01𝑧<01 = :
2-.

<01

𝑏2𝑧02

z-1 z-1 z-1

+ + +

b
0

b
2

b
N-1

y(n)

x(n)

b
1
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𝑌 𝑧 = 𝑌 𝑧 𝑋 𝑧 𝑦 𝑛 = 𝑏.𝑥 𝑛 + 𝑏1𝑥 𝑛 − 1 + ⋯+ 𝑏<01𝑥 𝑛 − 𝑀 + 1

𝑏% 𝑏& 𝑏' 𝑏()&

𝑦 𝑛

𝑥 𝑛



Direct Form Structure with Linear-Phase FIR Structures

• Direct form structure for an FIR filter:

• Linear-Phase structures:

§ M even:

§ M Odd:

23L.M. Po

𝐻 𝑧 = <
,-(

./&

𝑏,𝑧/,

𝐻 𝑧 = <
,-(

.
'/&

𝑏, 𝑧/, + 𝑧./,/&

𝐻 𝑧 = <
,-(

./&
'

𝑏, 𝑧/, + 𝑧./,/& + 𝑏./&
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./&
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Linear-Phase 
FIR Filter 
Structures
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(b) M odd.
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Design Methods of FIR Filters



Design of FIR Filters
• Basically, FIR filters are easy to understand and design

§ Window Method

§ Frequency Sampling Using Inverse FFT
• Arbitrary Frequency Response

§ Optimal Equiripple Method
• Parks-McClellan Program with Remez Exchange Algorithm

• Computer Aided Method

26L.M. Po



Window Method



FIR Filter Design by Windowing
• Simplest way of designing FIR filters and start with ideal frequency response 𝐻6 𝑒+,

• Choose ideal frequency response as desired response
§ Most ideal impulse responses are of infinite length
§ The easiest way to obtain a causal FIR filter from ideal is

• More generally

𝐻* 𝑒!" = A
+,)-

+,-

ℎ* 𝑛 𝑒)!"+ ℎ*[𝑛] =
1
2𝜋

E
).

.
𝐻* 𝑒!" 𝑒!"+𝑑𝜔

DTFT

ℎ6[𝑛] = /ℎ6 𝑛 , 0 ≤ 𝑛 ≤ 𝑀
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℎ 𝑛 = ℎG[𝑛] H 𝑤[𝑛] 𝑤[𝑛] = /1, 0 ≤ 𝑛 ≤ 𝑀
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒where

Rectangular Window Function
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Windowing in Frequency Domain

𝐻 𝑒+, = 𝑊 𝑒+, ∗ 𝐻6 𝑒+,

=
1
2𝜋

E
).

.
𝐻* 𝑒!" 𝑊 𝑒!(")0) 𝑑𝜃

• Windowed frequency response

• The windowed version is smeared version 
of desired response

• If 𝑤 𝑛 = 1 for all 𝑛, then 𝑊 𝑒() is 
pulse train with 2𝜋 period

𝐻 𝑒!"

𝑊 𝑒!(")0)

𝐻* 𝑒!"
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Rectangular Window
𝑤 𝑛 = /1 0 ≤ 𝑛 ≤ 𝑀 − 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊(𝑧) = A
+,%

()&

𝑤 𝑛 𝑧)+ = 1 + 𝑧)& + 𝑧)' + ⋯+ 𝑧) ()& =
1 − 𝑧)(

1 − 𝑧)&

𝑊 𝑒!" =
sin𝑀𝜔2
sin𝜔2

Magnitude 
Response

Phase 
Response

∠𝑊 𝑒!" = − 2)&
'

𝜔

𝑊 𝑒!"

DTFT
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𝑊 𝑒+, = 𝑊 𝑧 @
789#$

=
1 − 𝑒(+),

1 − 𝑒(+,
= 𝑒(+,:

sin 𝜔 𝑀 + 1 /2
sin 𝜔/2

2𝜋
𝑀

−
2𝜋
𝑀

𝑀



Effect of Rectangular Window Side (M)
• If M increases the width of the main lobe decreases but the peak 

amplitude of the side lobes grows in a manner such that the area under 
each lobe is constant while the width of each lobe decreases with M.

𝑊 𝑒!"

Increase M

Increase M
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Design of FIR Filters Using Windows
• The easiest way to obtain an FIR filter is to simply truncate the impulse response of 

an IIR filter. If ℎG 𝑛 represents the impulse response of a desired IIR filter, then an 
FIR filter with impulse response ℎ 𝑛 can be obtained as follows:

• In general ℎ 𝑛 can be thought of as being formed by the product ℎG 𝑛 and a 
window function 𝑤 𝑛 as follows:

ℎ 𝑛 = /ℎ6[𝑛] 𝑀' ≤ 𝑛 ≤ 𝑀>
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℎ ℎ = ℎ6 𝑛 · 𝑤[𝑛]

𝐻 𝑒+, = 𝐻6 𝑒+, ∗ 𝑊(𝑒+,)

Let it be, for example a rectangular window 

Let the desired filter be an ideal low-pass filter 
with cut off frequency 𝜔3
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Effect of the Rectangular Window on Frequency Response (1)

𝐻* 𝑒!"

𝑊(𝑒!")

*
convolution

𝐻 𝑒!"

𝜔3−𝜔3

𝜔3−𝜔3

The convolution produces a smeared version of 
the ideal low pass frequency response 

𝐻* 𝑒!" .
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Effect of the Rectangular Window on Frequency Response

• Therefore, it is seen that the convolution produces a smeared version of 
the ideal low-pass frequency response 𝐻G 𝑒%& .

• In general, the wider the main lobe of 𝑊(𝑒()), the more spreading, 
whereas the narrower the main lobe (larger M) the closer 
𝐻 𝑒%& comes to 𝐻G 𝑒%& .

• In general, we are left with a trade-off on making M large enough so 
that smearing is minimized, yet small enough to allow reasonable 
implementation.
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Window Functions
Window functions are used to 
truncate a signal to produce a signal 
of finite duration.
• Rectangular
• Blackman
• Bariett
• Hanning
• Hamming
• Kaiser

35L.M. Po



Rectangular Window
• Narrowest main lob

§ 4π/ 𝑀 + 1
§ Sharpest transitions at 

discontinuities in frequency

• Large side lobs
§ -13 dB
§ Large oscillation around 

discontinuities

• Simplest window possible

𝑤[𝑛] = /1, 0 ≤ 𝑛 ≤ 𝑀
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Bartlett Window
• Medium main lob

§ 8π/𝑀

• Side lobs
§ -25 dB

• Hamming window performs 
better

• Simple equation

𝑤[𝑛] =

2 ⁄𝑛 𝑀 0 ≤ 𝑛 ≤ ⁄𝑀 2

2 − 2 ⁄𝑛 𝑀
𝑀
2
≤ 𝑛 ≤ 𝑀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Hanning Window
• Medium main lob

§ 8π/𝑀

• Side lobs

§ -31 dB

• Hamming window performs 
better

• Same complexity as Hamming

𝑤[𝑛] = J
1
2 1 − cos

2𝜋𝑛
𝑀 , 0 ≤ 𝑛 ≤ 𝑀

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Hamming Window
• Medium main lob

§ 8π/𝑀

• Good side lobs

§ -41 dB

• Simpler than Blackman

𝑤[𝑛] = J0.54 − 0.46 cos
2𝜋𝑛
𝑀 , 0 ≤ 𝑛 ≤ 𝑀

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Blackman Window
• Medium main lob

§ 12π/𝑀

• Very good side lobs

§ -57 dB

• Complex equation

𝑤[𝑛] = 50.42 − 0.5 cos
2𝜋𝑛
𝑀 +0.08cos

4𝜋𝑛
𝑀 , 0 ≤ 𝑛 ≤ 𝑀

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Kaiser Window
• Parameterized equation forming a 

set of windows
• Parameter to change main-lob width 

and side-lob area trade-off

• 𝐼((•) represents zeroth-order 
modified Bessel function of 1st kind
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Determining Kaiser Window Parameters
• Given filter specifications Kaiser developed empirical equations

§ Given the peak approximation error 𝛿 or in dB as A=-20log10 𝛿

§ and transition band width 

• The shape parameter 𝛽 should be

• The filter order M is determined approximately by 

42L.M. Po

𝛽 = \
0.1102(𝐴 − 8.7) 𝐴 > 50

0.5842 𝐴 − 21 %.5 + 0.07886(𝐴 − 21) 20 ≤ 𝐴 ≤ 50
0 𝐴 < 21

𝑀 =
𝐴 − 8

2.285Δ𝜔



Design Procedure of Window Method (1)
• An ideal low-pass filter with linear phase of slope-𝛽 and cut-off 𝜔' can be 

characterized in the frequency domain by

• The corresponding impulse response ℎG 𝑛 can be obtained by taking the inverse 

Fourier transform of 𝐻G 𝑒%& and easily shown to be 

𝐻6 𝑒+, = Q𝑒
(+?, , 𝜔 ≤ 𝜔@
0., 𝜔@ < 𝜔 ≤ 𝜋

ℎG 𝑛 =
sin 𝜔' 𝑛 − 𝛽
𝜋 𝑛 − 𝛽

Linear Phase Response
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Design Procedure of Window Method (2)
• A causal FIR filter with impulse response ℎ 𝑛 can be obtained by multiplying ℎG 𝑛

by a window 𝑤 𝑛 beginning at the origin and ending at 𝑀 − 1 as follows :

• For ℎ 𝑛 to be a linear phase , 𝛽 must be selected so that the resulting ℎ 𝑛 is 
symmetric.

• As sin 𝜔' 𝑛 − 𝛽 /𝜋 𝑛 − 𝛽 is symmetric about 𝑛 = 𝛽 and the window is 
symmetric about 𝑛 = (𝑀 − 1)/2

ℎ 𝑛 =
sin 𝜔' 𝑛 − 𝛽
𝜋 𝑛 − 𝛽

𝑤[𝑛]

𝛽 =
𝑁 − 1
2

Symmetric about β
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Window Function Selection
• In the second stage of this method, we need to select a window function 

based on the passband or attenuation specifications, then determine the 
filter length based on the required width of the transition band.

• For example, using Hamming Window: 𝑀 = A.A
CD
= A.A

'>&&('E&&
S 8000 = 132

Window Type Normalised Transition 
Width (Df(Hz)) Passband 

Ripple(dB) 
Stopband 

Attenuation (dB) 

Rectangular  0.7416 21 

Hanning  0.0546 44 

Hamming  0.0194 53 

Blackman  0.0017 74 

Kaiser 
 

 
0.0274 

0.000275 

50 

90 

 

N
9.0

N
1.3

N
3.3

N
5.5

54.493.2
=® b

N

96.871.5
=® b

N
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Truncated Window Function and Frequency Response
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FIR Filter Design :  Window Method Example
(a) Determine the impulse response ℎG 𝑛 of the lowpass filter whose frequency 
response is given by

(b) To obtain a finite impulse response from ℎG 𝑛 a rectangular window of length N = 
9 is used. Compute the coefficients of the FIR filter with a linear-phase characteristic 
ands with this finite impulse response.

𝐻6 𝑒+, =
1 0 ≤ 𝜔 ≤

π
3

0
𝜋
3 < 𝜔 ≤ 𝜋
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Solution for (a)
• We first determine the impulse response ℎ* 𝑛 of the lowpass filter by 

inverse DTFT

ℎG 𝑛 =
1
2π

O
0f

f
𝐻G 𝑒%& 𝑒%&,𝑑𝜔 =

1
2π

O
0fg

f
g
𝑒%&,𝑑𝜔 =

1
2
𝑒%&,

𝑗𝑛 0fg

f
g

=
1
𝜋

sin 𝑛 𝜋3
𝑛

ℎG 𝑛 =

1
3

𝑛 = 0

sin 𝑛 𝜋3
𝑛𝜋

𝑛 ≠ 0
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Solution for (b)
• For a linear phase filter, ℎ* 𝑛 is positive symmetric at 𝑛 = 0 and the 

window is symmetric at 𝑛 = 𝑁 − 1 /2 = 9 − 1 /2 = 4

• The coefficients are 

ℎ 𝑛 = ℎT 𝑛 − 4 · 𝑤 𝑛 𝑛 = 0,1, … , 8

n 0 1 2 3 4 5 6 7 8

Filter
Coefficients

− 3
8π 0

3
4π

3
2π 0.333

3
2π

3
4π 0

− 3
8π

Symmetry about n=4
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Python FIR Design Using Window Method
Filter specifications:

§ Sampling Frequency 8kHz : 𝐹# = 8000
§ Cutoff frequency at 1kHz : 𝑓+ = 1000
§ Transition bandwidth 800Hz : ∆𝑓 = 800
§ Use Window Functions : Rectangular, Hanning, Hamming and 

Blackman
• Rectangular window :  𝑀 = ..j

∆l
𝐹m = 0.9 W 10 = 9

• Hanning window : 𝑀 = g.1
∆l
𝐹m = 31

• Hamming window : 𝑀 = g.g
∆l
𝐹m = 33

• Blackman window : 𝑀 = n.n
∆l
𝐹m = 55

This estimated order is too low. 20 
order is required for rectangular.
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Python Code: FIR Filter using Window Method

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin.html

# Lowpass Design using signal.firwin()
import matplotlib.pyplot as plt
from scipy import signal
import numpy as np

Fs = 8000 # Sampling Rate 8KHz

M = 20 # Filter Order = 20
f_c = 1000 # Cutoff Frequency 1000

h = signal.firwin(M, f_c, window='boxcar', fs=Fs)

w, h = signal.freqz(h, [1], fs=Fs)

# Plot the Magnitude Response
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
ax1.set_title('9-order FIR Filter : Rectangular Window', 
color='b')
ax1.plot(w, np.abs(h), 'r')
ax1.set_ylabel('Magnitude')
ax1.set_xlabel('Frequency [Hz]')
ax1.grid()
plt.show()
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Rectangular Window

ax1.plot(w, 20*np.log(h), 'r')ax1.plot(w, np.abs(h), 'r')
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Lowpass, Higpass, Bandpass, and Bandstop
FIR Filters
h1 = signal.firwin(21, f_c, window='boxcar', fs=Fs)
w, h1 = signal.freqz(h1, [1], fs=Fs)

h2 = signal.firwin(21, f_c, window='boxcar', pass_zero=False, fs=Fs)
w, h2 = signal.freqz(h2, [1], fs=Fs)

f1 = 600
f2 = 1000

h3 = signal.firwin(21, [f1,f2], window='boxcar', pass_zero=False, fs=Fs)
w, h3 = signal.freqz(h3, [1], fs=Fs)

h4 = signal.firwin(21, [f1,f2], window='boxcar', fs=Fs)
w, h4 = signal.freqz(h4, [1], fs=Fs)
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Lowpass, 
Higpass, 
Bandpass, 
and Bandstop
FIR Filters
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Frequency Sampling Method
• The basic idea is to utilize the Discrete Fourier 

Transform (DFT), which corresponds to 
samples of the desired frequency response 
𝐻* 𝑒() , to produce ℎ[𝑛]:

• The DFT (𝐻 𝑘 ) is equal to 𝐻* 𝑒() sampled 
at 𝑀 distinct frequencies between 𝜔 ∈
(0,2𝜋) with a uniform frequency spacing of 
2𝜋/𝑁

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fourier Transforms of the Impulse Response h1

Units of Pi

DTFT of h1
DFT of h1

𝐻 𝑘 = 𝐻G 𝑒%& Y
&-of<2

, 𝑘 = 0,1, … ,𝑀 − 1
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FIR Filter Impulse Response Obtained by IDFT
• Basically, the DFT coefficients 𝐻 𝑘 can be considered as M-sampled version of DTFT 

for a M-point finite impulse response ℎ[𝑛] between the discrete frequency 𝜔 range 
[0,2𝜋]

• Therefore, given the frequency response 𝐻 𝑘 , the impulse response ℎ 𝑛 can be 
computed from the inverse DFT (IDFT) of the frequency response

𝐻 𝑘 = :
,-.

<01

ℎ 𝑛 𝑒0%
of
<2, 𝑘 = 0,1,2, … ,𝑀 − 1

ℎ 𝑛 =
1
𝑀
:
2-.

/01

𝐻 𝑘 𝑒%
of
<2, 𝑛 = 0,1,2, … ,𝑀 − 1
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Ideal Lowpass Lowpass Filter
1. An ideal lowpass filter with linear phase of slope-𝑘 and cutoff 𝜔' can be 

characterized in the frequency domain by

2. The corresponding impulse response ℎG 𝑛 can be obtained by taking the Inverse 

Fourier Transform of 𝐻G 𝑒%& and easily shown to be 

𝐻G 𝑒%& = [𝑒
0%2& 𝜔 ≤ 𝜔'
0 𝜔' < 𝜔 ≤ 𝜋

ℎG 𝑛 =
sin 𝜔' 𝑛 − 𝑘
𝜋 𝑛 − 𝑘

Linear Phase Response
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Procedure of Frequency Sampling Method
• Step 1: Determine the critical discrete-time frequency 𝜔]
• Step 2: Determine the filter order M, where M is even

• Step 3: Construct a vector of M+1 real-valued frequency 
response values evenly spaced from 𝜔 = 0 to 2π. 
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Python : Frequency Sampling Method
# Frequency sampling design of linear phase FIR filter

import matplotlib.pyplot as plt
from scipy import signal
import numpy as np

Fs = 8000 # Sampling Rate = 8kHz

N = 20 # Filter Order
# Create index n vector
n = np.arange(0, N,1)

# Frequency vector
w = n*2*np.pi/N

# Linear Phase = -k*w 
k = np.floor((N-1)/2) 

# Define Ideal Lowpass Magnitude Response
M = np.ones(N)
M[2:18]=0 

D = M*np.exp(-1j*k*w)

# Compute the impulse response h[n] by IFFT
h = np.fft.ifft(D) 

h = np.real(h) 

# Plot the Magnitude Response

w, h = signal.freqz(h, [1], fs=2000)

fig = plt.figure()

ax1 = fig.add_subplot(1, 1, 1)

ax1.set_title('Lowpass Filter Desing by 
Frequency Sampling', color='b')

ax1.plot(w, abs(h), 'r')

ax1.set_ylabel('Magnitude')

ax1.set_xlabel('Frequency [Hz]')

ax1.grid()

plt.axis('tight')

plt.show()

https://colab.research.google.com/drive/1h8hS76WAOjFZkf0O_-31BBcj32412xUp?usp=sharing
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Magnitude Response 
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Optimal Equiripple Method
• Most popular technique for designing FIR filters

• Also called: Parks-Mclelan, or Remez (Matlab)

• Published in 1972

• Originally written in Fortran

• Widely Used especially in Matlab and Python - scipy.signal.remez( )
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Why use Optimal Equiripple Method?
• Input parameters correspond to filter design specifications

• Creates optimal design for the given parameters

• Can design many categories of FIR filters
§ Simple lowpass / highpass / bandpass / bandstop

§ Multi-band

§ Hilbert transforms

§ Differentiators
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Basic Idea of Optimal Equiripple Method
To evenly distribute the ripples in both 
passband and stopband
• Required filter length will be shorter than that 

of the window method. Its 𝐻 𝑒%& exactly 
meets the passband or stopband ripple 
specification at one frequency 

• Allow 𝛿" ≠ 𝛿$
• Passband 𝜔! and stopband 𝜔# frequencies 

specified
§ Although 𝜔p = 𝜔' − Δ𝜔/2 and 𝜔m = 𝜔' + ∆𝜔/2

implicitly implied in the window method
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How does the Optimal Equiripple Method Work?

• Guess the positions of the extrema are evenly spaced in the passband 
and stopband

• Perform polynomial interpolation and re-estimate positions of the local 
extrema

• Move extrema to new positions and iterate until the extrema stop 
shifting. (Remez algorithm)
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• The impulse response of optimal equiripple design is determined from:

where

• which corresponds to a minmax optimization problem

• 𝐸 𝑒() is the frequency-domain error between the desired and actual 

responses weighted by 𝑊 𝑒()

• 𝑊 𝑒() is the weighting function incorporates all specification 
parameters, namely, 𝛿", 𝛿$, 𝜔! and 𝜔#, into the design process

𝐸 𝑒%& = 𝑊 𝑒%& 𝐻G 𝑒%& − a𝐻 𝑒%&

ℎ 𝑛 = min
cℎ 𝑛

max
.r&r&F,&Gr&rf

𝐸 𝑒%&
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How does the method operate?
• For example, in lowpass filter design, 𝑊 𝑒%& has the form of:

• When 𝛿1 > 𝛿o, there is a larger weighting at the stopband. On the other hand, 𝛿1 <
𝛿o implies a larger weighting at the passband

• To solve for the minmax problem, we can make use of the Parks-McClellan algorithm 
which requires iterations.  We can employ

• to get its initial estimate and then compute . If the tolerance specifications are not 
met, we increment 𝑀 until the maximum deviations are bounded by 𝛿1 and 𝛿o.

𝑊 𝑒+, = /
⁄𝛿' 𝛿> , 0 ≤ 𝜔 ≤ 𝜔$
1, 𝜔% < 𝜔 ≤ 𝜋

𝑀 =
−10 log'& 𝛿'𝛿> − 13
2.324 𝜔% − 𝜔$
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Optimal Equiripple FIR Design Example 
• Use the optimal equiripple method to design a linear-phase and causal 

FIR filter which approximates an ideal lowpass filter whose passband 
frequency is 𝜔! = 0.475𝜋 and stopband frequency is 𝜔# = 0.525𝜋.

• The maximum allowable tolerance is 𝛿" = 𝛿$ = 0.005 in both passband 
and stopband.

• An initial value of 𝑀 is computed as 

• Starting with 𝑀 = 91 in the Parks-McClellan algorithm, we increment its 
value until 𝑀 = 96 so that the tolerance specifications are met.

𝑀 =
−10 log'& 0.005 H 0.005 − 13
2.324 0.525π − 0.425𝜋 = 91

71L.M. Po



Impulse Response and Magnitude Response of 
Optimal Equiripple Lowpass Filter 
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Amplitude response of optimal equiripple
lowpass filter 

Zoomed amplitude responses 
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Python Equiripple FIR Design Example

Filter specifications:
§ Sampling Frequency 8kHz : 𝐹# = 8000
§ Order 20 lowpass filter : 𝑀 = 20
§ Cutoff frequency at 1kHz : 𝑓+ = 1000
§ Transition widthband 800Hz : ∆𝑓 = 800

• 𝑓p = 600 and 𝑓m = 1400

• By specifying the order and the transition width, the forced parameter is 
the pass-band and stop-band ripple
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Python Code : scipy.signal.remez( )
from scipy import signal

import numpy as np
import matplotlib.pyplot as plt

Fs = 8000 # Sampling Frequency

fc = 1000/Fs
trans = 800/Fs # This defines the transition bandwidth

f = [0, fc-(trans/2), fc+(trans/2), 0.5 ]

a = [1, 0]
M = 20

lowpass = signal.remez(M, f, a)
freq, response = signal.freqz(lowpass)
magnitude = np.abs(response)
plt.plot(freq/(2*np.pi)*Fs, 20*np.log(magnitude), 'b-') # freq in Hz

plt.title('Lowpass FIR Filter using Optimal Equiripple Design')

plt.xlabel('Frequency (Hz)')
plt.ylabel('Magnitude (dB)')

plt.grid()

plt.show()

https://colab.research.google.com/drive/1h8hS76WAOjFZkf0O_-31BBcj32412xUp?usp=sharing
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To improve the ripple performance, either the order must be increased, or 
the transition width must be increased
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A Multiple Band-Pass Filter Example
Filter specifications:

§ Sampling frequency 8 kHz
§ Band-pass at:

• 300 to 400 Hz
• 600 to 700 Hz
• 2000 to 3000 Hz

§ Transition width 25 Hz
§ -40 dB ripple in both the pass-bands and stop-bands

• With this design the forced parameter is the filter order; in this case it was found by 
experimentation to be 700.
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Python Code : Multi-Band FIR Filter Design
from scipy import signal
import matplotlib.pyplot as plt

Fs = 8000 # Sampling Frequency
f1 = 300/Fs
f2 = 400/Fs
f3 = 600/Fs
f4 = 700/Fs
f5 = 2000/Fs
f6 = 3000/Fs
trans = 25/Fs # This defines the transition width
f = [0, f1-trans, f1, f2, f2+trans, f3-trans, f3, f4, f4+trans, f5-trans, f5, f6, f6+trans, 0.5 ]
a = [0, 1, 0, 1, 0, 1, 0 ]
M = 700 # This is the filter order which was found by trial and error

mb_pass = signal.remez(M, f, a)

freq, response = signal.freqz(mb_pass)
magnitude = np.abs(response)

plt.plot(freq/(2*np.pi)*Fs, 20*np.log(magnitude), 'r-') # freq in Hz
plt.title('Multi-Band FIR Filter using Optimal Equiripple Design', color='b')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Magnitude (dB)')
plt.grid()
plt.show()

https://colab.research.google.com/drive/1h8hS76WAOjFZkf0O_-31BBcj32412xUp?usp=sharing
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Multiple Band-Pass Results

Stopband Response can be 
improved by either higher filter 
order or a relaxed transition 
specification
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Summary of FIR Filter Design
• FIR filters allow the design of linear-phase filters, which eliminate the 

possibility of signal phase distortion.

• Three methods of linear-phase FIR design were discussed: 

§ Window Method

§ Frequency Sampling Method

§ Optimal Equiripple Method
• Or called Parks-McClellan Method
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