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EE4015 Face-to-Face Mid-Term Exam
• The Face-to-Face Mid-Term Exam will be held on November 8, 2022 (Tuesday of Week 11).
• The exam time is 2 hours. Students should arrive at the venue at least 5 minutes before the 

start of the exam.
• The Mid-Term Exam is an open-note exam. Students can use "Scientific Calculator" and "All 

Handouts", including exercises and assignments.
§ In addition to hard copies of handouts, students can also use smartphones, tablets or 

iPads to read notes, but the electronic device must be set to airplane mode. During the 
exam, you are not allowed to communicate with others and search on the Internet. 
During the exam, investigators will check from time to time whether your electronic 
device is in airplane mode.

• Students need to use their own answer sheets (such as A4 paper) to answer the questions.
• The mid-term exam will cover up to week 8 (Lecture L07B will not be covered in Mid-Term 

Exam).



Group Project Oral Presentation
• Students are reminded to well prepare their group-project 

presentations on week 12 or 13 sessions to show your project finings 
and results with use of PPT for a presentation of approximately 10 
minutes.

• Live demonstration or video demonstration are highly encouraged.

• All members of the project team must participate in its presentation.



Content
• Analog Filter Design Procedure
• Analog Lowpass Filter Specification
• Types of Analog Lowpass Filter
• Design of Butterworth Filters
• Design of Chebyshev I, Chebyshev II and Elliptic Filters  (Optional) 
• Frequency Transformations

§ Lowpass to Lowpass Transformation
§ Lowpass to Highpass Transformation
§ Lowpass to Bandpass Transformation
§ Lowpass to Bandstop Transformation



IIR Filter Design based on Analog Filter
• Some of the IIR filters design methods are to apply a transformation to 

an existing analog filter to obtain the digital filter transfer functions, 
such as

• Before introducing the IIR filter design methods, we first review the 
traditional analog filters design method.

𝐻! 𝑠 =
1

𝑠 − 𝑎
"#!$%&'#(!)*'$

𝐻 𝑧 =
1

1 − 𝑏𝑧+,



Analog Filter Design Procedure
• The analog filter design procedure normally begins with a specification of the 

frequency response for describing how filter reacts to sinusoid inputs
• If an input sinusoid is not attenuated or attenuated less than a specific 

tolerance as it goes through the system, it is said to be in a passband of the 
filter.

• If it is attenuated more than a specified value, it is said to be stopped and 
within the stopband of the filter.

Stopband 
Passband



Four types of Ideal Filters
Lowpass Highpass

Bandpass Bandstop

ΩΩ

Ω Ω



Realistic Frequency Response Analog Filters
Lowpass Highpass

Bandpass Bandstop

ΩΩ

Ω Ω



Analog Lowpass Filter Specification
• In analog lowpass filter design, we can only specify the magnitude of )𝐻!(𝑗Ω . 

Typically, we employ the magnitude square response, that is, )𝐻!(𝑗Ω .:

)𝐻!(𝑗Ω "

Passband Stopband

Ω/ Ω%



Key Parameters
• Passband corresponds to Ω ∈ [0, Ω/] where Ω/ is the passband frequency and ε is 

called the passband ripple

• Stopband corresponds to Ω ∈ [Ω%, ∞] where Ω% is the stopband frequency and 𝐴 is 
called the stopband attenuation

• Transition band corresponds to Ω ∈ [Ω/, Ω%]

• The specifications are represented as the two inequalities:

1
1 + ε! ≤

)𝐻"(𝑗Ω ! ≤ 1, 0 ≤ Ω ≤ Ω#

0 ≤ )𝐻"(𝑗Ω ! ≤
1
𝐴! , Ω > Ω$



Passband and Stopband Frequencies
• In particular, at Ω = Ω/ and Ω = Ω%, we have:

• Apart from ε and 𝐴, it is also common to use their respective dB versions, denoted 
by 𝑅/ and 𝐴% :

𝑅/ = −10 log,0
1

1 + ε.
⇒ ε = 101%/,0 − 1

𝐴% = −10 log,0
1
𝐴.

⇒ 𝐴 = 103&/.0

;𝐻!(𝑗Ω/
.
=

1
1 + ε.

)𝐻!(𝑗Ω% . =
1
𝐴.

and

and



Analog Lowpass Filter Specification in dB
• Passband Gain 𝑅/ in dB at passband frequency Ω/
• Stopband Attenuation 𝐴% in dB at stopband frequency Ω%

𝑅!

𝐴"

𝑅/ = −10 log,0
1

1 + ε.

𝐴% = −10 log,0
1
𝐴.

0

dB 



Types of Analog Lowpass Filter
• The first step of analog filter design is to select a low-pass filter type:

§ Butterworth Lowpass Filter
• Maximal flat in passband

§ Chebyshev I Lowpass Filter
• Maximal ripple in passband

§ Chebyshev II Lowpass Filter
• Maximal ripple in stopband

§ Elliptic Lowpass Filter
• Minimal transition width

• Ripple in both passband 
and stopband

§ Bessel Filter
• Maximally constant group 

delay



Butterworth Lowpass Filter

• The magnitude response  
𝐻! 𝑗Ω is monotone decreasing 

as Ω
• Maximally flat in passband and 

stopband but attenuation 
relatively poor 

𝐻! 𝑗Ω

ΩΩ7 Ω%



Chebyshev I Lowpass Filter
• Ripple in passband, monotonic in 

stopband

• Better match with ideal filter 
characteristic but maximal ripple in 
passband 

𝐻! 𝑗Ω

ΩΩ7 Ω%



Chebyshev II Lowpass Filter

• Monotonic in passband, ripple in 
stopband

• Better match with ideal filter 
characteristic but maximal ripple in 
stopband 

𝐻! 𝑗Ω

ΩΩ7 Ω%



Elliptic Lowpass Filter
• Ripple in both passband and 

stopband

• Minimal transition width

𝐻! 𝑗Ω

ΩΩ7 Ω%



Butterworth Lowpass Filter Design



Design of Lowpass Butterworth Filter
The magnitude square response of a Nth-order Butterworth lowpass filter is:

The filter is characterized by cutoff frequency Ω! and filter order 𝑁:

• 𝐻" 𝑗Ω # = 1 at Ω = 0 and 𝐻" 𝑗Ω # = 0.5 at Ω = Ω! for all 𝑁.
• 𝐻" 𝑗Ω # is a monotonically decreasing function of frequency which 

indicates that there is no ripple
• Filter shape is closer to the ideal response as 𝑁 increases, although the filter 

with order of 𝑁 →∞ is not realizable.

𝐻! 𝑗Ω . =
1

1 + Ω
Ω8

.9



Butterworth Filter Magnitude Frequency Response

𝐻! 𝑗Ω . =
1

1 + Ω
Ω8

.9

𝐻! 𝑗Ω .

Ω' Ω

𝑁 = ∞

𝑁 = 2

𝑁 = 1

𝑁 = 10

1
2



Maximally Flat Property of Butterworth Filter

• 𝐻! 𝑗Ω " is called maximally flat at the origin since all order derivatives 
exist with respect to Ω are zero at the origin.

𝐻! 𝑗Ω =
1

1 + Ω
Ω8

.9
= 1 +

Ω
Ω8
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Power series expansion

1st 2N-1 derivatives 
are zero at Ω=0 



Filter Gain plot
• It is convenient in many cases to look at the frequency response in decibels, that is, 

plot 20log 𝐻! 𝑗Ω versus Ω.
• This is a straight-line approximation of the frequency response in decibels (dBs) for 

the Butterworth filters.
20log 𝐻# 𝑗Ω

0.1Ω$ Ω$ Ω100Ω$

𝑁 = 1

𝑁 = 2

𝑁 = 3

Actual values for 𝑁 = 3



Cutoff Frequency Ω! Properties
The following properties are easily determined:

• 𝐻! 𝑗Ω #$%
" = 1 , for all 𝑁.

• 𝐻! 𝑗Ω #$#&
" = &

"
, for all 𝑁, this implies 

§ 𝐻! 𝑗Ω ?K?, =
,
.
= 0.707

and 

§ 20 𝑙𝑜𝑔 𝐻! 𝑗Ω ?K?, = −3.0𝑑𝐵

• Ω' is also called half-power frequency as 
§ 𝐻! 𝑗Ω ?K?,

. = ,
.

𝐻! 𝑗Ω . =
1

1 + Ω
Ω8

.9

0.707

Ω% Ω"

𝐻# 𝑗Ω



Transfer Function 𝐻+ 𝑗Ω of Butterworth Filter
• To find the transfer function 𝐻! 𝑠 , we first make use of its relationship with 𝐻!(𝑗Ω)

• The 2N poles of 𝐻! 𝑠 𝐻!(−𝑠), can be solved by

𝐻! 𝑠 𝐻! −𝑠 = F𝐻! 𝑗Ω .
?K%L

=
𝑗Ω7 .9

𝑠.9 + 𝑗Ω7 .9

𝑐M
𝑗Ω7

.9
= −1 = 0Ω'𝑒

-./0 , 𝑜𝑑𝑑 𝑁

Ω'𝑒
-./0 5 𝑒-

/
!0 , 𝑒𝑣𝑒𝑛 𝑁

𝑘 = 0,1,2, . . , 2𝑁 − 1

F𝐻! 𝑠
%KLQ

= 𝐻!(𝑗Ω)

2𝑁 poles spaced by 2𝜋 /2𝑁 at radius Ω8



Poles of Butterworth Lowpass Filter

𝑁 = 2 𝑁 = 3
𝑐& = Ω$𝑒

'&() T 𝑒'
(
* 𝑐& = Ω$𝑒

'&(+

𝑐, = Ω$𝑒
'+(* 𝑐- = Ω$𝑒

'(* 𝑐, = Ω$𝑒
'(+



• 𝑐$ are uniformly distributed on a circle of radius 
Ω% with angular spacing of 𝜋/𝑁 in the s-plane

• Poles are symmetrically located with respect to the 
imaginary axis

• there are two real-valued poles when 𝑁 is odd

• To extract 𝐻" 𝑠 , we utilize the knowledge that all 
poles of a stable and causal analog filter should be 
on the left half of the s-plane. As a result,   is:

Pole locations for N=8



Example : 𝐻+ 𝑠 of 4th Order Butterworth Filter
• If 𝑁 = 4, the 

• For stable and causal, choose poles in the left half 

plan. Then, we only select the left half plane poles of

§ 𝑘 = 2 ⇒ 𝑐! = Ω'𝑒
-!"# 5 𝑒-

"
$ = Ω'𝑒

-%"$

§ 𝑘 = 3 ⇒ 𝑐1 = Ω'𝑒
-&"# 5 𝑒-

"
$ = Ω'𝑒

-'"$

§ 𝑘 = 4 ⇒ 𝑐2 = Ω'𝑒
-#"# 5 𝑒-

"
$ = Ω'𝑒

-("$ = Ω'𝑒
3-'"$

§ 𝑘 = 5 ⇒ 𝑐4 = Ω'𝑒
-%"# 5 𝑒-

"
$ = Ω'𝑒

-))"$ = Ω'𝑒
3-%"$

• The transfer function of the filter is

𝑐M = Ω8𝑒
LMUB M 𝑒L

U
A 𝑘 = 0,1,2, . . , 7

𝐻# 𝑠 =
Ω%*

𝑠 − Ω$𝑒
'.(/ 𝑠 − Ω$𝑒

0'.(/ 𝑠 − Ω$𝑒
'1(/ 𝑠 − Ω$𝑒

0'1(/

Pole locations for N=4 

𝑐)

𝑐+

𝑐*

𝑐.

Ω$



Prototype Lowpass Filter Function
• The technique used to design analogue filters is to specify a prototype 

lowpass filter function which is normalized to provide a cutoff 
frequency Ω' at 1 rad/sec .

• Then apply transformations to achieve the actual desired cutoff 
frequencies and filter type.

1           

𝐻 𝑗Ω 𝐻 𝑗Ω

ΩΩ Ω% Ω"



Normalized Butterworth Filter Transfer Functions
For Ω8 = 1, we have the transfer functions of the Butterworth Filters in different order n.

N Butterworth Transfer Functions
1 1

s + 1

2 1
𝑠) + 2s + 1

3 1
𝑠) + 𝑠 + 1 𝑠 + 1

4 1
𝑠! + 0.76536s + 1 𝑠! + 1.84776𝑠 + 1

5 1
𝑠 + 1 𝑠! + 0.6180s + 1 𝑠! + 1.6180𝑠 + 1

https://en.wikipedia.org/wiki/Butterworth_filter#Normalized_Butterworth_polynomials

https://en.wikipedia.org/wiki/Butterworth_filter


Example 1
• The magnitude square response of a Butterworth lowpass filter has the form of:

• Determine the filter transfer function 𝐻! 𝑠 . 

𝐻! 𝑗Ω . =
1

1 + 0.00001ΩD



Solution of Example 1
• Expressing 𝐻! 𝑗Ω . as:

• This Butterworth filter’s cutoff frequency  Ω8 = 10 rad/sec, and order 𝑁 = 3, the 
poles of the transfer function are

• Then, the transfer function can be obtained by

𝐻! 𝑗Ω . =
1

1 + 0.000001ΩD
=

1

1 + Ω
10

.T@

𝑐. = 10𝑒-
./
1 , 𝑘 = 2,3,4

𝑐)

𝑐+

𝑐* 𝑐.

𝑐,

𝑐-
𝐻# 𝑠 =

Ω$+

𝑠 − 𝑐) 𝑠 − 𝑐+ 𝑠 − 𝑐*
=

1000

𝑠 − 10𝑒'
)(
+ 𝑠 + 10 𝑠 − 10𝑒'

)(
+

=
1000

𝑠 + 10 𝑠) + 10𝑠 + 100



Gain Equations in dB
• The Gain 𝐺( in dB at any frequency Ω( of the Butterworth filter is 

𝐺( = 20 log&% 𝐻! 𝑗Ω(

= 20 log56 1/ 1 +
Ω7

Ω'

!0

= 0 − 20 log,0 1 +
ΩY
Ω8

.9

= 10 log,0 1 +
ΩY
Ω8

.9



Gain Equations in dB
• So, Gains at frequency Ω) and Ω* are

• Dividing these two equations by each other yields

𝑅) = 10 log&% 1 +
Ω)
Ω+

",
⇒

Ω)
Ω+

",
= 10-'/&% − 1

𝐴* = 10 log&% 1 +
Ω*
Ω+

",
⇒

Ω*
Ω+

",
= 10/(/&% − 1

Ω)
Ω0

",
=
10-'/&% − 1
10/(/&% − 1



Determination of 𝑁 from ΩN, ΩO, 𝑅N and 𝐴P
• The previous equations can easily be solved in terms of Ω), Ω0, 𝑅) and 
𝐴* for the filter order N as

• Where 𝑢 rounds up 𝑢 to the nearest integer. 

𝑁 =
log&% 510 ⁄-' &% − 1 10 ⁄/( &% − 1

2 log&% ⁄Ω) Ω*



Determinate the Range of Cutoff Ω"
• Based on previous equations, Ω+ can be computed by 

• As a result, the admissible range of Ω+ is:

Ω8 =
Ω/

10
1%
,0 − 1

)⁄, (.9 Ω8 =
Ω%

10
3&
,0 − 1

)⁄, (.9

Ω' ∈
Ω)

10
-'
&% − 1

)⁄& (", ,
Ω*

10
/(
&% − 1

)⁄& (",



Example 2
Determine the transfer function of a Butterworth lowpass filter whose 
magnitude requirements are Ω) = 4𝜋 𝑟𝑎𝑑𝑠4& , Ω* = 6𝜋 𝑟𝑎𝑑𝑠4&, 𝑅) =
8 𝑑𝐵 and 𝐴* = 16 𝑑𝐵
Solution: 

• Based on the filter order equation, we can determine the filter order as

𝑁 =
log56 H10 ⁄9* 56 − 1 10 ⁄:+ 56 − 1

2 log56 ⁄Ω# Ω$

=
log56 H10 ⁄; 56 − 1 10 ⁄5< 56 − 1

2 log56 ⁄4π 6π = 2.45 = 3



Python Code
import numpy as np
Rp=8
As=16
Wp=4.0*np.pi
Ws=6.0*np.pi

N=(np.log((pow(10,Rp/10)-1)/(pow(10,As/10)-1)))/(2*np.log(Wp/Ws))

N

2.4529668274738468

𝑁 =
log,0 Q10 ⁄A ,0 − 1 10 ⁄,D ,0 − 1

2 log,0 ⁄4π 6π
= 2.45 = 3



• Put N = 3, the range of cutoff frequency Ω8 is

• For simplicity, we select Ω8 = 10. Using Example 1, the filter transfer function is:

Ω= ∈
Ω#

10
9*
56 − 1

)⁄5 (!0 ,
Ω$

10
:+
56 − 1

)⁄5 (!0

=
4𝜋

10
;
56 − 1

)⁄5 (!@1 ,
6𝜋

10
5<
56 − 1

)⁄5 (!@1 = [9.5141, 10.2441]

𝐻" 𝑠 =
1000

𝑠 + 10 𝑠! + 10𝑠 + 100 =
100

𝑠1 + 20𝑠! + 200𝑠 + 1000

𝐻" 𝑠 = 𝐻" 𝑠 Q
$A $
56
=

1
𝑠 + 1 𝑠! + 𝑠 +

Q
$A $
56



Python Code
import numpy as np
Rp=8
As=16
Wp=4.0*np.pi
Ws=6.0*np.pi
N=3
Wc1 = Wp/(pow((pow(10,Rp/10)-1),(1/(2*N))))
Wc2 = Ws/(pow((pow(10,As/10)-1),(1/(2*N))))

Wc1
9.514075465781463
Wc2
10.244148025477667

Ω= ∈
4𝜋

10
;
56 − 1

)⁄5 (!@1 ,
6𝜋

10
5<
56 − 1

)⁄5 (!@1 = [9.5141, 10.2441]



Python: Analog Butterworth Filter Design



Chebyshev I Filters (Optional)
• There are two types Chebyshev filters, one containing a ripple in the passband (type 

I) and the other containing a ripple in the stopband (Type II).

• A type-I Lowpass normalized (unit bandwidth) Chebyshev filter with a ripple in the 
passband is characterized by the magnitude squared frequency response as

where )𝑇9(Ω is the Nth order Chebyshev polynomial.

𝐻" 𝑗Ω ! =
1

1 + 𝜀! · T𝑇0!(Ω/Ω#

• Chebyshev polynomial can be generated by the 
following recursive formula:

with 𝑇0 Ω =1  and 𝑇, Ω = Ω
𝑇9 Ω = 2Ω𝑇]+, Ω − 2𝑇]+. Ω 𝑁 > 2

N 𝑇𝑵 Ω
0 1

1 Ω

2 2Ω! − 1

3 4Ω1 − Ω

4 8Ω2 − 8Ω! + 1

5 15Ω4 − 02Ω1 + 5Ω



Chebyshev I Filter Characteristics (Optional) 
• A type-I Lowpass normalized (unit bandwidth) Chebyshev filter with a ripple in the 

passband is characterized by the magnitude squared frequency response as

where )𝑇9(Ω is the Nth order Chebyshev polynomial.

• For Ω/Ω/ < 1, 𝑇9 Ω/Ω/ oscillates between ±1,

§ 𝑇0 1 = 1, => 𝐻 𝑗Ω . oscillates between ,
,_`

and 1.

• For Ω/Ω/ > 1, 𝑇9 Ω/Ω/ monotone increasing
• DC Gain is

𝐻" 𝑗Ω ! =
1

1 + 𝜀! · T𝑇0!(Ω/Ω#

𝐻 𝑗0 ! = V
1, 𝑁 𝑜𝑑𝑑
1

1 + 𝜀! , 𝑁 𝑒𝑣𝑒𝑛 Ω!



Design of Chebyshev Filter I (Optional)
Three design parameters: Ω), 𝜀" and 𝑁
• Set Ω/ equal to passband edge

• Choose 𝜀. so that 1 − 𝛿/ =
,

,_`B
,/.

• Choose 𝑁 to satisfy stopband constraint

• Filter poles located on an ellipse in the s-plan

𝛿$! ≥
1

1 + 𝜀! )𝑇0(ΩC
!

Ω!



Design of Chebyshev Filter II (Optional)

• For ΩD/Ω < 1 ( Ω > Ω#), 𝑇0 Ω#/Ω oscillates 

between ±1,

§ => 0 ≤ 𝐻 𝑗Ω ! ≤ E!

5FE!
, Ω > Ω#.

• For Ω#/Ω > 1, 𝑇0 Ω#/Ω increasing as Ω to 0

• DC Gain

§ 𝐻 𝑗0 ) = 1

𝐻 𝑗Ω ! =
1

1 + 𝜀! · 𝑇0! Ω#/Ω
35 =

𝜀, · 𝑇-
, Ω.

Ω

1+ 𝜀, · 𝑇-
, Ω.

Ω
𝐻 𝑗Ω

ΩΩG Ω$

1 − 𝛿!

𝛿"

Ω!



Elliptic Filters (Optional)

where 𝑈, Ω Jacobian elliptic 
function

• Equi-ripple error in both pass 
and stop bands

𝐻! 𝑗Ω " =
1

1 + 𝜀" · 𝑈," Ω
𝐻! 𝑗Ω

ΩΩ/ Ω%

1 − 𝛿!



Summary of Popular Analog Filters
• Butterworth

§ All Pole, No ripples in passband or stopband
§ Maximally Flat Response

• Chebyshev (Type I and II)
§ All Pole, Type I has Ripple in Passband, No Ripple in Stopband
§ Type II has Ripple in Stopband, No Ripple in Passband
§ Shorter Transition bandwidth than Butterworth for given number of poles

• Elliptic
§ Has Poles and Zeros, Ripple in both passband and stopband
§ Shorter transition bandwidth than Chebyshev for given number of poles
§ Degraded Phase Response



Frequency Transformations



Prototype Lowpass Filter Function
• The technique used to design analogue filters is to specify a prototype 

lowpass filter function which is normalized to provide a cutoff frequency 
Ω' at 1 rad/sec .

• Then apply transformations to achieve the actual desired cutoff 
frequencies and filter type.

1

𝐻 𝑗Ω 𝐻 𝑗Ω

ΩΩ Ω% Ω"



Lowpass to Lowpass Transformation
• To transform analog lowpass filter 𝐻! 𝑠

with unity cutoff frequency to lowpass 
filter 𝐻56 𝑠 with cutoff frequency Ω', we 
substitute

𝑠 →
𝑠
Ω'

Ω%/Ω!

0
k1

Transformed Filter Response

k2

Ω! ΩΩ"Ω!

dB

Ω% Ω7

-3 dB



Lowpass to Highpass Transformation
• To transform analog lowpass filter 𝐻! 𝑠

with unity cutoff frequency to highpass
filter 𝐻76 𝑠 with cutoff frequency Ω', 
we substitute

𝑠 →
Ω'
𝑠

Ω%Ω%/Ω! Ω

-3 dB



Highpass Filter Transformation Example 1
• First order Butterworth Lowpass prototype filter is given by

• To transform to highpass filter with cutoff frequency Ω' = 5, we replace 

𝑠 with #&
*

𝐻\] 𝑠 = ^
P_^

𝐻`] 𝑠 = 𝐻\] 𝑠 |Pa&'(
= ^

&'
( _^

= P
P_b'

= P
P_c

Note: Highpass filer contains zeros as well as poles.



Highpass Filter Transformation Example 2
• Determine the transfer function 𝐻76 𝑠 of a 3rd order Butterworth 

highpass filter with cutoff frequency Ω' = 1 (normalized form)

𝐻d 𝑠 = ^
P_^ P)_P_^

𝑠 → #&
*
⇒ &

*

𝐻`] 𝑠 = 𝐻\] 𝑠 |Pa*(
= ^

*
(_^

*
(

)
_*(_^

= P+

P_^ P)_P_^

3rd order Butterworth low-pass filter



Lowpass to Bandpass Transformations (1)
• By definition, a bandpass filter rejects both low 

and high frequency components and passes a 
certain band of frequencies some where 
between them

• Thus, the properties of bandpass filter 
frequency response 𝐻,- 𝑗Ω are

§ 𝐻,- 𝑗Ω = 0 at both Ω = 0 and Ω = ∞
§ 𝐻,- 𝑗Ω = 1 for a frequency band 

centered at Ω., where Ω. is the mid 
frequency of the filter.

Ideal Bandpass

Ω
𝑑𝐵 = 20 𝑙𝑜𝑔 𝐻 𝑗Ω

Ω3Ω4 Ω5

-3 dB



Lowpass to Bandpass Transformations (2)
• To convert lowpass filter 𝐻8(𝑠) with unity 

cutoff frequency into a Bandpass filter 
𝐻96(𝑠) with lower cutoff frequency Ω: and 
the upper cutoff frequency Ω;, we replace

𝑠 →
𝑠" +Ω5Ω<

)𝑠(Ω< −Ω5

𝑑𝐵 = 20 𝑙𝑜𝑔 𝐻 𝑗Ω

Ω3Ω4 Ω5

-3 dB

B = Ω; −Ω:
Bandwidth of 

the bandpass filter



Lowpass to Bandstop Transformation
• Similarly to convert a lowpass filter 𝐻! 𝑠

with unity cutoff frequency  into a 
bandstop filter 𝐻9=(𝑠) with lower cutoff 
frequency Ω: and upper cutoff frequency 
Ω;, we replace:

𝑠 →
𝑠(Ω< −Ω5)
𝑠" +Ω5Ω<

Ω3Ω4 Ω5

-3 dB



Another Transformation
• A lowpass to bandpass transformation can also be performed by

• 𝐵 – Bandwidth of the band-pass filter (Ω< −Ω5)

• Ω> – Center frequency

𝑠 →
𝑠" +Ω?"

𝐵 𝑠



Summary: Analog to Analog Transformation

k1

k2

dB

k2

dB

k1
dB

k1

k2

k1

k2

1
unity cut-off

0
k1

Butterworth Prototype Response  

= 20log|H(jΩ)|

0 

Transformed Lowpass Filter Response

k2

dB

𝑠 →
𝑠(Ω6 − Ω7)
𝑠) + Ω7Ω6

𝑠 →
𝑠) + Ω7Ω6
𝑠 )(Ω6 − Ω7

𝑠 →
𝑠
Ω%

𝑠 →
Ω%
𝑠

Ω!Ω" Ω Ω

Ω

ΩΩ

Ω"Ω!

Ω!/Ω" Ω!

Ω/Ω0 Ω1 Ω2 Ω, Ω/Ω0 Ω3 Ω2 Ω,

Ω# −Ω$

≠ Ω! −Ω"

dB

-3 dB

-3 dB

-3 dB

-3 dB

-3 dB

Transformed Highpass
Filter Response

Transformed Bandpass    
Filter Response

Transformed
Bandstop
Filter
Response



Analog Bandpass Filter Design Example 
• Design an analog bandpass filter with the following characteristics

§ A monotonic frequency response.
§ -3.0 dB upper and lower cutoff frequency of 50Hz and 20kHz
§ A stopband attenuation of at least 20dB at 20Hz and 45 kHz

At least  
20dB

0

20Hz 50Hz

dB = 20 log 𝐻 𝑗Ω

-3.0

Ω0 Ω3 Ω2 Ω, Ω
20kHz 45kHz



Example Solution
• The monotonic requirement can be satisfied with a Butterworth filter

§ Ω, = 2p (20) =125.663 rad / sec

§ Ω. =2p (45,000) = 2.82743´105 rad / sec

§ Ωh = 2p (50) = 314.159 rad / sec

§ Ωi = 2p(20 ,000) =1.25663´105 rad / sec

• Lowpass → Bandpass Transformation is

𝑠 →
𝑠" +Ω5Ω<
𝑠 )(Ω< −Ω5



n For bandpass filter to satisfy the stopband attenuation requirement at Ω,, we 
must have equality within the transformation. i.e.

• Substitute values for Ω&, Ω5, and Ω<.  

• Similarly solving Ω& , to satisfy stopband attenuation requirement at Ω"

• We choose Ω' =min{|2.5053|,|2.2545|} = 2.2545

• First design a lowpass filter 𝐻 𝑠 with Ω' and then apply transformation 
(LP to BP) using Ω< and Ω5 to obtain BP filter.

𝑗Ω7 =
𝑗Ω, . + ΩhΩi
𝑗Ω,(Ωi − Ωh)

𝑗Ω7 =
𝑗Ω. . + ΩhΩi
𝑗Ω.(Ωi − Ωh)

Ω7 =
Ω,. + ΩhΩi
Ω,(Ωi − Ωh)

= 2.5053=>

Ω7 =
Ω.

. + ΩhΩi
Ω.(Ωi − Ωh)

= 2.2545=>



• The lowpass filter order 𝑁 can be calculated as

• Therefore, 𝑁 = 3 should be chosen. Then, the transfer function of the 3rd LP filter is

• LP → BP

• The BP transfer function 

𝑁 = [𝑙𝑜𝑔56
10

1.6
56 − 1

10
!6
56 − 1

2𝑙𝑜𝑔56
1

2.2545
= 2.829

𝐻LM 𝑠 =
1

𝑠1 + 2𝑠! + 2𝑠 + 1

𝑠 →
𝑠. + ΩhΩi
𝑠 )(Ωi − Ωh

=
𝑠) + 3.94784×101

)𝑠(1.25349×10.

𝐻NM 𝑠 =
1

𝑠! + 3.94784×10O
)𝑠(1.25349×104

1
+ 2 𝑠! + 3.94784×10O

)𝑠(1.25349×104
!
+ 2 𝑠! + 3.94784×10O

)𝑠(1.25349×104 + 1



Python: Analog Bandpass Filter Design


