IIR Filter Design

EE4015 Digital Signal Processing

Dr. Lai-Man Po

Department of Electrical Engineering City University of Hong Kong

Content

- IIR Digital Filter Design Methods
 - Impulse Invariance Method
 - Bilinear Transformation Method
 - Frequency Band Transformation

IIR Digital Filter Design Methods

- Analog-to-Digital Transformations
 - Impulse Invariance

•
$$H_a(s) \to h(t) \xrightarrow{sampling} h[n] \to H(z)$$

Bilinear Transformation

•
$$H_a(s) \xrightarrow{s=\frac{2}{T}\frac{1-z^{-1}}{1+z^{-1}}} H(z)$$

- Digital-to-Digital Transformations
 - Frequency Band Transformation

•
$$H(z) \xrightarrow{z^{-1} = \frac{z^{-1} - a}{1 - az^{-1}}} H(z)$$

Pole-zero placement method

$$H(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_{M-1} z^{M-1} + b_M z^M}{a_0 + a_1 z^{-1} + \dots + a_{N-1} z^{N-1} + b_N z^N}$$

Analog-to-Digital Filter Transformation

 Some of the IIR filters design methods are to apply a transformation to an existing analog filter to obtain the digital filter transfer functions, such as

$$H_a(s) = \frac{1}{s-a} \xleftarrow{\text{Transformation}} H(z) = \frac{1}{1-bz^{-1}}$$

- Their common feature is that a stable analog filter will transform to a stable discrete-time system with transfer function H(z).
- Left half of s-plane maps into inside of unit circle in z-plane

Impulse Invariance Method

Impulse Invariance Method

- This method starts from an analog filter's transfer function $H_a(s)$ to obtain its impulse response $h_a(t)$ by inverse Laplace Transform.
- The objective of the design is to realize an IIR filter with an impulse response h[n] which satisfies :

• $h[n] = T \cdot h_a(nT)$ where T is the sampling period $(T = 1/F_s)$

- Finally, use z-Transform to obtain H(z) with filter coefficients from the sampled impulse response h[n].
- The main feature of this method is that the impulse response h[n] of the resulting digital filter is a sampled version of the impulse response $h_a(t)$ of the analog filter.

Sampling of the Impulse Response

• The problem of Impulse Invariance is sensitivity to the choice of *T*. Too large *T* will **create aliasing problem** to distorting the frequency response of the IIR digital Filter.

Spectrum of the Sampled Impulse Response

• With the use of convolution property, $H(e^{j\omega})$ is

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} H_a\left(j\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)\right)$$

• Where the analog and digital frequencies

 $\omega = \Omega T$

- The impulse response of the resultant IIR filter is similar to that of the analog filter
- Aliasing due to the overlapping of $\left\{H_a\left(j\left(\frac{\omega}{T}-\frac{2\pi k}{T}\right)\right)\right\}$ which are not bandlimited.

Impact of the Sampling Frequency

- The sampling frequency affects the frequency response of the impulse invariant discrete filter.
- A sufficient high sampling frequency is necessary for the frequency response to be close to that of the equivalent analog filter.
- Due to aliasing, therefore, the frequency response of the digital filter will **not be identical to that of the analog filter**.

Derive Transfer Function H(z) (1)

• To derive the IIR filter transfer function H(z) from $H_a(s)$, we first obtain the **partial fraction expansion**:

$$H_a(s) = \sum_{k=1}^{N} \frac{A_k}{s - c_k}$$

where $\{c_k\}$ are the poles on the left half of the s-plane

• The inverse Laplace transform of $H_a(s)$ is given as:

$$h_{a}(t) = \begin{cases} \sum_{k=1}^{N} A_{k} e^{c_{k}t}, & t \ge 0 \\ 0, & t < 0 \end{cases} = \left(\sum_{k=1}^{N} A_{k} e^{c_{k}t} \right) u(t)$$

Derive Transfer Function H(z) (2)

• Sample and scale $h_a(t)$ with period T to obtain h[n]:

$$h[n] = \sum_{k=1}^{N} TA_k e^{c_k T n} u[n]$$

• The z-transform of h[n] is

$$H(z) = \sum_{k=1}^{N} \frac{TA_k}{1 - e^{c_k T} z^{-1}}$$

Relationship between $H_a(s)$ and H(z)

• It can be seen that a pole of $s = c_k$ in the s-plane transforms to a pole at $z = e^{c_k T}$ in the z-plane:

$$z = e^{sT}$$

• Expressing $s = \sigma + j\Omega$ $z = e^{\sigma T} \cdot e^{j\Omega T} = e^{\sigma T} \cdot e^{j(\Omega + 2\pi k/T)T}$

where k is any integer, indicating a many-to-one mapping

• Each infinite horizontal strip of with $2\pi/T$ maps into the entire z-plane

Mapping between *s* and *z* in Impulse Invariance Method

Stability of Impulse Invariance Method

- $\sigma = 0$ maps to |z| = 1, that is, $j\Omega$ axis in the s-plane transforms to the unit circle in the z-plane
- $\sigma < 0$ maps to |z| < 1, left half of the s-plane maps into the inside of the unit circle in the z-plane. Then, stable $H_a(s)$ produces stable H(z)
- $\sigma > 0$ maps to |z| > 1, right half of the s-plane maps into the outside of the unit circle in the z-plane

Procedure of Impulse Invariance Method

Given the magnitude square response specifications of $H(e^{j\omega})$ in terms of ω_p , ω_s , R_p and A_s , the design procedure for H(z) can be summarized as :

- 1. Select a value for the sampling interval T and then compute the passband and stopband frequencies for the analog lowpass filter according to $\Omega_p = \omega_p/T$ and $\Omega_s = \omega_s/T$
- 2. Design the analog Butterworth filter with transfer function $H_a(s)$ according to Ω_p , Ω_s , R_p and A_s
- **3.** Perform partial fraction expansion on $H_a(s) = \sum_{k=1}^{N} \frac{A_k}{s-c_k}$
- 4. Obtain H(z) by

$$H(z) = \sum_{k=1}^{N} \frac{TA_k}{1 - e^{c_k T} z^{-1}}$$

Impulse Invariance Method Example 1

$$H(s) = \frac{1}{(s+1)(s+3)}$$

• Using partial fraction this can be written as

$$H(s) = \frac{0.5}{s+1} - \frac{0.5}{s+3}$$

$$\int \frac{A}{s-c} \rightarrow \frac{AT}{1-e^{cT}z^{-1}}$$

$$H(z) = \frac{0.5T}{1-e^{-T}z^{-1}} - \frac{0.5T}{1-e^{-3T}z^{-1}} = \frac{0.5T(e^{-T}-e^{-3T})z^{-1}}{1-(e^{-T}-e^{-3T})z^{-1}+e^{-4T}z^{-2}}$$

Impulse Invariance Method Example 2

- Determine the transfer function H(z) of a digital lowpass filter whose magnitude requirements are $\omega_p = 0.4\pi$, $\omega_s = 0.6\pi$, $R_p = 8 \, dB$ and $A_s = 16 \, dB$.
- Use the Butterworth lowpass filter and Impulse Invariance Method with sampling interval T = 0.1 in the design.

Example 2 Solution

• With T = 0.1, the analog frequency parameters can be determined as

$$\Omega_p = \frac{\omega_p}{T} = 4\pi$$
 and $\Omega_s = \frac{\omega_s}{T} = 6\pi$

• Based on the example 2 in analog filter design results with $\Omega_c = 10$, we know the 3rd order Butterworth filter can meets the magnitude requirements and its transfer function is

$$H_a(s) = \frac{1}{(s^2 + s + 1)(s + 1)} \Big|_{s = \frac{s}{\Omega_c}} = \frac{1000}{(s^2 + 10s + 100)(s + 10)}$$

• Performing partial fraction expansion on $H_a(s)$, we have

$$H_a(s) = \frac{10}{s+10} + \frac{-5 - j2.8868}{s+5 - j8.6603} + \frac{-5 + j2.8868}{s+5 + j8.6603}$$

• Using the mapping of $H(z) = \sum_{k=1}^{N} \frac{TA_k}{1 - e^{c_k T} z^{-1}}$, the transfer function of IIR filter is

$$H(z) = \frac{0.1 \cdot 10}{1 - e^{-10 \cdot 0.1} z^{-1}} + \frac{0.1 \cdot (-5 - j2.8868)}{1 - e^{(-5 + j8.6603) \cdot 0.1} z^{-1}} + \frac{0.1 \cdot (-5 + j2.8868)}{1 - e^{(-5 - j8.6603) \cdot 0.1} z^{-1}}$$

$$= \frac{1}{1 - 0.3679z^{-1}} + \frac{-0.5 - j0.2887}{1 - (0.3929 + j0.4620)z^{-1}} + \frac{-0.5 + j0.2887}{1 - (0.3929 - j0.4620)z^{-1}}$$

$$= \frac{1}{1 - 0.3679z^{-1}} + \frac{-1 + 0.6597z^{-1}}{1 - 0.7859z^{-1} + 0.3679z^{-2}}$$
$$= \frac{0.2417z^{-1} + 0.1262z^{-2}}{1 - 1.1538z^{-1} + 0.6570z^{-2} - 0.1354z^{-3}}$$

Magnitude and phase responses based on impulse invariance Method

Bilinear Transformation Method

Bilinear Transformation Method

• Map continuous-time systems to discrete-time system by relating *s* and *z*

$$z = e^{sT} = \frac{e^{\frac{sT}{2}}}{e^{\frac{-sT}{2}}} = \frac{1 + \frac{sT}{2} + \left(\frac{sT}{2}\right)^2 \cdot \frac{1}{2} + \cdots}{1 - \frac{sT}{2} + \left(\frac{sT}{2}\right)^2 \cdot \frac{1}{2} + \cdots} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}} \quad \Rightarrow \quad z \approx \frac{1 + \frac{sT}{2}}{$$

Bilinear Transformation Property 1

• Left half of s-plane (σ <0) maps to interior of unit circle in the z-plane

Stable Continuous-Time Systems <>>> Stable Discrete-time Systems

Bilinear Transformation Property 2

• $j\Omega$ axis maps to unit circle via a nonlinear warping

Pro and Con of Frequency Warping

- No aliasing of the frequency characteristic can occur in the transformation of an analog filter to a discrete filter
- We must however check carefully just hov the various characteristic frequencies of the continuous characteristic frequencies of the discrete filter.
- In designing a digital filter by this method, ¹/_r we must first prewarp the given filter specifications to find the continuous filter to which we are going to apply the bilinear transformation.

Procedure of Bilinear Method

Given the magnitude square response specifications of $H_{LP}(e^{j\omega})$ in terms of ω_p , ω_s , R_p and A_s , the design procedure for H(z) can be summarized as :

1. Select a value for the sampling interval T and then compute the passband and stopband frequencies for the analog lowpass filter according to $\Omega_p = \frac{2}{T} \tan \frac{\omega_p}{2}$ and $\frac{2}{T} \cos \omega_p$

$$\Omega_s = \frac{2}{T} \tan \frac{\omega_s}{2}$$

- 2. Design the analog filter with transfer function $H_a(s)$ according to Ω_p , Ω_s , R_p and A_s
- 3. Obtain H(z) from $H_a(s)$ by the bilinear transformation

$$H(z) = H_a(s) \Big|_{s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}}$$

Bilinear Transformation Example 1

$$H_{LP}(s) = \frac{2s}{s^2 + 6s + 8}$$

• Using the bilinear transformation with T = 1 to transform to a digital filter with transfer function H(z)

$$H(z) = \frac{2s}{s^2 + 6s + 8} \Big|_{s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}} = \frac{2 \cdot 2 \frac{1 - z^{-1}}{1 + z^{-1}}}{\left(2 \frac{1 - z^{-1}}{1 + z^{-1}}\right)^2 + 6 \cdot 2 \frac{1 - z^{-1}}{1 + z^{-1}} + 8}$$
$$= \frac{4 - 4z^{-2}}{15 + 14z^{-1} + 9z^{-2}} = \frac{0.2667 - 40.2667z^{-2}}{1 + 0.933z^{-1} + 0.6z^{-2}}$$

Bilinear Transformation Example 2

- Determine the transfer function $H_{LP}(z)$ of a digital lowpass filter with
 - Sampling frequency F_s : 8kHz
 - Passband edge frequency f_p at 1.6kHz with 8dB maximum passband ripple (R_p) ,
 - Stopband edge frequency f_s at 2.4kHz with a minimum 16dB stopband attenuation (A_s).
- Use the Butterworth lowpass filter and Bilinear Transformation method with sampling interval T = 0.1 in the design.

Example 2 Solution

- Determine the continuous-time critical frequencies Ω_p and Ω_s by frequency warping of the Bilinear Transformation method with $F_s = 8000$ Hz.
- The discrete-time critical frequencies are given by

$$\omega_p = \frac{f_p}{F_s} \cdot 2\pi = \frac{1600}{8000} \cdot 2\pi = 0.4\pi \qquad \omega_s = \frac{f_s}{F_s} \cdot 2\pi = \frac{2400}{8000} \cdot 2\pi = 0.6\pi$$

• Apply frequency pre-warping to obtain the continuous-time critical frequencies with sampling interval T = 0.1:

$$\Omega_p = \frac{2}{T} \tan \frac{\omega_p}{2} = \frac{2}{0.1} \tan \left(\frac{0.4\pi}{2}\right) = 14.5309 \ rad \ s^{-1}$$
$$\Omega_s = \frac{2}{T} \tan \frac{\omega_s}{2} = \frac{2}{0.1} \tan \left(\frac{0.6\pi}{2}\right) = 27.5276 \ rad \ s^{-1}$$

Example 2 Solution

• Using the Butterworth order estimation formula, we have

$$N = \left[\frac{\log_{10}\left[\left(10^{R_p/10} - 1\right)/\left(10^{A_s/10} - 1\right)\right]}{2\log_{10}\left(\Omega_p/\Omega_s\right)}\right] = \left[\frac{\log_{10}\left[\left(10^{8/10} - 1\right)/\left(10^{16/10} - 1\right)\right]}{2\log_{10}\left(14.5309/27.5276\right)}\right] = [1.56] = 2$$

• With N = 2, we can obtain the range of analog cutoff frequency Ω_c as

$$\Omega_{c} \in \left[\frac{\Omega_{p}}{\left(\frac{R_{p}}{10^{\frac{1}{10}}-1}\right)^{1/(2N)}}, \frac{\Omega_{s}}{\left(\frac{A_{s}}{10^{\frac{1}{10}}-1}\right)^{1/(2N)}}\right] = \left[\frac{14.5309}{\left(\frac{8}{10^{\frac{8}{10}}-1}\right)^{1/(2\cdot2)}}, \frac{27.5276}{\left(\frac{10^{\frac{16}{10}}-1}{10^{\frac{1}{10}}-1}\right)^{1/(2\cdot2)}}\right] = \left[9.5725, 11.0289\right]$$

• For simplicity, $\Omega_c = 10$ is employed

Python Code

 $\begin{array}{l} \underset{Rp=8}{\overset{\text{import numpy as np}}{\underset{Mp=14.5309}{\text{Rp}=8}} \\ \underset{Mp=14.5309}{\overset{\text{Mp}=14.5309}{\underset{N=2}{\text{Ws}=27.5276}} \\ \underset{N=2}{\overset{\text{Wcl}}{\underset{Mc}{\text{v}=2}} \\ \underset{Mcl}{\overset{\text{Wcl}}{\underset{Mc}{\text{v}=1}} \\ \underset{Mcl}{\overset{\text{Wcl}}{\underset{Mc}{\text{v}=1}}} \\ \underset{N=2}{\overset{\text{Wcl}}{\underset{Mcl}{\text{w}=1}} \\ \underset{N=2}{\overset{\text{Wcl}}{\underset{Mcl}{\text{w}=1}}} \\ \underset{N=2}{\overset{N=2}{\underset{Mcl}{\underset{Mcl}{\text{w}=1}}} \\ \underset{N=2}{\overset{N=2}{\underset{Mcl}{\underset{Mcl}{\text{w}=1}}} \\ \underset{N=2}{\overset{N=2}{\underset{Mcl}{\underset{Mcl}{\text{w}=1}}} \\ \underset{N=2}{\overset{N=2}{\underset{Mcl}{\underset{Mcl}{\text{w}=1}}} \\ \underset{N=2}{\overset{N=2}{\underset{Mcl}{\underset{Mcl}{\text{w}=1}}} \\ \underset{N=2}{\overset{N=2}{\underset{Mcl}{\underset{Mcl}{\underset{Mcl}{\text{w}=1}}} \\ \underset{N=2}{\overset{N=2}{\underset{Mcl}{\underset$

Normalized Butterworth Filter Transfer Functions

For $\Omega_c = 1$, we have the transfer functions of the Butterworth Filters in different order N.

Ν	Butterworth Transfer Functions
1	$\frac{1}{s+1}$
2	$\frac{1}{s^2 + \sqrt{2}s + 1}$
3	$\frac{1}{(s^2+s+1)(s+1)}$
4	$\frac{1}{(s^2 + 0.76536s + 1)(s^2 + 1.84776s + 1)}$
5	$\frac{1}{(s+1)(s^2+0.6180s+1)(s^2+1.6180s+1)}$

https://en.wikipedia.org/wiki/Butterworth_filter#Normalized_Butterworth_polynomials

• From the Table of the Normalized Butterworth Filter Transfer Functions, we know that the 2nd Order Butterworth Lowpass filter with cutoff frequency $\Omega_c = 1$ is

$$H_{LP}(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$$

• Then, we map the cutoff frequency of this transfer function to $\Omega_c = 10$ as

$$H_{LP}(s) = \frac{1}{s^2 + \sqrt{2}s + 1} \Big|_{s = \frac{s}{\Omega_c}} = \frac{1}{\left(\frac{s}{10}\right)^2 + \sqrt{2}\left(\frac{s}{10}\right) + 1} = \frac{100}{s^2 + 10\sqrt{2}s + 100}$$

• Finally, we apply the Bilinear Transformation with T = 0.1 to obtain $H_{LP}(z)$ as

$$H_{LP}(z) = H_{LP}(s) \Big|_{s = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}} = \frac{100}{\left(\frac{2}{0.1} \cdot \frac{1-z^{-1}}{1+z^{-1}}\right)^2 + 10\sqrt{2} \cdot \frac{2}{0.1} \cdot \frac{1-z^{-1}}{1+z^{-1}} + 100}$$
$$= \frac{1+2z^{-1}+z^{-2}}{7.8284 - 6z^{-1} + 2.1716z^{-2}}$$
$$= \frac{0.1276 + 0.2552z^{-1} + 0.1276z^{-2}}{1 - 0.7657z^{-1} + 0.2771z^{-2}}$$

Direct Form Filter Structure Implementation

Canonical Form Filter Structure Implementation

Magnitude and phase responses based on bilinear transformation

Bilinear Transformation Example 3

- Determine the transfer function $H_{HP}(z)$ of a digital highpass filter whose magnitude requirements are $\omega_p = 0.4\pi$, $\omega_s = 0.6\pi$, $R_p = 8 dB$ and $A_s = 16 dB$.
- Use the normalized Butterworth lowpass filter and analog to analog transformation to the analog highpass transfer function.
- Finally, use Bilinear Transformation method with sampling interval T = 0.1 to obtain the $H_{HP}(z)$.

Example 3 Solution

- Based on the results of the Example 2, we know that
 - The order of the filter is 2
 - The analog cutoff frequency $\Omega_c = 10$
 - From the Table of the Normalized Butterworth Filter Transfer Functions, we know that the 2nd Order Butterworth Lowpass filter with cutoff frequency $\Omega_c = 1$ is

$$H_{LP}(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$$

• Now, we can apply Analog-to-Analog Transformation to obtain the highpass transfer function $H_{HP}(s)$ as

$$H_{HP}(s) = H_{LP}(s) \Big|_{s=\frac{\Omega_c}{s}} = \frac{1}{\left(\frac{10}{s}\right)^2 + \sqrt{2}\left(\frac{10}{s}\right) + 1} = \frac{s^2}{s^2 + 10\sqrt{2}s + 100}$$

• Finally, we apply the Bilinear Transformation with T = 0.1 to obtain $H_{HP}(z)$ as

$$H_{HP}(z) = H_{HP}(s) \Big|_{s = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}z}} = \frac{s^2}{s^2 + 10\sqrt{2}s + 100} \Big|_{s = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}z}}$$
$$= \frac{\left(\frac{2}{0.1} \cdot \frac{1-z^{-1}}{1+z^{-1}}\right)^2}{\left(\frac{2}{0.1} \cdot \frac{1-z^{-1}}{1+z^{-1}}\right)^2 + 10\sqrt{2} \cdot \frac{2}{0.1} \cdot \frac{1-z^{-1}}{1+z^{-1}} + 100} = \frac{1-2z^{-1}+z^{-2}}{1.9571 - 1.5z^{-1} + 0.5429z^{-2}}$$

 $=\frac{0.5110 - 1.0219z^{-1} + 0.5110z^{-2}}{1 + 0.7664z^{-1} + 0.2774z^{-2}}$

Analog to Analog Transformation

Digital Frequency Band Transformations

Digital Frequency Band Transformation

• The operations are like that of the bilinear transformation but now the mapping is performed only in the z-plane:

 $z_o^{-1} = T(z^{-1})$

where z_o and z correspond to the lowpass and resultant filters, respectively, and T() denotes the transformation operator.

• To ensure the transformed filter to be stable and causal, the unit circle of the z_o -plane should map into those of the z-plane, respectively.

Frequency Band Transformation Operators

Filter Type	Transformation Operator	Design Parameter
Lowpass	$z_o^{-1} = \frac{z^{-1} - a}{1 - az^{-1}}$	$a = \frac{\sin\left(\frac{\omega_{c_o} - \omega_o}{2}\right)}{\sin\left(\frac{\omega_{c_o} + \omega_o}{2}\right)}$
Highpass	$z_o^{-1} = -\frac{z^{-1} - a}{1 - az^{-1}}$	$a = -\frac{\cos\left(\frac{\omega_{c_o} + \omega_o}{2}\right)}{\cos\left(\frac{\omega_{c_o} - \omega_o}{2}\right)}$
Bandpass	$z_o^{-1} = \frac{z^{-2} - \frac{2ab}{b+1}z^{-1} + \frac{b-1}{b+1}}{\frac{b-1}{b+1}z^{-2} - \frac{2ab}{b+1}z^{-1} + 1}$	$a = \frac{\cos\left(\frac{\omega_{c_2} + \omega_{c_1}}{2}\right)}{\cos\left(\frac{\omega_{c_2} - \omega_{c_2}}{2}\right)} \ b = \cot\left(\frac{\omega_{c_2} + \omega_{c_1}}{2}\right) \tan\left(\frac{\omega_{c_0}}{2}\right)$
Bandstop	$z_o^{-1} = \frac{z^{-2} - \frac{2a}{1+b}z^{-1} + \frac{1-b}{1+b}}{\frac{1-b}{1+b}z^{-2} - \frac{2a}{1+b}z^{-1} + 1}$	$a = \frac{\cos\left(\frac{\omega_{c_2} + \omega_{c_1}}{2}\right)}{\cos\left(\frac{\omega_{c_2} - \omega_{c_1}}{2}\right)} b = \cot\left(\frac{\omega_{c_2} - \omega_{c_1}}{2}\right) \tan\left(\frac{\omega_{c_0}}{2}\right)$

Frequency Band Transformation Example

- Determine the transfer function H(z) of a digital highpass filter whose magnitude requirements are $\omega_p = 0.6\pi$, $\omega_s = 0.4\pi$, $R_p = 8 \, dB$ and $A_s = 16 \, dB$.
- Use the Butterworth lowpass filter and bilinear transformation in the design.

Use the Results of the Bilinear Transformation Example 2

- Determine the transfer function $H_{LP}(z)$ of a digital lowpass filter whose magnitude requirements are $\omega_p = 0.4\pi$, $\omega_s = 0.6\pi$, $R_p = 8 \, dB$ and $A_s = 16 \, dB$.
- Use the Butterworth lowpass filter and Bilinear Transformation method with sampling interval T = 0.1 in the design.

Solution

• Using the Example 2 of the Bilinear Transformation, the corresponding lowpass digital filter function $H_{LP}(z)$ is :

$$H_{LP}(z_o) = \frac{0.1276 + 0.2552z_o^{-1} + 0.1276z_o^{-2}}{1 - 0.7657z_o^{-1} + 0.2771z_o^{-2}}$$

 Assigning the cutoff frequencies as the midpoints between the passband and stopband frequencies, we have

$$\omega_{c_o} = \omega_c = \frac{0.4\pi + 0.6\pi}{2} = 0.5\pi$$

• Using the Table, the corresponding value of *a* is

$$a = -\frac{\cos\left(\frac{\omega_{c_o} + \omega_o}{2}\right)}{\cos\left(\frac{\omega_{c_o} - \omega_o}{2}\right)} = -\frac{\cos(0.5\pi)}{\cos(0)} = 0$$

which gives the transformation operator:

$$z_o^{-1} = -\frac{z^{-1} - a}{1 - az^{-1}} = -z^{-1}$$

• As a result, the digital highpass filter transfer function is:

$$H_{HP}(z) = H_{LP}(z_o) \Big|_{z_o^{-1} = -z^{-1}} = \frac{0.1276 - 0.2552z^{-1} + 0.1276z^{-2}}{1 + 0.7657z^{-1} + 0.2771z^{-2}}$$

Magnitude and phase responses based on frequency band transformation

Digital Highpass Butterworth Filter to Remove a Single Tone from a Signal

- Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz.
- Design a digital highpass filter at 15 Hz to remove the 10 Hz tone and apply it to the signal.
- It's recommended to use second-order sections (SOS) format when filtering, to avoid numerical error with transfer function (ba) format)

```
t = np.linspace(0, 1, 1000, False) # 1 second
sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
sos = signal.butter(10, 15, 'hp', fs=1000, output='sos')
filtered = signal.sosfilt(sos, sig)
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(t, sig)
ax1.set_title('10 Hz and 20 Hz sinusoids')
ax1.set_title('10 Hz and 20 Hz sinusoids')
ax1.axis([0, 1, -2, 2])
ax2.plot(t, filtered)
ax2.set_title('After 15 Hz highpass filter')
ax2.axis([0, 1, -2, 2])
ax2.set_xlabel('Time [seconds]')
plt.tight_layout()
plt.show()
```

