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IIR Digital Filter Design Methods
• Analog-to-Digital Transformations

§ Impulse Invariance

• 𝐻!(𝑠) → ℎ(𝑡)
"!#$%&'(

ℎ[𝑛] → 𝐻(𝑧)

§ Bilinear Transformation

• 𝐻! 𝑠
")!"

#$%$#

#&%$# 𝐻(𝑧)

• Digital-to-Digital Transformations

§ Frequency Band Transformation

• 𝐻 𝑧
*$#) %$#$'

#$'%$# 𝐻(𝑧)

§ Pole-zero placement method

𝐻 𝑧 =
𝑏+ + 𝑏,𝑧-, +⋯+ 𝑏.-,𝑧.-, + 𝑏.𝑧.

𝑎+ + 𝑎,𝑧-, +⋯+ 𝑎/-,𝑧/-, + 𝑏/𝑧/



Analog-to-Digital Filter Transformation
• Some of the IIR filters design methods are to apply a transformation to 

an existing analog filter to obtain the digital filter transfer functions, 
such as

• Their common feature is that a stable analog filter will transform to a 
stable discrete-time system with transfer function 𝐻(𝑧). 

• Left half of  s-plane maps into inside of unit circle in z-plane

𝐻! 𝑠 =
1

𝑠 − 𝑎
"#!$%&'#(!)*'$

𝐻 𝑧 =
1

1 − 𝑏𝑧+,



Impulse Invariance Method



Impulse Invariance Method
• This method starts from an analog filter’s transfer function 𝐻! 𝑠 to obtain its 

impulse response ℎ!(𝑡) by inverse Laplace Transform.
• The objective of the design is to realize an IIR filter  with an impulse response 
ℎ 𝑛 which satisfies :

§ ℎ 𝑛 = 𝑇 !ℎ!(𝑛𝑇) where 𝑇 is the sampling period (𝑇 = 1/𝐹")

• Finally, use z-Transform to obtain 𝐻(𝑧) with filter coefficients from the 
sampled impulse response ℎ 𝑛 .

• The main feature of this method is that the impulse response ℎ 𝑛 of the 
resulting digital filter is a sampled version of the impulse response ℎ!(𝑡) of 
the analog filter.



Sampling of the Impulse Response

• The problem of Impulse Invariance is sensitivity to the choice of 𝑇.  Too large 𝑇 will 
create aliasing problem to distorting the frequency response of the IIR digital Filter.
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Spectrum of the Sampled Impulse Response
• With the use of convolution property, 𝐻(𝑒#$) is

• Where the analog and digital frequencies

• The impulse response of the resultant IIR filter is similar to that of the analog 
filter

• Aliasing due to the overlapping of 𝐻! 𝑗 $
%
− &'(

%
which are not 

bandlimited.  

𝐻 𝑒01 = 2
2)-3

3

𝐻! 𝑗
𝜔
𝑇 −

2𝜋𝑘
𝑇

𝜔 = Ω𝑇



Impact of the Sampling Frequency
• The sampling frequency affects the frequency response of the impulse 

invariant discrete filter. 

• A sufficient high sampling frequency is necessary for the frequency 
response to be close to that of the equivalent analog filter. 

• Due to aliasing, therefore, the frequency response of the digital filter 
will not be identical to that of the analog filter. 



Derive Transfer Function 𝐻(𝑧) (1)
• To derive the IIR filter transfer function 𝐻(𝑧) from 𝐻!(𝑠) , we first obtain the 

partial fraction expansion:

𝐻! 𝑠 = 1
()*

+
𝐴(

𝑠 − 𝑐(
where 𝑐( are the poles on the left half of the s-plane

• The inverse Laplace transform of 𝐻! 𝑠 is given as:

ℎ! 𝑡 = :2
2),

/

𝐴2𝑒4(5 , 𝑡 ≥ 0

0, 𝑡 < 0

= 2
2),

/

𝐴2𝑒4(5 𝑢 𝑡



Derive Transfer Function 𝐻(𝑧) (2)
• Sample and scale ℎ! 𝑡 with period 𝑇 to obtain ℎ[𝑛] :

ℎ[𝑛] = 1
()*

+

𝑇𝐴(𝑒,!%- 𝑢[𝑛]

• The z-transform of ℎ[𝑛] is

𝐻 𝑧 = +
"#$

%
𝑇𝐴"

1 − 𝑒&!'𝑧($



Relationship between 𝐻' 𝑠 and 𝐻 𝑧

• It can be seen that a pole of 𝑠 = 𝑐" in the s-plane transforms to a pole 
at 𝑧 = 𝑒&!' in the z-plane:

𝑧 = 𝑒)'

• Expressing 𝑠 = σ + 𝑗Ω
𝑧 = 𝑒*' 5 𝑒+,'= 𝑒*' 5 𝑒+ ,-./"/' '

where 𝑘 is any integer, indicating a many-to-one mapping

• Each infinite horizontal strip of with 2𝜋/𝑇 maps into the entire z-plane

𝐻! 𝑠 = 2
2),

/
𝐴2

𝑠 − 𝑐2
𝐻 𝑧 = 2

2),

/
𝑇𝐴2

1 − 𝑒4(6𝑧-,



Mapping between 𝑠 and 𝑧 in Impulse Invariance 
Method

𝑧 = 𝑒)'



Stability of Impulse Invariance Method 
• σ = 0maps to 𝑧 = 1 , that is, 𝑗Ω axis in the  s-plane transforms to the 

unit circle in the  z-plane

• σ < 0 maps to 𝑧 < 1 , left half of the  s-plane maps into the inside of 
the unit circle in the z-plane. Then, stable 𝐻! 𝑠 produces stable 𝐻 𝑧

• σ > 0 maps to 𝑧 > 1 , right half of the  s-plane maps into the outside 
of the unit circle in the z-plane



Procedure of Impulse Invariance Method
Given the magnitude square response specifications of 𝐻(𝑒?@ ) in terms of 𝜔A, 𝜔%, 𝑅A
and 𝐴%, the design procedure for 𝐻 𝑧 can be summarized as :
1. Select a value for the sampling interval 𝑇 and then compute the passband and 

stopband frequencies for the analog lowpass filter according to ΩA = 𝜔A/𝑇 and 
Ω% = 𝜔%/𝑇

2. Design the analog Butterworth filter with transfer function 𝐻! 𝑠 according to ΩA, 
Ω%, 𝑅A and 𝐴%

3. Perform partial fraction expansion on 𝐻! 𝑠 = ∑BC,D E7
%+F7

4. Obtain 𝐻 𝑧 by

𝐻 𝑧 = 2
2),

/
𝑇𝐴2

1 − 𝑒4(6𝑧-,



Impulse Invariance Method Example 1

• Using partial fraction this can be written as

𝐻 𝑠 =
1

𝑠 + 1 𝑠 + 3

𝐻 𝑠 =
0.5
𝑠 + 1

−
0.5
𝑠 + 3

𝐻 𝑧 =
0.5𝑇

1 − 𝑒+"𝑧+,
−

0.5𝑇
1 − 𝑒+G"𝑧+,

=
0.5𝑇 𝑒+" − 𝑒+G" 𝑧+,

1 − 𝑒+" − 𝑒+G" 𝑧+, + 𝑒+H"𝑧+I

𝐴
𝑠 − 𝑐

→
𝐴𝑇

1 − 𝑒$%𝑧&'



Impulse Invariance Method Example 2
• Determine the transfer function 𝐻 𝑧 of a digital lowpass filter whose 

magnitude requirements are 𝜔1 = 0.4𝜋, 𝜔) = 0.6𝜋, 𝑅1 = 8 𝑑𝐵 and 
𝐴) = 16 𝑑𝐵. 

• Use the Butterworth lowpass filter and Impulse Invariance Method with 
sampling interval 𝑇 = 0.1 in the design.



Example 2 Solution
• With 𝑇 = 0.1, the analog frequency parameters can be determined as

Ω. =
$"
%
= 4𝜋 and   Ω" =

$#
%
= 6𝜋

• Based on the example 2 in analog filter design results with Ω, = 10, we know 
the 3rd order Butterworth filter can meets the magnitude requirements and 
its transfer function is 

𝐻! 𝑠 =
1

𝑠& + 𝑠 + 1 𝑠 + 1 >
") "
/$
=

1000
𝑠& + 10𝑠 + 100 𝑠 + 10

• Performing partial fraction expansion on 𝐻! 𝑠 , we have

𝐻! 𝑠 =
10

𝑠 + 10 +
−5 − 𝑗2.8868
𝑠 + 5 − 𝑗8.6603 +

−5 + 𝑗2.8868
𝑠 + 5 + 𝑗8.6603



• Using the mapping of                                      , the transfer function of IIR 
filter is

𝐻 𝑧 =
0.1 8 10

1 − 𝑒+,O>O.,𝑧+,
+

0.1 8 −5 − 𝑗2.8868
1 − 𝑒 +QR?S.TTOG >O.,𝑧+,

+
0.1 8 −5 + 𝑗2.8868
1 − 𝑒 +Q+?S.TTOG >O.,𝑧+,

𝐻 𝑧 = 2
2),

/
𝑇𝐴2

1 − 𝑒4(6𝑧-,

=
1

1 − 0.3679𝑧+,
+

−0.5 − 𝑗0.2887
1 − 0.3929 + 𝑗0.4620 𝑧+,

+
−0.5 + 𝑗0.2887

1 − 0.3929 − 𝑗0.4620 𝑧+,

=
1

1 − 0.3679𝑧+,
+

−1 + 0.6597𝑧+,

1 − 0.7859𝑧+, + 0.3679𝑧+I

=
0.2417𝑧+, + 0.1262𝑧+I

1 − 1.1538𝑧+, + 0.6570𝑧+I − 0.1354𝑧+G



Magnitude and phase responses based on 
impulse invariance Method



Bilinear Transformation
Method



Bilinear Transformation Method
• Map continuous-time systems to discrete-time system by relating 𝑠 and 𝑧

𝑧 = 𝑒"6 =
𝑒
"6
8

𝑒
-"6
8
=
1 + 𝑠𝑇2 + 𝑠𝑇

2
8
· 12 + ⋯

1 − 𝑠𝑇2 + 𝑠𝑇
2

8
· 12 + ⋯

𝑧 ≈
1 + 𝑠𝑇2
1 − 𝑠𝑇2

𝑗Ω

𝜎

s-plane
Im z-plane

𝑧 = 1

𝑠 =
2
𝑇
8
1 − 𝑧+,

1 + 𝑧+,=>=>

𝑠 =
2
𝑇 =

1 − 𝑧!"

1 + 𝑧!"

Re

It is a one-to-one mapping



Bilinear Transformation Property 1
• Left half of s-plane (𝜎<0) maps to interior of unit circle in the z-plane

• Stable Continuous-Time Systems ó Stable Discrete-time Systems

𝑧 =
1 + 𝑠𝑇2
1 − 𝑠𝑇2

=
1 + 𝑇2 𝜎 + 𝑗

𝑇
2 Ω

1 − 𝑇2 𝜎 − 𝑗
𝑇
2 Ω

𝑗Ω

𝜎

s-plane Im z-plane

𝑧 = 1

𝑠 =
2
𝑇
1 − 𝑧!"

1 + 𝑧!"

Re

𝑖𝑓 𝜎 < 0, 𝑧 < 1
𝜎 > 0, 𝑧 > 1



Bilinear Transformation Property 2
• 𝑗Ω axis maps to unit circle via a nonlinear warping

𝑧 =
1 + 𝑠𝑇

2
1 − 𝑠𝑇

2

()!*
𝑧 =

1 + 𝑗 𝑇2 𝛺

1 − 𝑗 𝑇2 𝛺

+ )'
𝑒!" =

1 + 𝑗 𝑇2 𝛺

1 − 𝑗 𝑇2 𝛺
𝑗Ω =

2
𝑇
1 − 𝑒&!"

1 + 𝑒&!"
=
2
𝑇
2𝑗𝑒&

!"
, sin𝜔2

2𝑗𝑒&
!"
, cos𝜔2

= 𝑗
2
𝑇
tan

𝜔
2

Ω =
2
𝑇
tan

𝜔
2

𝜔 = 2 tan+,
Ω𝑇
2

and

Then, we have

=>

Ω𝑇

𝜔

We see that a nonlinear relation exists between Ω and 𝜔. 
This effect is called ‘Warping’. 



Pro and Con of Frequency Warping
• No aliasing of the frequency characteristic 

can occur in the transformation of an 
analog filter to a discrete filter

• We must however check carefully just how 
the various characteristic frequencies of 
the continuous characteristic frequencies 
of the discrete filter. 

• In designing a digital filter by this method, 
we must first prewarp the given filter 
specifications to find the continuous filter 
to which we are going to apply the bilinear 
transformation. 𝛺𝛺' 𝛺, 𝛺-

𝜔

𝜔-
𝜔+
𝜔"

Continuous-Time 
frequency 
response



Procedure of Bilinear Method
Given the magnitude square response specifications of 𝐻`a(𝑒?@ ) in terms of 𝜔A, 𝜔%, 
𝑅A and 𝐴%, the design procedure for 𝐻 𝑧 can be summarized as :
1. Select a value for the sampling interval 𝑇 and then compute the passband and 

stopband frequencies for the analog lowpass filter according to ΩA =
I
"
tan@C

I
and 

Ω% =
I
"
tan@D

I
2. Design the analog filter with transfer function 𝐻! 𝑠 according to ΩA, Ω%, 𝑅A and 

𝐴%
3. Obtain 𝐻 𝑧 from 𝐻! 𝑠 by the bilinear transformation

𝐻(𝑧) = 𝐻! 𝑠 I
%CI"

,+bEF
,RbEF



Bilinear Transformation Example 1

• Using the bilinear transformation with 𝑇 = 1 to transform to a digital filter with 
transfer function 𝐻 𝑧

𝐻23 𝑠 =
2𝑠

𝑠. + 6𝑠 + 8

𝐻 𝑧 =
2𝑠

𝑠I + 6𝑠 + 8
I
%CI"

,+bEF
,RbEF

=
2 8 2 1 − z

+,

1 + z+,

2 1 − z
+,

1 + z+,
I
+ 6 8 2 1 − z

+,

1 + z+, + 8

=
4 − 4𝑧+I

15 + 14𝑧+, + 9𝑧+I
=
0.2667 − 40.2667𝑧+I

1 + 0.933𝑧+, + 0.6𝑧+I



Bilinear Transformation Example 2
• Determine the transfer function 𝐻23 𝑧 of a digital lowpass filter with

§ Sampling frequency 𝐹% : 8kHz

§ Passband edge frequency 𝑓A at 1.6kHz with 8dB maximum passband ripple (𝑅A),

§ Stopband edge frequency 𝑓% at 2.4kHz with a minimum 16dB stopband 
attenuation (𝐴%).

• Use the Butterworth lowpass filter and Bilinear Transformation method 
with sampling interval 𝑇 = 0.1 in the design.



Example 2 Solution
• Determine the continuous-time critical frequencies ΩA and Ω% by frequency warping 

of the Bilinear Transformation method with 𝐹% = 8000 Hz.
• The discrete-time critical frequencies are given by

• Apply frequency pre-warping to obtain the continuous-time critical frequencies with 
sampling interval 𝑇 = 0.1 :

𝜔$ =
𝑓$
𝐹"
H 2𝜋 =

1600
8000 H 2𝜋 = 0.4𝜋 𝜔" =

𝑓"
𝐹"
H 2𝜋 =

2400
8000 H 2𝜋 = 0.6𝜋

Ω. =
2
𝑇
tan

𝜔.
2
=

2
0.1

tan
0.4𝜋
2

= 14.5309 𝑟𝑎𝑑 𝑠&'

Ω( =
2
𝑇
tan

𝜔(
2
=

2
0.1

tan
0.6𝜋
2

= 27.5276 𝑟𝑎𝑑 𝑠&'



Example 2 Solution
• Using the Butterworth order estimation formula, we have

• With 𝑁 = 2, we can obtain the range of analog cutoff frequency ΩF as

• For simplicity, ΩF = 10 is employed

𝑁 =
log,+ Q10 ⁄H) ,+ − 1 10 ⁄I* ,+ − 1

2 log,+ ⁄Ω$ Ω"
=

log,+ Q10 ⁄J ,+ − 1 10 ⁄,K ,+ − 1
2 log,+ ⁄14.5309 27.5276

= 1.56 = 2

Ω$ ∈
Ω.

10
/,
'0 − 1

)⁄' (,4 ,
Ω(

10
5-
'0 − 1

)⁄' (,4 =
14.5309

10
6
'0 − 1

)⁄' (,7, ,
27.5276

10
'8
'0 − 1

)⁄' (,7, = [9.5725, 11.0289]



Python Code
import numpy as np
Rp=8
As=16
Wp= 14.5309
Ws= 27.5276

N=(np.log((pow(10,Rp/10)-1)/(pow(10,As/10)-1)))/(2*np.log(Wp/Ws))

N
1.5566977828103328

import numpy as np
Rp=8
As=16
Wp= 14.5309
Ws= 27.5276
N=2
Wc1 = Wp/(pow((pow(10,Rp/10)-1),(1/(2*N))))
Wc2 = Ws/(pow((pow(10,As/10)-1),(1/(2*N))))

Wc1
9.572549171535371
Wc2
11.028855136049335

𝑁 =
log'0 u10 ⁄6 '0 − 1 10 ⁄'8 '0 − 1

2 log'0 ⁄14.5309 27.5276
= 1.56 = 2

Ω$ ∈
14.5309

10
6
'0 − 1

)⁄' (,7, ,
27.5276

10
'8
'0 − 1

)⁄' (,7, = [9.5725, 11.0289]



Normalized Butterworth Filter Transfer Functions
For Ωv = 1, we have the transfer functions of the Butterworth Filters in different order N.

N Butterworth Transfer Functions
1 1

s + 1

2 1
𝑠, + 2s + 1

3 1
𝑠, + 𝑠 + 1 𝑠 + 1

4 1
𝑠8 + 0.76536s + 1 𝑠8 + 1.84776𝑠 + 1

5 1
𝑠 + 1 𝑠8 + 0.6180s + 1 𝑠8 + 1.6180𝑠 + 1

https://en.wikipedia.org/wiki/Butterworth_filter#Normalized_Butterworth_polynomials

https://en.wikipedia.org/wiki/Butterworth_filter


• From the Table of the Normalized Butterworth Filter Transfer Functions, 
we know that the 2nd Order Butterworth Lowpass filter with cutoff 
frequency Ω& = 1 is 

• Then, we map the cutoff frequency of this transfer function to Ω& = 10
as 

𝐻23 𝑠 =
1

𝑠. + 2s + 1

𝐻`a 𝑠 =
1

𝑠I + 2s + 1
I
%C %
wL
=

1
𝑠
10

I
+ 2 𝑠

10 + 1
=

100
𝑠I + 10 2s + 100



• Finally, we apply the Bilinear Transformation with 𝑇 = 0.1 to obtain 
𝐻23 𝑧 as

𝐻`a 𝑧 = 𝐻`a 𝑠 I
%CI"

,+bEF
,RbEF

=
100

2
0.1 8

1 − z+,
1 + z+,

I
+ 10 2 8 20.1 8

1 − z+,
1 + z+, + 100

=
1 + 2𝑧+, + 𝑧+I

7.8284 − 6𝑧+, + 2.1716𝑧+I

=
0.1276 + 0.2552𝑧+, + 0.1276𝑧+I

1 − 0.7657𝑧+, + 0.2771𝑧+I



Direct Form Filter Structure Implementation

0.1276

0.1276

0.2552

0.7657

−0.2771

𝑥 𝑛 𝑦 𝑛



Canonical Form Filter Structure Implementation

𝑥 𝑛 𝑦 𝑛
0.1276

0.2552

0.1276

0.7657

−0.2771



Magnitude and phase responses based on 
bilinear transformation



Bilinear Transformation Example 3
• Determine the transfer function 𝐻43 𝑧 of a digital highpass filter 

whose magnitude requirements are 𝜔1 = 0.4𝜋, 𝜔) = 0.6𝜋, 𝑅1 = 8 𝑑𝐵
and 𝐴) = 16 𝑑𝐵. 

• Use the normalized Butterworth lowpass filter and analog to analog 
transformation to the analog highpass transfer function.

• Finally, use Bilinear Transformation method with sampling interval 𝑇 =
0.1 to obtain the 𝐻43 𝑧 .



Example 3 Solution
• Based on the results of the Example 2, we know that 

§ The order of the filter is 2
§ The analog cutoff frequency ΩF = 10
§ From the Table of the Normalized Butterworth Filter Transfer Functions, we know 

that the 2nd Order Butterworth Lowpass filter with cutoff frequency ΩF = 1 is 

• Now, we can apply Analog-to-Analog Transformation to obtain the 
highpass transfer function 𝐻43 𝑠 as 

𝐻`a 𝑠 =
1

𝑠I + 2s + 1

𝐻MN 𝑠 = 𝐻ON 𝑠 X
")P+"

=
1

10
𝑠

8
+ 2 10

𝑠 + 1
=

s8

𝑠8 + 10 2s + 100



• Finally, we apply the Bilinear Transformation with 𝑇 = 0.1 to obtain 𝐻xa 𝑧 as

𝐻xa 𝑧 = 𝐻xa 𝑠 I
%CI"

,+bEF
,RbEFb

=
𝑠I

𝑠I + 10 2s + 100
I
%CI"

,+bEF
,RbEFb

=
0.5110 − 1.0219𝑧+, + 0.5110𝑧+I

1 + 0.7664𝑧+, + 0.2774𝑧+I

=

2
0.1 8

1 − z+,
1 + z+,

I

2
0.1 8

1 − z+,
1 + z+,

I
+ 10 2 8 20.1 8

1 − z+,
1 + z+, + 100

=
1 − 2𝑧+, + 𝑧+I

1.9571 − 1.5𝑧+, + 0.5429𝑧+I



Analog to Analog Transformation

k1

k2

dB

k2

dB

k1
dB

k1

k2

k1

k2

1
unity cut-off

0
k1

Butterworth Prototype Response  

= 20log|H(jΩ)|

0 

Transformed Lowpass Filter Response

k2

dB

𝑠 →
𝑠(Ω9 − Ω:)
𝑠, + Ω:Ω9

𝑠 →
𝑠, + Ω:Ω9

)𝑠(Ω9 − Ω:

𝑠 →
𝑠
Ω$

𝑠 →
Ω$
𝑠

Ω.Ω/ Ω Ω

Ω

ΩΩ

Ω/Ω.

Ω./Ω/ Ω.

Ω,Ω- Ω. Ω/ Ω0 Ω,Ω- Ω1 Ω/ Ω0

Ω0 −Ω1

≠ Ω# −Ω$

dB

-3 dB

-3 dB

-3 dB

-3 dB

-3 dB

Transformed Highpass
Filter Response

Transformed Bandpass    
Filter Response

Transformed
Bandstop
Filter
Response



Digital Frequency Band Transformations



Digital Frequency Band Transformation
• The operations are like that of the bilinear transformation but now the 

mapping is performed only in the z-plane:

𝑧5($ = 𝑇 𝑧($

where 𝑧' and 𝑧 correspond to the lowpass and resultant filters, respectively, and 
𝑇( ) denotes the transformation operator. 

• To ensure the transformed filter to be stable and causal, the unit circle 
of the 𝑧5-plane should map into those of the  z-plane, respectively.



Filter Type Transformation Operator Design Parameter
Lowpass 𝑧S-, =

𝑧-, − 𝑎
1 − 𝑎𝑧-, 𝑎 =

sin
𝜔$2 − 𝜔;

2

sin
𝜔$2 + 𝜔;

2

Highpass 𝑧S-, = −
𝑧-, − 𝑎
1 − 𝑎𝑧-, 𝑎 = −

cos
𝜔$2 + 𝜔;

2

cos
𝜔$2 − 𝜔;

2

Bandpass
𝑧;&' =

𝑧&, − 2𝑎𝑏
𝑏 + 1 𝑧

&' + 𝑏 − 1
𝑏 + 1

𝑏 − 1
𝑏 + 1 𝑧

&, − 2𝑎𝑏
𝑏 + 1 𝑧

&' + 1
𝑎 =

TUV
5+!&5+#

!

TUV
5+!$5+!

!

𝑏 = cot
1+!W1+#

8
tan 1+6

8

Bandstop
𝑧;&' =

𝑧&, − 2𝑎
1 + 𝑏 𝑧

&' + 1 − 𝑏
1 + 𝑏

1 − 𝑏
1 + 𝑏 𝑧

&, − 2𝑎
1 + 𝑏 𝑧

&' + 1
𝑎 =

TUV
5+!&5+#

!

TUV
5+!$5+#

!

𝑏 = cot
1+!-1+#

8
tan 1+6

8

Frequency Band Transformation Operators



Frequency Band Transformation Example
• Determine the transfer function 𝐻 𝑧 of a digital highpass filter whose 

magnitude requirements are 𝜔1 = 0.6𝜋, 𝜔) = 0.4𝜋, 𝑅1 = 8 𝑑𝐵 and 
𝐴) = 16 𝑑𝐵.  

• Use the Butterworth lowpass filter and bilinear transformation in the 
design.



Use the Results of the Bilinear Transformation Example 2

• Determine the transfer function 𝐻23 𝑧 of a digital lowpass filter whose 
magnitude requirements are 𝜔1 = 0.4𝜋, 𝜔) = 0.6𝜋, 𝑅1 = 8 𝑑𝐵 and 
𝐴) = 16 𝑑𝐵. 

• Use the Butterworth lowpass filter and Bilinear Transformation method 
with sampling interval 𝑇 = 0.1 in the design.



Solution
• Using the Example 2 of the Bilinear Transformation, the corresponding 

lowpass digital filter function 𝐻23 𝑧 is :

• Assigning the cutoff frequencies as the midpoints between the 
passband and stopband frequencies, we have

𝜔FX = 𝜔F =
0.4𝜋 + 0.6𝜋

2
= 0.5𝜋

𝐻23 𝑧5 =
0.1276 + 0.2552𝑧5($ + 0.1276𝑧5(.

1 − 0.7657𝑧5($ + 0.2771𝑧5(.



• Using the Table, the corresponding value of a is

𝑎 = −
cos

𝜔FX + 𝜔'
2

cos
𝜔FX − 𝜔'

2
= −

cos 0.5𝜋
cos 0

= 0

which gives the transformation operator:

𝑧5($ = −
𝑧($ − 𝑎
1 − 𝑎𝑧($ = −𝑧($

• As a result, the digital highpass filter transfer function is:

𝐻xa 𝑧 = 𝐻`a 𝑧' I
bXEFC+bEF

=
0.1276 − 0.2552𝑧+, + 0.1276𝑧+I

1 + 0.7657𝑧+, + 0.2771𝑧+I



Magnitude and phase responses based on 
frequency band transformation



Digital Highpass Butterworth Filter to Remove a 
Single Tone from a Signal
• Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz.
• Design a digital highpass filter at 15 Hz to remove the 10 Hz tone and apply it to the signal. 
• It’s recommended to use second-order sections (SOS) format when filtering, to avoid numerical error 

with transfer function (ba) format)


