EE4015 Digital Signal Processing

Mid-Term Exam
Date: 8th November 2022 (Tuesday)

Answer ALL questions:

Question 1 [30 marks]

A discrete-time LTI system with input $x[n]$ and output $y[n]$ is described by the following relationship:

$$
y[n]=3 x[n]+x[n-1]-3 x[n-2]
$$

(a) Is the system memoryless? Justify your answer.
(b) Is the system causal? Justify your answer.
(c) Is the system BIBO stable? Justify your answer.
(d) Compute the impulse response $h[n]$ of the system.
(e) Determine whether the system is an FIR system or an IIR system based on the impulse response $h[n]$. Justify your answer.
(f) Is it a linear-phase system? Justify your answer based on the impulse response.
(g) Compute $y[n]$ when $x[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]$.
(h) Determine and sketch the magnitude response $\left|H\left(e^{j \omega}\right)\right|$ of the system. Based on the amplitude response, determine which type of frequency selective filter (lowpass, highpass, bandpass or bandstop) the system should belong to?

Question 2 [20 marks]

Consider a continuous-time (CT) signal $x(t)$ expressed as

$$
x(t)=2 \cos (30 \pi t)+4 \cos (80 \pi t)
$$

(a) Determine the Nyquist frequency and Nyquist rate of the signal $x(t)$.
(b) Determine the Continuous-Time Fourier Transform (CTFT) $X(j \Omega)$ of the signal $x(t)$.
(c) The signal $x(t)$ is sampled at 50 Hz to become a Discrete-Time signal $x[n]$. Determine the mathematical expression of $x[n]$.
(d) If we use an ideal anti-imaging lowpass reconstruction filter, what is the CT signal $y(t)$ that we can reconstruct from the sampled signal?

Question 3 [30 marks]

A causal LTI system is characterized by the following transfer function $H(z)$:

$$
H(z)=\frac{1-0.24 z^{-1}}{1-0.36 z^{-2}}
$$

(a) Let the system input and output be $x[n]$ and $y[n]$, respectively. Write down the difference equation that relate $x[n]$ and $y[n]$.
(b) Find all pole and zero locations of $H(z)$ and determine the stability of the system based on the region of convergence (ROC).
(c) Based on the pole and zero locations of $H(z)$ to determine whether the inverse system with transfer function of $G(z)=1 / H(z)$ is exist or not. Explain your answer.
(d) Determine the system impulse response $h[n]$.
(e) Compute the system output $y[n]$ when the input is $x[n]=(0.24)^{n} u[n-1]$ using z-transform.
(f) Compute the system frequency response $H\left(e^{j \omega}\right)$ and then determine its magnitude and phase responses.

Question 4 [20 marks]

The impulse response of a LTI discrete-time filter is:

$$
h[n]=\left\{\begin{array}{lc}
\sin ^{2}(\pi(n+1) / 4), & n=0,1,2 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Is the filter linear phase? Explain your answer.
(b) Compute the filter output $y[n]$ when the input is $x[n]=u[n-1]$.
(c) Determine the Discrete Fourier transform (DFT) of $h[n]$.

