EE4015 Digital Signal Processing 2022 Mid-Term Exam Solution

Solution of Question 1

1(a) The difference equation is

$$
y[n]=3 x[n]+x[n-1]-3 x[n-2]
$$

No. The system is not memoryless.
It is because the output at time n depends on input at $n, n-1$, and $n-2$.
[3 marks]
1(b)
This system is causal as its output $y[n]$ depends only the present input $x[n]$ and previous inputs of $x[n-1]$ and $x[n-2]$. It does not depend on future value.
[3 marks]
1(c)
For bounded input $|x[n]|<B_{x}$, the output

$$
|y[n]|=|3 x[n]+x[n-1]-3 x[n-2]|<3 B_{x}+B_{x}+3 B_{x}=7 B_{x}<\infty
$$

Thus, the system is BIBO stable.
[3 marks]
1(d)
According to convolution formula, we can determine the system impulse response $h[n]$ as:

$$
h[n]=3 \delta[n]+\delta[n-1]-3 \delta[n-2]
$$

[3 marks]
1(e)
This is a FIR system because the impulse response $h[n]$ only has three non-zero samples.

$$
h[n]=\{3,1,-3\}
$$

[4 marks]
1(f)
Yes, it is a linear-phase system because its impulse response fulfils the odd negative-symmetric condition.
[4 marks]

1 (g)

$$
\begin{aligned}
& h[n]=3 \delta[n]+\delta[n-1]-3 \delta[n-2]=\{3,1,-3\} \\
& x[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]=\{1,2,3\} \\
y[n]= & x[n] * h[n] \\
& =\{3,7,8,-3,-9\} \\
& =3 \delta[n]+7 \delta[n-1]+8 \delta[n-2]-3 \delta[n-3]-9 \delta[n-4]
\end{aligned}
$$

[6 marks]

1(h)

$$
\begin{gathered}
\left|H\left(e^{j \omega}\right)\right|=\left|\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega}\right|=\left|3+e^{-j \omega}-3 e^{-j 2 \omega}\right| \\
=\left|e^{-j \omega}\left(3 e^{j \omega}+1-3 e^{-j \omega}\right)=\left|e^{-j \omega}\left(1+3 e^{j \omega}-3 e^{-j \omega}\right)\right|\right| \\
=\left|e^{-j \omega}(1+j 6 \sin \omega)\right|=\sqrt{1+36 \sin ^{2} \omega}
\end{gathered}
$$

This is a bandpass filter with center frequency at $\frac{\pi}{2}$

Solution of Question 2

2(a) The frequencies existing in the continuous-time signal $x(t)$ are:

$$
\begin{aligned}
& f_{1}=\frac{\Omega_{1}}{2 \pi}=\frac{30 \pi}{2 \pi}=15 \mathrm{~Hz} \\
& f_{2}=\frac{\Omega_{2}}{2 \pi}=\frac{80 \pi}{2 \pi}=40 \mathrm{~Hz}
\end{aligned}
$$

The maximum frequency of the signal is 40 Hz , then Nyquist frequency is 40 Hz .
[2 marks]
According to the sampling theorem, the Nyquist rate is two times of the Nyquist frequency
The Nyquist rate is 80 Hz
[2 marks]
2(b)

$$
\begin{aligned}
& x(t)=2 \cos (30 \pi t)+4 \cos (80 \pi t) \\
& \quad=2 \cdot \frac{1}{2}\left(e^{j 30 \pi}+e^{-j 30 \pi}\right)+4 \cdot \frac{1}{2}\left(e^{j 80 \pi}+e^{-j 80 \pi}\right) \\
& =\left(e^{j 30 \pi}+e^{-j 30 \pi}\right)+2\left(e^{j 80 \pi}+e^{-j 80 \pi}\right)
\end{aligned}
$$

[3 marks]
We know that $\operatorname{CTFT}\left\{e^{j \Omega}\right\}=\delta(\Omega)$

$$
X(j \Omega)=2 \pi \delta(\Omega-30 \pi)+2 \pi \delta(\Omega+30 \pi)+4 \pi \delta(\Omega-80 \pi)+4 \pi \delta(\Omega+80 \pi)
$$

2(c) $T=\frac{1}{50}$

$$
x(t)=2 \cos (30 \pi t)+4 \cos (80 \pi t)
$$

$$
\begin{aligned}
x[n] & =x(n T)=2 \cos \left(30 \pi \cdot n \frac{1}{50}\right)+4 \cos \left(80 \pi \cdot n \frac{1}{50}\right) \\
& =2 \cos \left(\pi\left(\frac{3}{5}\right) n\right)+4 \cos \left(\pi\left(\frac{8}{5}\right) n\right) \\
& =2 \cos \left(2 \pi\left(\frac{3}{10}\right) n\right)+4 \cos \left(2 \pi\left(\frac{8}{10}\right) n\right) \\
& =2 \cos \left(2 \pi\left(\frac{3}{10}\right) n\right)+4 \cos \left(2 \pi\left(1-\frac{1}{5}\right) n\right) \\
& =2 \cos \left(2 \pi\left(\frac{3}{10}\right) n\right)+4 \cos \left(2 \pi n-2 \pi\left(\frac{1}{5}\right) n\right) \\
& =2 \cos \left(2 \pi\left(\frac{3}{10}\right) n\right)+4\left[\cos (2 \pi n) \cos \left(-2 \pi\left(\frac{1}{5}\right) n\right)-\sin (2 \pi n) \sin \left(-2 \pi\left(\frac{1}{5}\right) n\right)\right] \\
& =2 \cos \left(2 \pi\left(\frac{3}{10}\right) n\right)+4 \cos \left(-2 \pi\left(\frac{1}{5}\right) n\right)
\end{aligned}
$$

$$
=2 \cos \left(2 \pi\left(\frac{3}{10}\right) n\right)+4 \cos \left(2 \pi\left(\frac{1}{5}\right) n\right)
$$

[6 marks]

3(d) It is because only frequency components at 15 Hz and 10 Hz are present in the sampled signal, the CT signal we can recover is

$$
y(t)=\cos (30 \pi t)+4 \cos (20 \pi t)
$$

Which is obviously different from the original signal $x(t)$. The 10 Hz sinusoidal $(\cos (20 \pi t))$ is due to the sampling frequency of 50 Hz is lower than the Nyquist rate of 80 Hz . Thus, aliasing effect is occurred from the sinusoidal of $4 \cos (80 \pi t)$ with frequency of 40 Hz .

Solution of Question 3

3(a)

$$
\begin{aligned}
& \quad H(z)=\frac{Y(z)}{X(z)}=\frac{1-0.24 z^{-1}}{1-0.36 z^{-2}} \\
& =>Y(z)\left[1-0.36 z^{-2}\right]=X(z)\left[1-0.24 z^{-1}\right] \\
& =>y[n]-0.36 y[n-2]=x[n]-0.24 x[n-1] \\
& \Rightarrow y[n]=x[n]-0.24 x[n-1]+0.36 y[n-2]
\end{aligned}
$$

[4 marks]

3(b)

$$
H(z)=\frac{1-0.24 z^{-1}}{1-0.36 z^{-2}}=\frac{z(z-0.24)}{(z-0.6)(z+0.6)}
$$

The poles are located at $z=0.6$ and $z=-0.6$
The zeros are located at $z=0$ and $z=0.24$
[4 marks]
As this system is causal, the ROC is $|z|>0.6$, which include the unit circle in the z-plane. Therefore, the system is stable.
[2 marks]

3(c) As all the poles and zeros of the transfer $H(z)$ are inside the unit circle, the poles and zeros of the inverse system $G(z)=1 / H(z)$ are zeros and poles of the $H(z)$. Therefore, they are also inside the unit circle for causal system. Then, the inverse system stable and exist.

[3 marks]

3(d) The partial fraction expansion for $H(z)$ is

$$
H(z)=\frac{1-0.24 z^{-1}}{1-0.36 z^{-2}}=\frac{0.3}{1-0.6 z^{-1}}+\frac{0.7}{1+0.6 z^{-1}}
$$

Since the system is causal, the ROC is $|z|>0.6$.
Performing inverse z-transform with $|z|>0.6$, we get

$$
h[n]=0.3(0.6)^{n} u[n]+0.7(-0.6)^{n} u[n]
$$

[6 marks]
3(e)

$$
x[n]=0.24^{n} u[n-1]=0.24(0.24)^{n-1} u[n-1]
$$

With the use of time shifting property, we obtain:

$$
X(z)=\frac{0.24 z^{-1}}{1-0.24 z^{-1}}, \quad|z|>0.24
$$

Hence

$$
\begin{aligned}
Y(z)= & H(z) X(z)=\frac{1-0.24 z^{-1}}{\left(1-0.6 z^{-1}\right)\left(1+0.6 z^{-1}\right)} \cdot \frac{0.24 z^{-1}}{1-0.24 z^{-1}} \\
& =\frac{0.24 z^{-1}}{\left(1-0.6 z^{-1}\right)\left(1+0.6 z^{-1}\right)} \\
& =\frac{0.2}{1-0.6 z^{-1}}-\frac{0.2}{1+0.6 z^{-1}}, \quad|z|>0.6
\end{aligned}
$$

Taking the inverse z-transform, we get:

$$
y[n]=0.2(0.6)^{n} u[n]-0.2(-0.6)^{n} u[n]
$$

[2 marks]
3(f)
Since the ROC of $|z|>0.6$ includes the unit circle, the DTFT exists. The DTFT has the form of:

$$
H\left(e^{j \omega}\right)=\frac{1-0.24 e^{-j \omega}}{1-0.36 e^{-j 2 \omega}}
$$

[2 marks]
The squared magnitude is:

$$
H\left(e^{j \omega}\right) H^{*}\left(e^{j \omega}\right)=\frac{1-0.24 e^{-j \omega}}{1-0.36 e^{-j 2 \omega}} \cdot \frac{1-0.24 e^{j \omega}}{1-0.36 e^{j 2 \omega}}=\frac{1.0576-0.48 \cos (\omega)}{1.1296-0.72 \cos (2 \omega)}
$$

Hence, the magnitude is:

$$
\left|H\left(e^{j \omega}\right)\right|=\sqrt{\frac{1.0576-0.48 \cos (\omega)}{1.1296-0.72 \cos (2 \omega)}}
$$

[2 marks]
On the other hand,

$$
H\left(e^{j \omega}\right)=\frac{1-0.24 e^{-j \omega}}{1-0.36 e^{-j 2 \omega}} \cdot\left(\frac{1-0.36 e^{j 2 \omega}}{1-0.36 e^{j 2 \omega}}\right)
$$

The numerator is:

$$
\begin{aligned}
& 1-0.36 e^{j 2 \omega}-0.24 e^{-j \omega}+0.0864 e^{j \omega} \\
& =1-0.36[\cos (2 \omega)+j \sin (2 \omega)]-0.24[\cos (\omega)-j \sin (\omega)]+0.0864[\cos (\omega)+j \sin (\omega)] \\
& =1-0.1536 \cos (\omega)-0.36 \cos (2 \omega)+j[0.3264 \sin (\omega)-0.36 \sin (2 \omega)]
\end{aligned}
$$

Hence

$$
\angle H\left(e^{j \omega}\right)=\tan ^{-1}\left(\frac{0.3264 \sin (\omega)-0.36 \sin (2 \omega)}{1-0.1536 \cos (\omega)-0.36 \cos (2 \omega)}\right)
$$

Solution of Question 4

4.(a)

For $2 \geq n \geq 0$:

$$
h[n]=\left\{\begin{array}{cc}
0.5, & n=0 \\
1, & n=1 \\
0.5, & n=2
\end{array}\right.
$$

As $h[n]$ is positive symmetric, the system is linear phase.
[6 marks]
4.(b)

According to convolution, we get:

$$
\begin{aligned}
& y[n]=h[0] x[n]+h[1] x[n-1]+h[2] x[n-2] \\
= & y[n]=0.5 u[n-1]+u[n-2]+0.5 u[n-3] \\
= & y[n]=0.5 \delta[n-1]+1.5 \delta[n-2]+2 u[n-3]
\end{aligned}
$$

[6 marks]
4.(c)

For $2 \geq k \geq 0$:

$$
H[k]=\sum_{n=0}^{2} h[n] W_{3}^{k n}=0.5+W_{3}^{k}+0.5 W_{3}^{2 k}=0.5+e^{-j \frac{2 \pi}{3} k}+0.5 e^{-j \frac{4 \pi}{3} k}
$$

Hence
$H[0]=2$
$H[1]=-\frac{1}{4}-j \frac{\sqrt{3}}{4}$
$H[2]=-\frac{1}{4}+j \frac{\sqrt{3}}{4}$
As a result,

$$
H[k]=\left\{\begin{array}{cr}
2, & k=0 \\
-\frac{1}{4}-j \frac{\sqrt{3}}{4}, & k=1 \\
-\frac{1}{4}+j \frac{\sqrt{3}}{4}, & k=2 \\
0, & \text { otherwise }
\end{array}\right.
$$

