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ABSTRACT 
Multi-framc motion compensation improves the rate-distortion 
performancc substantially but introduces much higher loading to 
the system. Without considering temporal correlations, 
convcntional singlc-frame block-matching algorithms can bc 
used to search multiple frames in a rather inefficient frame-by- 
framc way. In order to exploit the motion characteristic in long- 
term memory, a multi-frame extension of the wcll-known cross- 
diamond scarch algorithm is proposcd. Unlike thosc algorithms 
that evenly scarch each reference frame, our algorithm adopts a 
novel recent-biased spiral-cross search pattem to sub-sample the 
3-dimensional mcmory space as a whole. This approach 
significantly boosts the efficiency ofthe block-matching process. 
Two new tcchniqucs, starionmy block tracking and multiple 
searchingpaths, are employed to further improve the spced and 
accuracy. As compared to full search, experimental results show 
that our algorithm can reduce up to 99.5% complcxity in terms 
of scarching points while limiting the PSNR loss in 0.04dB. 
Simulations also prove that our algorithm out-performs the 
cross-diamond search and diamond search algorithms in speed 
and accuracy. 

Index terms-Motion estimation, multiple reference frames, 
recent-biased scarch, 3-dimensional scarch, H.264. 

1. INTRODUCTION 
Motion-compensated prediction is a technique to improve 
compression efficiency by referring pixels from reference 
frame(s) to a current frame, and hence reducing residual 
information. The process of finding the reference pixels is called 
motion estimation. One commonly adopted approach for that is 
block-matching algorithm in which frames are divided into a 
number of blocks for matching. A best-matched block is 
searched exhaustively by full search (FS) from reference frame(s) 
within a search range or search window (w)  based on a block 
distortion measure (BDM) such as mean absolute error (MAE), 
sum of absolute differences (SAD) and other'matching criterion. 
The displacemcnt of the best-matched block is then represented 
by a motion vector. 

The benefits of long-term mcmory motion compensated 
prediction (LTMCP) [I] have been emphasized in recent years. 
Consequently, this tool has been adopted by several recent 
standards like H.263+ and H.264iMPEG-4 AVC [2]. As 
continuously dropping the costs of semiconductors, notably 
higher prediction gain can be achieved by estimating more 
reference frames in the memory buffer. Nevertheless, an obvious 
drawback is the complexity will increase proportionally. Extra 
data are also needed to describe the reference indices. These 

make i t  becomes not feasible in most cases, such as low 
bandwidth communication and real-time encoding, particularly 
for software-based implementations. As a result, varioiis 
methods wcrc suggested tackling thcsc problems. In this papcr, 
we focus an  solving the complexity problcm. In gcncral, thc fast 
algorithms of LTMCP can he classiticd into 3 types: I) Partial 
Distorrim - sub-sampling pixels from blocks for faster block 
distortion mcasurement; 11) Searching Point Redrrcrion - sub- 
sampling blocks from the search range for faster search 
convergence; 111) F~ame  Selection - sub-sampling framcs from 
the memory buffcr to climinatc unrclatcd rcfcrcnccs. Bascd on 
real-world motion properties, type I I  algorithms are usually 
superior to othcrs in terms of speed whcrcas thcir accuracy is 
significantly similar. For that reason, they are widely used in 
prc-existing video coding standards such as MPEG-I/2/4 and 
H.2611263. Diamond search (DS) [3][4], cross-diamond search 
(CDS) [ 5 ]  and adaptive rood pattem search (ARPS) [6] are some 
more recent well-known algorithms of this type, but they are 
proposed for single-frame motion estimation only. Directly 
applying them to multiple frames cannot sufficiently exploit the 
temporal correlation in LTMCP. Unfortunately, seldom effort is 
put on extcnding these algorithms. The idea of generalizing these 
algorithms into N dimensions is first suggested in [7] that 
different transformations such as brightness and time can be 
regarded as an additional dimension. In thiS paper, we realize 
this idea by turning the cross-diamond search into 3-dimensional 
(3D) algorithm for LTMCP. A comprehensive analysis of 
motion vector distribution is conducted for multiple refercnce 
frames to support our novel recent-biased search method. A 
comparison of those non-modified methods are made to 
demonstrate the efficiency of our algorithm. 

Format Sequence (100 frames) 

MPEG-4 (A) CIF 
MPEG-4 (B) CIF Silent 
MPEG-4 (C) CIF Stefan, Table 
CIF (352x288) Sales 
SIF (352x240) Football 

Table 1. Image sequcnces uscd for analyses and simulations. 

2. RECENT-BIASED & CENTER-BIASED MOTION 
VECTOR DISTRIBUTION 

The center-biased motion vector distribution has been leading 
the development of fast block-matching motion estimation 
algorithms for a long time. By inspecting the motion statistic, we 
can find out a motion model which can roughly represent the 
real-world motion behaviors. When motion estimation is shifted 

Akiyo, Hall Monitor, Mother& Daughter 
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to multiple refercncc frames, i t  is necessary to create a new 
model and review thc old characteristics. To demonstrate that, an 
analysis of global minimum motion vector distribution is 
conducted on the 8 well-known scquences listed in Table 1. 
They contain various real-world motion contents, such as 
zooming, panning, translation and slight movement. A FS 
schcmc with a search window jwl=16 is applied to 5 reference 
frames to locate the "true" motion vectors. Blocks are matched at 
a fixed 16x16 macroblock size. 

In our experiment, 3 diffcrent shaped areas, square, diamond, 
and cross, arc analyzed and shown in Fig.1. All of them are 
located in the central 5x5 grid (radius /rj=2) of thc scarch 
window. The results are tabulatcd in Table 2. Three motion 
vector distribution characteristics arc observed and summarized 
as follow. 

I .  Motion veetors are biased to the centcr of the search window 
and thc tcmporal distance docs not affect this property. By 
comparing the amount of motion vcctors in the central 5x5 
region with the total amount of full range, we find that around 
60% - 80% motion vectors arc distributcd in thc ccntrd region 
(more condensed when closer to the centcr (0.0)). This behavior 
also exists in a11 reference frames individually. 

I I .  The cross pattern is mom effective to locate a significant 
amount of motion vectors as compared to diamond and square 
patterns. Due to the influence of gravity, most real-world 
motions are along a horizontal or vertical axis. From Table 2, we 
find that the amounts of motion vectors found in the 3 portions 
are very similar, 73.39% for cross, 76.08% for diamond and 
79.3 I% for square. While the difference is relatively small, cross 
portion can save much more searching points than others (Fig.1). 
This effect also dominatcs individual reference framcs. 

111. Motion vectors arc biased to more recent reference frame. It 
is clear that, for instance, translating objects would probably 
leave the search range after a certain time interval. The results 
show that, in general, the amount of motion vectors decreases 
exponentially along the time. For the full range results, about 
50% motion vectors are obtained from the most recent frame F(t- 
I), 20% from the second recent frame F(t-2), 10% from the third 
recent frame F(t-3) and so on. That means the comelation 
between reference frames and the coding frame is decrease by 
time. This behavior is still obvious within the central 5x5 region. 

3. RECENT-BIASED SEARCH 
Based on the above observations, wc propose a fast hlock- 
matching algorithm to fit the motion statistic. In this session, the 
search patterns adopted by our algorithm are described first, and 
the details of our search scheme are presented later. 

3.1. Search Patterns 
As mentioned above, our algorithm is a 3D extension of the 
cross-diamond search [SI. Four improved search patterns are 
shown in Fig.2. In this illustration, thc xy-plane lies along with 
frames and the extra dimension z is the time axis. 

To trace the motion in multiple frames, we need some search 
patterns that are able to move across frames. In Fig. 2(a) and 2@); 
the visualization and search-point configuration of these patterns 
- Small 3-Dimensional Diamond (S3DD) and Large 3- 
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Dimensional Diamond (L3DD) are shown. Their shape is 
symmetrical from any dimensions. A 3D diamond actually 
consists of 3 flat diamonds lying on the center of ry-, y:., and x- 
planes. The white spot in the figure indicates the centcr of the 
patterns. As they can move across frames to reach the minimum 
distortion point in the nearby frames directly, they are morc 
effective to sub-samplc the 3D space. This gives benefits over 
the conventional framc-by-frame approach in which a new 
search is startcd from the window center again for cach reference 
frame. 

-2 +2 

Fig 1. Three different shaped portions 

U 
Square portion (25 pts) 

0 
Diamond portion (13 pts) 

+ 
Cross portian(9 pts) 

within central 5x5 grid 

Motion Vector Distribution (%) 
Ref. Frame Ccnter Cross Diamond Square Full Range 

t-l 31.66 37.89 39.32 41.52 52.73 
t-2 13.49 15.44 16.00 16.32 ' 20.26 
1-3 4.32 5.64 6.00 6.29 8.78 
1-4 9.02 9.78 9.99 10.20 11.60 
1-5 3.87 4.64 4.77 4.99 6.22 

Total 62.37 73.39 76.08 79.31 100.00 

Table 2. This tablc shows the average probability of finding the 
global minimum motion vectors from differcnt portions and 
reference frames where (1) is thc time of coding frame, (1-1) for 
the previous frame and so on. 

V 

P 
I Q 

0 + O  Smll3-Dimnsional O+o ~mUSpiml-Cmss 

0 +* Large 3 - D k n s b n a l  O+o+o ~argeSpkl -Cmss 

Diamond (S3DD) (7 pts) 

DYmnd(UDD) (19pts) 

Fig. 2. 3D search pattems employed in our fast algorithm 



To reduce the complexity introduced by 3D search patterns, we 
need a precise initial guess of possible search directions. Fig. 2(c) 
shows the advanced cross patterns - Small Spiral-Cross (SSC) 
and Largc Spiral-Cross (LSC). These 2 patterns are formed . .  
according to motion properties found in our previous analysis. 
Differcnr sizes of center-biased crosses ~lrI=O.l.2.3) arc chained ,. , . , , . 
together to form a spiral-like shape. The larger side is on the 
most recent reference frame, and vice versa. So, they arc called 
recent-biased spiral-cross. Because of the recent-biased property 
(over 80% motion vectors in most recent 3 ref frames), spiral- 
cross is much more efficient than regular cross for locating the 
search directions. 

3.2. Recent-biased Search Scheme 
Just like many other block-matching algorithms, our method also 
assumes the block distortion error dccreases monotonically 
towards thc global minimum, hut we extcnd this idea to both 
spatial and tcmporal domain. The main difference between the 
receiit-biased search (RBS) and other conventional block- . .  
matching algorithms such as diamond search and cross-diamond 
scarch is that our scope covers the information obtained from 
several reference frames instead of just looking at the local 
statistic. By fitting the motion model we found, the speed and 
prediction accuracy of our algorithm can be boosted. 

From our analysis in Table 2, we know that about 60% blocks 
are stationaly blocks ( ~ 0 ) .  One can rcducc the comvlcxihi . .  
significantly by terminating the search in early stage if such 
blocks are detectcd. Based on this idea. a novel techniaue named 
sralionaty block tracking is proposed. It is incorporateb with the 
SSC panem to determine the existence of stationary blocks. A 
stationary block is found if the following equation is hold 

i=l 

wherc D is the diffusion factor; N is the number of samdes: M. is 
the i-rh minimum block distortion measure (BDM) point of Sic; 
M(xJ is the x-coordinate of M relative tu the search window in . ,  
which ccnter is (0,O); and Th is a thrcshold value. In our 
experiments, we select N=5 and T h o .  In this case, 5 samples are 
taken from the SSC where they are the 1st. 2nd. __. and 5th 
minimum BDM points. Only if ihcy all lie along the z-axis (i.e. 
x=O. ~ 0 ) .  then eauation (1) is hold and the block is assumed to , , I_ ~I 

he stationary. It is very likely that non-stationary blocks would 
have those samplcs diffused apart from the center and biased to 
recent frames, and hence introduce a larger diffision factor. A 
negative threshold value simply means to disable this function. 
Our detection technique makes use of the temporal correlation 
from multi-frames. Here are the detailed steps of the RBS 
scheme. 

L I  

cross (SSC) pattem is aligned tu the center of the search 
window. The BDM values of totally 17 searching points over 
5 reference frames are checked. Stationary block tracking is 
applied (N=5, Th=O). If stationary block is found, set the 
motion vector mv to the minimum BDM point and stop 
searching. Otherwise, go to Step 2. 

Step I :  (Small Spiral-cross Searching) 
The center (white s ~ o t  deoicted in Fie.21 of the small soiral- 
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Step 2: (Large Spiral-cross Searching) 
Again the large spiral-cross (LSC) pattcm is aligned tu the 
center. A minimum BDM point is found from the 29 
scarching points (i.e. check 12 points more). 

A new large 3-dimensional diamond (L3DD) pattem is 
formed with the center located in the minimum BDM point 
found from the previous step. If the new minimum BDM 
point found from the L3DD is in thc center of the pattem (i.e. 
convergence), then go to Step 4. Otherwise, this stcp is 
rcpcatcd. 

With thc minimum BDM point found from the previous stcp 
as the center, a small 3-dimensional diamond (S3DD) pattern 
is formed. ldcntify a minimum BDM point from S3DD and it 
is the final mv. 

Step 3: (Large 3-Dimensional Diamond Searching) 

Step 4: (Small 3-Dimensional Diamond Searching) 

The RBS algorithm has 2 stages. Thc first stage is to locate the 
possible direction and frame location. An early termination may 
occur in Step I to makc a minimum number of 17 searching 
points. Step 2 enlarges the spiral-cross to capture more 
information owing to diffusion of motions. The second stage is 
to get close to the optimal point. A large sampling grid is uscd 
recursively i n  Step 3 for this purpose. In case all surrounding 
points have larger BDM than the center, it probably means we 
reach a sub-optimal point, and so Step 4 converges thc search. 
Note that the center of our search patterns arc restricted within 
the search window, hut part of the surrounding points may move 
outside the window or beyond thc frame buffer, then these 
searching points are ignored. Our algorithm emphasizes the 
speed performance, at the same time, maintains a reasonable 
prediction gain for various motion contents. 

1-5 14 c3 1-2 +I Frames 

Fig. 3. Example of multiple searching paths withp=3. 

An optional amcndment to our algorithm named mzdriple 
searching polhs is also proposed. Since the data volume 
increases with number of reference frames, sub-sampling the 
search range becomes casier to he trapped by a local optimal. 
The purpose of this amendment is to increase the prediction gain 
by initiating multiple searching paths. An example is shown in 
Fig.3, three minimum BDM points, A ,  B and C, are selected from 
LSC (Step 2) instead of one. For each point, a normal 3- 
dimensional diamond search routine (Step 3 & 4) is performed as 
usual. As a result, 3 candidate points, A', B'and C: are obtained 
eventually. Of course, the one with minimum BDM will he the 
final mv. Sometimes, different starting points may lead to the 
same destination. In this case, the complexity growth will he 
very limited due to the overlap of searching paths. The number 
of searching paths p is adjustable to make a tradeoff between 
complexity and prediction gain. 



4. SIMULATION RESULTS 
To demonstrate the pcrformance of RBS, simulations using full 
search (FS), diamond search (DS), cross-diamond search (CDS) 
and RBS (N=5, Th=O, p‘6) arc performed on the luminance 
component of the 8 sequcnces listcd in Table I .  The maximum 
scarch range is set to k 16 pixcls and thc mean absolutc error 
(MAE) is used as the BDM function. The block s ix  is tined at 
16x16. While the number of allowed reference frame is set to 5 ,  
those singlc-frame algorithms will search the reference memory 
frame by frame. Although the simulations are not done within a 
real systcm, the results could still show a relatively precise 
performance comparison and valuable motion analysis. Since the 
purpose of this paper is to dcmanstrate the effectiveness of OUT 
motion model and the recent-biased search scheme, only PSNR 
and searching points are considered. Other evaluations such as 
cost of motion vector and refcrence indices arc out of our scopc, 
but their corresponding schemes and analysis arc alrcady wcll 
documented in [l][2]. 

The experimental results are tabulated in Table 3 by thrcc testing 
criterion - average PSNR per frame (PSNR), average searching 
points per block (Pts) and speed improvement ratio (SIR). It 
shows that thc scarch-point complexity of RBS is always much 
lower than othcr algorithms. In some particular sequences where 
most of the motion is gcntle and smooth, the SIR can be up to 
100 - 200, for cxamplc, 193 for APiyo, 127 for Sales, 124 for 
Silenr and I14 for Hall Monitor. The amazing speed up ratio is 
due to successfully terminating the scarch in early stage by our 
stationary block tracking method. Besides, RBS has higher 
PSNR gain as compared to DS and CDS for all sequences except 
Akiyo, in which RBS only has 0.02dB less than that of DS. 
Undoubtedly, there must be some reduction of PSNR gain when 
comparing a lossy algorithm to FS. However, this reduction is 
relatively small in RBS. For small motion sequences, Akiyo, Hall 
Monitor, Morher & Daughter ond Soles, the reduction is around 
0 - 0.2dB, for medium motion sequence, Football ond Silent, 
around 0.4dB, and for large motion sequences, Stefan and Table, 
around I - 1.6dB. Therefore, our RBS algorithm out-performs 
DS and CDS in terms of accuracy and speed. I t  is excellent for 
video-conferencing application, while for large motion video, a 
satisfactory tradeoff between complexity and prediction gain can 
also be made. 

S. CONCLUSION 
In this paper, a novel recent-biased search algorithm is proposed 
together with an in-depth motion analysis in multiple reference 
frames. Such an analysis will be very useful in developing multi- 
frame motion estimation algorithms for various applications. 
Simulations prove that no matter speed or accuracy our recent- 
biased approach is better than using DS and CDS to evenly 
search multiple frames. By exploiting the motion characteristics 
in spatial and temporal domain simultaneously, up to 99.5% 
computations can he saved while keeping similar PSNR gain as 
compared to FS. This ultra-low complexity algorithm is highly 
suitable for real-time video applications, particularly for 
software-based implementations e.g. video conferencing. A more 
realistic experiment on H.264 reference software will be carried 
out on our next work. 
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RBS 25.92 65.37 74.48 

I Football .-.,.. . .s SIR I PSNR Pts SIR 
FS 43.39 4924.611 1.00 IFS 26.29 4x68~52 1.00 

RBS 39.15 38.76 127.04 
Stefan 

PSNR Pts SIR 
FS 26.61 4924.60 1.00 

~~ 

43.37 63.07 78.08 IDS 25.86 9 5 . 7 ~  ~ ~~~ 

CDS 43.34 46.20 106.60 CDS 25.83 88.45 55.04 I 

RBS 36.15 39.73 123.94 
Table 

PSNR Pts SIR 
FS 29.32 4924.60 1.00 

DS 24.71 104.51 47-12 
CDS 24.63 102.52 48.03 
RBS 24.98 86.00 57.26 

Hall Monitor I Mothcr & Dauehter 
PSNR. Pts SIR I PSNR Pts SIR 

FS 34.70 4924.60 1.00 IFS 40.70 4924.60 1.00 

DS 28.23 107.64 45.75 
CDS 28.12 107.01 46.02 
RBS 28.38 81.53 60.40 

DS 34.59 66.89 13.62 IDS 40.52 74.56 66.05 I 
CDS 34.56 51.25 96.09 CDS 40.49 61.88 79.58 
RBS 34.61 43.10 114.25 IRBS 40.52 58.61 84.02 

Sales I Silent 
PSNR PIS SIR I PSNR Pts SIR 

FS 39.18 4924.611 i.nn IFS 36.53 4924.60 i.nn 
DS 39.14 67.12 73.37 Ins 36.09 74.97 65.68 I 
CDS 39.13 50.57 97.39 CDS 36.02 61.12 80.57 
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