
1

Automating Custom-Precision Function
Evaluation for Embedded Processors

Ray C.C. Cheung, Dong-U Lee*, Oskar Mencer,
Wayne Luk and Peter Y.K. Cheung**Department of Computing, Imperial CollegeElectrical Engineering Department, UCLA*Department of EEE, Imperial College**CASESSeptember 2005

2

Talk outline
1. achievements
2. motivation
3. function evaluations
4. design tool flow
5. error analysis
6. performance evaluation
7. future work
8. summary

3

1. Achievements
• customizable library for floating-point function evaluation based on input integer instruction set
• automatic code generation using high-level Matlabmodel, and optimization for customizing precisions
• evaluation of this method with two elementaryfunctions and Xilinx embedded design kit
• automating the selection of approximation method, polynomial degree for a given function, accuracy requirement and execution time

4

2. Motivation
• embedded systems are usually space and time critical, a dedicated co-processor and a larger memory for instruction are infeasible
• previous work on math co-processor and floating point emulation
• automated code generation for mathematical function library targeting customizable precision (depending on the error requirements)

5

3. Function approximation

S Exp Fraction

x

fp2int

S Exp Fraction

c2 * 2^31

S Exp Fraction

c1 * 2^30

S Exp Fraction

c0 * 2^29

Coefficient generated from MATLAB using symbolic library - Maple

y S Exp Fraction

int2fp

• Polynomial method: approximation with a
single polynomial

6

Rational approximation

S Exp Fractionx fp2int

S Exp Fraction

c1 * 2^31

S Exp Fraction

c0 * 2^30

Generated coefficients

yS Exp Fractionint2fp

S Exp Fraction

d0 * 2^30

S Exp Fraction

d1 * 2^31

Generated coefficients

• Rational method: with two polynomials (same
degree)

7

Range Reduction
• f(x) where x=[a,b]

– (1) range reducing x to a
more convenient interval
y=[a’,b’]

– (2) function approximation
on the reduced interval

– (3) range reconstruction:
expanding the result back
to the original result range

8

Example: Evaluating log(x) input x

Adjust the output exponent

9

4. Design tool flow using Matlab
• technology-independent flow
– use the embedded PowerPC as an example

Integer
processor

instruction set

Select approximation method
and polynomial degree

Matlab

Code optimization and
adaptive datapath correction

Generate code with the best
degree and performance

Compare error and speed
improvement

Embedded
integer processor

C code

IMGen

Function f(x)
Error requirement

10

IMGen – 3 steps
• automation:
– user error requirement � function evaluation
implementation

– select rational / polynomial approximation
– select rational / polynomial degree
– select 32-bit / 64-bit datapath

• generation: using custom precision code
– Add / multiply / divide / shift operations

• optimization: e.g. loop unrolling techniques

11

Code optimization
• code generation optimization example generatedcoefficientadaptivedatapathcorrection

12

Floating-point – fixed-point conversion
• input and output are both floating-point format
• internal computation is transparent to users

13

5. Error analysis
• approximation error (error of approximating a
function, e.g. using minimax)

• quantization error induced by: (1) the multiply-add
datapath, (2) range reconstruction (function
dependent)

• rational approximation has a much lower
approximation error

14

Error analysis example
• quantization error
analysis of degree-
one log(x)

• x(1,31) = 31
fraction bits

• Ed = error accumulated at
signal d

• higher degree �
higher error

x (1,31) C1 (2,30) C0 (3,29)

d (3,29)

y (3,29)

32-bit 32-bit 32-bit

32-bit

32-bit

15

System automation
• input / output via Matlab, remote execution on the
embedded system board

16

Embedded system under test
• use Xilinx ML310 system, XC2VP30 device, with
two embedded PowerPC chips

• can target Xilinx MicroBlaze soft integer processorhardwaretimer

17

6. Performance evaluation
• compare with Xilinx emulated math library

18

Compile time optimization
• study the effect of compiler optimization

19

Polynomial vs. rational
• we measure the bus latency, measure an accurate
speedup factor

20

Performance comparisons

tradeoff between speed and accuracy

21

7. Future work
• code generation for more integer processors
• comparison with floating-point coprocessor
• use better range reduction technique for
software implementation

• use run-time reconfiguration to configure
soft-processors such as MicroBlaze

22

8. Summary
• customizable library for floating-point function evaluation based on input integer instruction set
• automatic code generation using high-level Matlabmodel, and optimization for customizing precisions
• evaluation of this method with two elementaryfunctions and Xilinx embedded design kit
• automating the selection of approximation method, polynomial degree for a given function, accuracy requirement and execution time
• embedded code generator
– cope with speed/code-size/error trade-off

