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1. Achievements
• customizable library for floating-point function evaluation based on input integer instruction set
• automatic code generation using high-level Matlabmodel, and optimization for customizing precisions
• evaluation of this method with two elementaryfunctions and Xilinx embedded design kit
• automating the selection of approximation method, polynomial degree for a given function, accuracy requirement and execution time
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2. Motivation
• embedded systems are usually space and time critical, a dedicated co-processor and a larger memory for instruction are infeasible
• previous work on math co-processor and floating point emulation
• automated code generation for mathematical function library targeting customizable precision (depending on the error requirements)
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3. Function approximation
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• Polynomial method:  approximation with a 
single polynomial
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Rational approximation
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• Rational method: with two polynomials (same 
degree)
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Range Reduction
• f(x) where x=[a,b]

– (1) range reducing x to a 
more convenient interval 
y=[a’,b’]

– (2) function approximation 
on the reduced interval

– (3) range reconstruction: 
expanding the result back 
to the original result range
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Example: Evaluating log(x) input x

Adjust the output exponent
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4. Design tool flow using Matlab
• technology-independent flow
– use the embedded PowerPC as an example

Integer
processor

instruction set

Select approximation method 
and polynomial degree

Matlab

Code optimization and 
adaptive datapath correction

Generate code with the best 
degree and performance

Compare error and speed 
improvement

Embedded
integer processor

C code

IMGen

Function f(x)
Error requirement
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IMGen – 3 steps
• automation: 
– user error requirement � function evaluation 
implementation

– select rational / polynomial approximation
– select rational / polynomial degree
– select 32-bit / 64-bit datapath

• generation: using custom precision code
– Add / multiply / divide / shift operations

• optimization: e.g. loop unrolling techniques
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Code optimization
• code generation optimization example generatedcoefficientadaptivedatapathcorrection
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Floating-point – fixed-point conversion
• input and output are both floating-point format
• internal computation is transparent to users
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5. Error analysis
• approximation error (error of approximating a 
function, e.g. using minimax)

• quantization error induced by: (1) the multiply-add 
datapath, (2) range reconstruction (function 
dependent)

• rational approximation has a much lower 
approximation error
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Error analysis example
• quantization error 
analysis of degree-
one log(x)

• x(1,31) = 31 
fraction bits

• Ed = error accumulated at 
signal d

• higher degree �
higher error 

x (1,31) C1 (2,30) C0 (3,29)
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32-bit 32-bit 32-bit

32-bit

32-bit
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System automation
• input / output via Matlab, remote execution on the 
embedded system board
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Embedded system under test
• use Xilinx ML310 system, XC2VP30 device, with 
two embedded PowerPC chips

• can target Xilinx MicroBlaze soft integer processorhardwaretimer
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6. Performance evaluation
• compare with Xilinx emulated math library
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Compile time optimization 
• study the effect of compiler optimization
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Polynomial vs. rational
• we measure the bus latency, measure an accurate 
speedup factor
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Performance comparisons

tradeoff between speed and accuracy
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7. Future work
• code generation for more integer processors
• comparison with floating-point coprocessor
• use better range reduction technique for 
software implementation

• use run-time reconfiguration to configure 
soft-processors such as MicroBlaze
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8. Summary
• customizable library for floating-point function evaluation based on input integer instruction set
• automatic code generation using high-level Matlabmodel, and optimization for customizing precisions
• evaluation of this method with two elementaryfunctions and Xilinx embedded design kit
• automating the selection of approximation method, polynomial degree for a given function, accuracy requirement and execution time
• embedded code generator
– cope with speed/code-size/error trade-off


