On Optimum Switch Box Designs for 2-D

 FPGASHongbing Fan
University of Victoria, Canada

Jiping Liu, University of Lethbridge, Canada
Yu-Liang Wu and Chak-Chung Cheung
Chinese University of Hong Kong, HongKong

Outline

* Switch box design problem of 2D-FPGA
\& Hyper-univsersal switch box (HUSB)
\& Reduction design method
- Hypergraph model for routing requirement
- Graph models for switch box
- Decomposition theory
\diamond Reduction design scheme
\& Now optimum HUSB designs and verification
* Experimental results on HUSB

Switch box design problem in 2D-FPGA

Design Goal: to find Switch Boxes (SB) with higher routability and fewer switches.

Routability specifications

1. Probability model (by J. Rose and S. Brown): Flexibility, average probability of completing a connection
2. Universal Switch Block (USB)
(by Y.W. Chang, D.F. Wong, C.K. Wong) routable for every set of 2-pin nets routing requirement
3. Hyper-Universal Switch Box (HUSB) : routable for every set of multi-pin nets routing requirement

The differences between HUSB and USB:

* HUSB is a generalization of USB
\& USB is for all 2-pin nets; HUSB is for multi-pin nets
* HUSB $=>$ USB

A 2-pin nets routing requirement

A multi-pin nets routing requirement

(k, w)-HUSB :

the HUSB of k-way and W terminals on each way

routable for every
$(4,4)$-routing
requirement

routable for every (6,3)-routing requirement

Hyper-Universal (ks, w)-Design Problem:

\& For each pair of k and W, to design a (k, w)-HUSB with the minimum number of switches, optimum (k, w)-HUSB
\& $e(k, w)=$ the number of switches in an optimum (k, w)-HUSB.
\& Optimum (k, w)-designs for $k=2,3$ are known.

- $E(2, W)=w$
- $e(3, W)=3 w$
* This paper is aimed for optimum (4, w)-designs.
\& The hard part of the problem is to verify a given design is hyper-universal

Routing Requirement Modeling:

For (4, w)-SB, label the sides 1, 2, 3, 4.

A net < $<>$ a subset of $\{1, \ldots, 4\}$
Routing requirement <=>collection of subsets
Global Routing (GR)

$\{1,2\} \quad\{2,3,4\}$
$\{1,3\}\{1,3,4\}$
$\{1,2\} \quad\{2,3,4\}$
$\{1,3\}\{1,3,4\} \quad\{2,4\}$

Graph Model of Switch Boxes

\& (k, W) - SB <-> graph: terminals as nodes; switch as edges

* A detailed routing <-> a spanning forest

A (4, 3) - HUSB view as a graph

A detailed routing as a spanning forest

Decomposition Theorem

* Minimal BGR (MBGR) : non decomposable 4-way BGR (regular hypergraph with four nodes)
- For a fixed k, there are finite number of k-MBGRs.
Δ Every BGR can be decomposed into the union of MBGRs.
\& $f(k)=$ maximum density of all k-MBGRs.
- $f(4)=3$
- all 4-way MBGRs are obtained

Hyper-universal decomposition theorem

* Let $p(k)$ be the least common multiple of minimal densities of k-MBGRs. Then for each W, there exists r such that $r<f(k)(p(k)-1)+1$ and every (k, W)-BGR can be decomposed into the union of some ($k, p(k)$)-BGRs and a (k, r)-BGR
* $\mathrm{K}_{m, n}$: the complete (m, n)-SB
$\& \mathrm{~K}_{k, p(k)}+\ldots \mathrm{K}+k, p(k)+\mathrm{K}_{k, r}$ is a (k, W)-HUSB
\& when k is fixed, then $e(k, W)=O(W)$

Design scheme for (k, w)-HUSBs

1. Compute the set of all k-MPBGRs.
2. Compute $p(k)$, determine all d_{1}, \ldots, d_{n} such that for each W, there is an d_{j} such that any (k, W)-BGR can be decomposed into a union of some ($k, p(k)$)-BGRs and a (k, d_{j})-BGR.
3. Design $(k, p(k))$-HUSB H($k, p(k))$ and ($\left.k, d_{j}\right)$-HUSB $H\left(k, d_{j}\right)$ for each $j=1, \ldots, n$.
4. $\left(\mathrm{W}-d_{i}\right) / \mathrm{p}(\mathrm{k})(k, p(k))-H U S B s+\left(k, d_{i}\right)-H U S B$

Hyper-Universal (4, W)-Designs

\& $f(4)=3, p(4)=6$

* $e(4, w)>=6 w$
\& To design (4, i)-HUSBs H_{i} for $i=1, \ldots, 7$:
$\& F(4, W)=\left\{\begin{array}{cll}h & H_{6} ' s & \text { if } W=6 h, \\ (h-1) & H_{6} ' s+H_{7} & \text { if } W=6 h+1 \\ h & H_{6} ' s+H_{2} & \text { if } W=6 h+2 \\ h & H_{6} ' s+H_{3} & \text { if } W=6 h+3 \\ h & H_{6} ' s+H_{4} & \text { if } W=6 h+ \\ h & H_{6} ' s+H_{5} & \text { if } W=6 h+5\end{array}\right.$
gives a hyper-universal (4, w)-design.
* If $|F(4, W)|=6 w$, then it is an optimum design.
* With above design, detailed routing at the box can be done in polynomial time.

New hyper-universal (4, W)-design

$$
\begin{aligned}
& \left|E\left(H_{1}\right)\right|=6, \\
& \left|E\left(H_{2}\right)\right|=12, \\
& \left|E\left(H_{3}\right)\right|=18, \\
& \left|E\left(H_{4}\right)\right|=25>24, \\
& \left|E\left(H_{5}\right)\right|=30, \\
& \left|E\left(H_{6}\right)\right|=37>36, \\
& \left|E\left(H_{7}\right)\right|=43>42 . \\
& |F(4, w)|=6.3 w
\end{aligned}
$$

Which are optimum designs

$\left|E\left(H_{1}\right)\right|=6=e(4,1), H_{1}$ is optimum.
$\left|E\left(H_{2}\right)\right|=12=e(4,2), H_{2}$ is optimum.
$\left|E\left(H_{3}\right)\right|=18=e(4,3), H_{3}$ is optimum !
$\left|E\left(H_{4}\right)\right|=25=e(4,4), H_{4}$ is optimum !
$\left|E\left(H_{5}\right)\right|=30=e(4,5), H_{5}$ is optimum !
$\left|E\left(H_{6}\right)\right|=37, H_{6}$ is optimum ? Unknown !
$\left|E\left(H_{7}\right)\right|=43, H_{7}$ is optimum ? Unknown !
$|F(4, w)|=6.3 w, F(4, w)$ is optimum ? Unknown !

The veriffcation of HUSBs

This is the most technical part of the paper:

1. Verification for H_{3}
2. find detailed routings in H_{3} for all $(4,3)$-BGRs formed by the union of 4-way MBGRs
3. Verification for H_{4}
4. show that no (4,4)-SB with 24 switches is hyper-universal
5. find detailed routing in H_{4} for every $(4,4)$-BGRs formed by the union of 4-way MBGRs
6. Verification for H_{5}, H_{6}, H_{7} and $F(4$, w)
7. use decomposition theorems
8. A data base and a detailed routing algorithm

Experiment with HUSBs

* Run "VPR" on FPGAs with a reduced HUSBs
- two switches are deleted from F(4, w) to meet the flexibility requirement $\mathrm{F}_{\mathrm{s}}=3$ for VPR
, use MCNC benchmark circuits
* Compare the number of tracks required to route the circuits on FPGAs with disjoint S-Box (XC4000 type)

Disjoint $(4,11)-S B$

Reduced (4, 11)-HUSBs

Experimental Results

* The H'USB FPGAs use about 10\% less tracks than Disjoint S-box.

Experimental Resulis

Circuit Name	Disjoint	H'USB	
alu4	12	10	
apex2	12	11	
apex4	15	13	
bigkey	8	7	
des	9	8	
diffeq	9	8	
dsip	7	7	
elliptic	11	11	
ex5p	15	13	
misex3	13	12	
seq	12	12	
spla	16	14	
tseng	8	7	
e64	9	8	
Total	156	$141(-9.62 \%)$	

Conc/usion:

1. The graph models and systematic design method for FPAG like configurable switch boxes are presented.
2. Derive a series of new hyper-universal (4, w)-designs including optimum (4, w)-designs for $w=3,4,5$, and a nearly optimum (4, w)-designs for w >=6, 7 .
3. An efficient routability verification is used, which leads to an efficient detailed routing algorithm.
4. The hyper-universal switch box is locally optimal with respect to the routing capability. Experimental shows that the hyper-universal switch box can also improve the global routing capacity.
