Further Improve Circuit Partitioning using GBAW Logic Perturbation Techniques

Ray Chak-Chung Cheung

David Yu-Liang Wu

Department of Computer Science & Engineering

The Chinese University of Hong Kong

David Ihsin Cheng
Ultima Interconnect Technology

Motivation

- Due to design complexity, I/O limitation and some other reasons, a chip is normally partitioned into sub-chips.
- Each sub-circuit consists of modules and nets.
- Our goal is to minimize the connecting wires between partitions with balance constraints.
- An improved partitioning result can be achieved if we consider the logic relationship between modules.

Outline

- Introduction
 - Circuit Partitioning
 - Alternative Wiring
- Application of Alternative Wiring
- GBAW Graph-Based Alternative Wiring
- Circuit Partitioning using GBAW technique
- Experimental Results on Multi-way partitioning
- Conclusion & Future Work

Introduction - Circuit Partitioning

- Objective: Given a circuit is divided into several clusters, such that the interconnecting wires between clusters is minimized with balance constraints.
- There are several applications:
 - Packaging, Synthesis, Optimization, ...

Introduction – Alternative Wiring

- What is Alternative Wire?
 - Add a wire into a circuit
 - Another wire (target wire) becomes redundant
 - Remove target wire.
 - Without changing the circuit functionality.
- 2 Powerful Alternative Wiring Tools
 - RAMBO Automatic Test Pattern Generation (ATPG)-based
 - GBAW Graph-based

Alternative Wiring - Application 1

- Useful in different areas
 - Logic Optimization
 - o final circuit becomes smaller

Alternative Wiring - Application 2

- Circuit Partitioning
 - o the interconnect wire between partitions is reduced from 3 to 2.

(b) No gain for logic synthesis, but gain for partitioning

GBAW

- A graph-based alternative wiring scheme
- Search alternative wire by isomorphism between local sub-networks and the pre-defined patterns.
- Can do both forward and backward search.
- Use Configuration to denote a Boolean network.
- No need of Boolean knowledge.
- Powerful in finding alternative wire and Very Fast!

GBAW – Configuration

- A Boolean network G with its sub-network S. Below shows the mapping from network to configuration.
- Node y define as a triplet (op, d'(y), d'(y))
 - op is the Boolean operator (AND, OR, NAND, NOR)
 - o d(y) is the in-degree of y, $d^+(y)$ is the out-degree of y.
 - (AND, dc, dc) → both fanins or fanouts are also don't care.

0-local pattern

- Bold line → target wire
- Dotted line -> alternative wire
- 0-local means the edge distance between target and alternative wire is 0.

1-local patterns

2-local patterns

Circuit Partitioning – GBAW technique

- Modeling the circuit as graph
- Methods for graph partitioning
 - No change to the graph KL or FM algorithm
 - Modify the graph by replications (more areas)
 - Couples the graph domain (nodes and edges) and the logic domain (function performs by each node)

Circuit Partitioning – GBAW technique

- Our approach
 - Obtain excellent partitioning result from state-ofthe-art HMETIS-Kway.
 - Graph domain choose ANY graph partitioning
 - Choose FM for its simplicity and efficiency.
 - o Proposed by Fiduccia and Mattheyses in 1982.
 - Logic domain only applies GBAW technique
 - Apply GBAW (GP) to search for another better partitioning result → fast and reduce the cut cost
- Key: Even optimum graph partitioning results can still be improved
- Experiments were conducted on 2 to 5 way partitioning on MCNC benchmark circuits.

Overview Flow

15

HMETIS-Kway – state-of-the-art

- Increasing complexity of Physical Design, use multilevel approach to break down the problem size
- Phase 1 Coarsening
 - Merge vertices to form a new vertex
 - Size of new graph / hypergraph reduce fast
- Phase 2 Initial Partitioning
 - Apply k-way partitioning algorithm on a small problem
- Phase 3 Uncoarsening and Refinement Phase
 - Project back to the original graph
 - More degree of freedom in finer graph, refinement scheme is necessary to improve final solution

Multi-level Partitioning – 3 phases

Pre-process the benchmarks

There are totally 26 benchmarks.

Cut wire and Cut cost

- Cut wire is the wire connecting between different partitions.
- Cut cost is the number of partition the hyper-edge connecting with.

Cut wire and Cut cost

- Cut wire is the wire connecting between different partitions
- Cut cost is the number of partition the hyper-edge connecting

Pin gain after rewiring

GP algorithm

Run hMETIS-Kway → a *very good* initial solution heuristically select a cut wire w_t $w_a = \{w' \text{s alt. wires}\}$ by GBAW yes w_a empty? no GP times rewiring Graph Domain improvement (by FM)

22

Alternative wiring statistics of RAMBO and GBAW

Experimental Results

Circuit	HMETIS-Kway			GP		
	Area	#lits	Cut cost	Area	#lits	Cut cost
5xp1	61:71	235	30	73:63	239	28
C2670	516:527	1444	42	517:531	1449	34
C432	119:119	392	44	118:130	402	36
	•••		•••		•••	
C7552	1281:1141	4105	18	1286:1142	4111	18
alu4	428:357	1470	140	438:360	1481	120
des	1727:2112	6655	236	1565:2282	6663	146
rot	441:383	1251	54	442:384	1253	46
Total		45506	1850		45656	1576
Average					+0.33%	-14.48%

Comparison of 2-way partitioning by using hMETIS-Kway & GP

24

Experimental Results by GP

	hMETI	S-Kway	GP		
	#lits	Cut cost	#lits	Cut cost	
2-way	45506	1850	45656 (+0.33%)	1576 (-14.48%)	
3-way	45506	3339	45748 (+0.53%)	2999 (-10.18%)	
4-way	45506	4250	45784 (+0.61%)	3864 (-9.08%)	
5-way	45506	5185	45828 (+0.71%)	4706 (-9.24%)	

Partitioning comparison between hMETIS-Kway & GP

Conclusion & Future Work

- Presented a framework which integrates GBAW to multi-way circuit partitioning.
- We can apply any graph domain partitioner to GP and experimental results showed GP is able to reduce the cutcost over excellent results.
- Future Work
 - Apply GBAW on the timing optimization of FPGA routing and other physical design problems.

The End

Please feel free to ask any question!

Further Improve Circuit Partitioning using GBAW Logic Perturbation Techniques