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Abstract. This paper presents a breakthrough decomposition theorem
on routing topology and its applications in the designing of universal
switch blocks. A switch block of k sides and W terminals on each side is
said to be universal (a (k, W )-USB) if it is routable for every set of 2-pin
nets with channel density at most W . The optimum USB design prob-
lem is to design a (k, W )-USB with the minimum number of switches
for every pair of (k, W ). The problem was originated from designing bet-
ter k sides switch modules for 2D-FPGAs, such as Xilinx XC4000-type
FPGAs, where k ≤ 4. The interests in the generic USBs come from
their potential usages in multi-dimensional and some non-conventional
2D-FPGA architectures, and as an individual switch components. The
optimum (k, W )-USB was solved previously for even W , but left open for
odd W . Our new decomposition theorem states that when W (> k+3−i

3
),

a (k, W ) routing requirement ((k, W )-RR) can be decomposed into one
(k, k+3−i

3
)-RR and 3W−k+i−3

6
(k, 2)-RRs, where 1 ≤ i ≤ 6 and k ≡ i

(mod 6). By this theorem and the previously established reduction de-
sign scheme, the USB design problem is reduced to its minimum kernel
designs, that enables us to design the best approximated (k, W )-USBs for
all odd W . We also run extensive routing experiments using the currently
best known FPGA router VPR, and the MCNC circuits with the con-
ventional disjoint switch blocks and two kinds of universal switch blocks.
The experimental results show that both kinds of USBs consistently im-
prove the entire chip routability by over 6% than the conventional switch
blocks.
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1 Introduction

Switch blocks are critical reconfigurable components in Field Programmable
Gate Arrays (FPGAs); they have great effects on the area and time efficiency
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(a)  (6, 3)−SB (b) a (6, 3)−RR (c) a detailed routing

Fig. 1. Examples of (k, 3)-SBs,(k, 3)-RRs and the corresponding detailed routings.

and routability of FPGA chips. Many kinds of switch blocks have been stud-
ied, designed and used in various kinds of FPGA architectures [3, 2]. We here
consider the (k, W ) switch block ((k, W )-SB for short), in which terminals are
grouped into k sides, each side has W terminals, and non-direct configurable
switches connect pairs of terminals from different sides. The (4, W )-SBs are typ-
ical switch modules used in two dimensional FPGA architectures such as Xilinx
XC4000-type FPGAs [3, 4, 10, 12, 13].

The routability and area efficiency are the foremost two issues in switch block
designs. But the high routability and high area efficiency are two conflicting
goals. It is easy to see that an FPGA with complete switch blocks, namely
having a switch between every pair of terminals from different sides, will have
the highest routability of the same channel density. But it has the lowest area
efficiency and it is impractical when the channel density is high.

To balanced the two goals, Rose and Brown [10] introduced an important
concept called the flexibility, denoted by Fs, which is the maximum number of
switches in a switch block from a terminal to others. They investigated the effects
of flexibility on the global routability, and observed that (4, W )-SBs with Fs = 3
result in a sufficiently high global routability, which is an acceptable tradeoff
between global routability and area efficiency. However, there are various designs
with the same flexibility. This raises the interests of designing switch blocks with
a high routing capacity, a small flexibility and the minimum number of switches.

To achieve high routing capacity, Chang et al. [4] proposed the significant
concept of universal switch modules. A (k, W )-SB is said to be universal (a
(k, W )-USB) if it is routable for every set of nets satisfying the routing constraint,
i.e., the number of nets on each side is at most W . The net used in the definition
of universal switch blocks is actually 2-pin net. Fan et al. [5] generalized the
concept of USB to hyper-universal switch blocks (HUSB) by allowing multi-pin
nets. The main contribution of [5] is the discovery of the decomposition property
and the reduction design scheme for switch block designs.

The first optimum (4, W )-USB was given in [4], called a symmetric switch
module. It has 6W switches with Fs = 3. The symmetric universal switch mod-



144 Hongbing Fan et al.

ules were generalized to genetic symmetric (k, W )-SB in [11]. However, the gen-
eralized symmetric switch blocks are not universal for odd W (≥ 3) when k ≥ 7.
This was firmly proved in [7]. Consequently, the optimum design USB problem
for k ≥ 7 and odd W is still open. This paper continues the investigation on the
unsolved part of the optimum USB design problem.

To avoid ambiguity, we next specify the terms net, detailed routing, and
routing requirement (called global routing in [5]) with respect to a (k, W )-SB.
By a net we mean an indication of two sides of the switch block in which two
terminals should be connected by a switch. A detailed routing of a net is an exact
assignment of a switch whose two terminals are in the sides indicated by the net.
A (k, W )-routing requirement ((k, W )-RR for short) is a set of nets such that
the number of nets that connect each side is no more than W . A detailed routing
of a (k, W )-RR in a (k, W )-SB is an assignment of switches in the switch block
such that each net in the routing requirement corresponds to a switch, and the
switches corresponding to different nets are not incident. For example, Fig. 1(a),
(b), (c) depict a (6, 3)-SB, a (6, 3)-RR, and a detailed routing of (b) in (a). Thus
a (k, W )-SB is universal if it has a detailed routing for every (k, W )-RR. The
optimum USB design problem can be described as: for any given pair of k and
W , design a (k, W )-USB with the minimum number of switches.

The difficulty of the optimum USB design problem is due to the verification
of a design. That is, to prove a (k, W )-SB has a detailed routing for every (k, W )-
RR. The verification involves two subproblems: (a) to generate all testing routing
requirements, and (b) to find a detailed routing algorithm.

In the case of W being even, the two problems were solved precisely by a
strong decomposition property of (k, 2m)-RRs: a (k, 2m)-RR can be decomposed
into m (k, 2)-RRs. Thus a union of m (k, 2)-USBs forms a (k, 2m)-USB, and the
design job is reduced to compute all (k, 2)-RRs and to design a (k, 2)-USB.
All (k, 2)-RRs and optimum (k, 2)-USBs are given in [11, 7], and the union of m
optimum (k, 2)-USBs forms an optimum (k, 2m)-USB. For a (k, 2m)-USB formed
by union of m (k, 2)-USBs, a detailed routing of a (k, 2m)-RR can be easily done
by first decomposing the (k, 2m)-RR into m (k, 2)-RRs and then accommodating
them in the m (k, 2)-USBs. This outlines the so called reduction design scheme.

For odd W , it is known that there is a minimum integer f2(k) such that
a (k, W )-RR can be decomposed into a (k, f2(k))-RR and some (k, 2)-RRs [6];
f2(k) is the maximum value w such that there is a non-decomposable (k, w)-
RR. The value of f2(k) is important in the generation of all (k, W )-RRs and
(k, W )-USB design as well.

In Section 2, we will introduce a breakthrough result on f2(k): f2(k) = k+3−i
3

where k and i satisfy k ≥ 7 and 1 ≤ i ≤ 6 and k ≡ i (mod 6). This result
gives the best decomposition theorem, which makes it possible to generate all
(k, 2m + 1)-RRs, and to design the best approximated (k, 2m + 1)-USBs using
the reduction design scheme.

The routability of 2D-FPGA with USBs was tested in [4]. We further perform
the experimental justification using VPR [1] with the commonly used disjoint
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switch block, the symmetric USB [4] and an alternative USB. The setting and
results are presented in Section 4.

2 The Extreme Decomposition Theorems

We use the combinatorial and graph models to represent routing requirements,
switch blocks and detailed routing as in [5]. For convenience, we describe the
modeling briefly as the following.

We label the sides of a (k, W )-SB by 1, 2, . . . , k, respectively, then a 2-pin
net can be represented as a size 2 subset of {1, 2, . . . , k}. For example, a net
that connects two terminals on sides 1 and 2 can be represented by {1, 2}. A
(k, W )-RR is a collection (multiple set) of size 2 subsets (also called nets) of
{1, 2, . . . , k}, such that each i ∈ {1, 2, . . . , k} is contained in no more than W
subsets in the collection. A (k, W )-SB can be modeled as a graph: represent the
jth terminal on side i by a vertex vi,j and a switch connecting vi,j and vi′,j′

by an edge vi,jvi′,j′ , then a (k, W )-SB corresponds to a k-partite graph G with
vertex partition (V1, . . . , Vk), where Vi = {vi,j |j = 1, . . . , W}, i = 1, . . . , k. We
also call such a graph a (k, W )-SB. Two (k, W )-SBs are isomorphic if there is an
isomorphism which preserves the vertex partitions. A detailed routing of a net
{i, j} can be represented by an edge connecting a vertex in part Vi and a vertex
in part Vj . A detailed routing of a (k, W )-RR in a (k, W )-SB corresponds to a
subgraph consisting of independent edges.

The verification of USBs can be simplified by using formalized routing re-
quirements. First of all, add some singletons (nets of size one) to a (k, W )-RR
such that each element appears W times; called a balanced routing requirement
((k, W )-BRR), or k-way BRR (k-BRR) with density W . Second, pair up the
non-equal singletons until no two different singletons are left; such a BRR is
called a primitive BRR (PBRR). It can be seen that a (k, W )-SB is universal if
and only if it has a detailed routing for every (k, W )-PBRR. We need to compute
all (k, W )-PBRRs.

The decomposition property of PBRRs provides an efficient way to compute
all (k, W )-PBRRs. Let R be a (k, d)-PBRR and R′ be a subset of R. If R′ is
a (k, d′)-PBRR with d′ < d, then we say R′ is a sub-routing requirement of R.
A PBRR is said to be a minimal (PMBRR for short) (or non-decomposable) if
it contains no sub-routing requirement. A (k, W )-PBRRs can be decomposed
into k-PMBRRs, so that, if all k-PMBRRs are known, then we can use them
construct all (k, W )-PBRRs. The following is the fundamental decomposition
theorem.

Theorem 2.1. [6] For any given integer k, the number of k-PMBRRs is finite
and every (k, W )-PBRR can be decomposed into k-PMBRRs with densities at
most f2(k), where f2(k) equals the maximum density of all k-PMBRRs.

The function f2(k) is important in the computation of the complete list of k-
PMBRRs. If we know the value of f2(k), we can at least enumerate all k-PBRRs
with densities no more than f2(k) and check each of them see if it is a k-PMBRR.
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It was known that f2(k) = 1 for k = 1, 2, and f2(k) = 2 for 3 ≤ k ≤ 6 [6], and
f2(k) = 3 for k = 7, 8; and that the complete lists of k-PMBRRs for k ≥ 8. It was
conjectured that f2(k) = k+3−i

3 . This conjecture is proved recently by employing
the graph theory. Let R be a (k, W )-PBRR. Then R corresponds to a W -regular
2-graph with vertex set {1, . . . , k} and edge set R. Note that 2-graphs allow
edges with one vertex. An r-factor of a graph is a spanning regular subgraph of
the graph. So in terms of graph theory, a (k, W )-PMBRR corresponds to a W -
regular 2-graph without proper regular factors. The following result is proved,
the detail is omitted.

Theorem 2.2. A (2r + 1)-regular G has no proper regular factor if and only if
G has a 2-factor free block which is incident to at least (2r + 1) cut edges.

The significance of the theorem is, (a) it gives a characterization for (k, W )-
PMBRRs, which makes it possible to generate all k-PMBRRs efficiently, and (b)
it leads to the following result on f2(k).

Theorem 2.3. Let k ≥ 7 be an integer. Then f2(k) = k+3−i
3 , where 1 ≤ i ≤ 6

and k ≡ i (mod 6).

Proof. f2(k) ≥ k+3−i
3 follows from the examples in [7]. Now we show f2(k) ≤

k+3−i
3 . Let D be the 2-graph of a (k, f2(k))-PMBRR. If D contains singletons

(edge of size one), we transform D into a f2(k)-regular graph R as follows.
Let x be the vertex of D such that {x} is a singleton of D, and let p be the

multiplicity of {x} in D. If p = f2(k), then x is an isolated vertex, delete x from
D; if p = 2m for some m, then add in vertices y, z, and m copies of xy, m copies
of xz, f2(k)−m copies of yz; else we have p = 2m+1 < f2(k), then add in new
vertices y, z, w, and 2m + 1 copies of the edge xy, f2(k)−2m−1

2 copies of yz and
yw, 2m+1 copies of zw. Let R be the graph obtained by the above construction,
then R is minimal for otherwise D would be not minimal. Note that |R| ≤ k+3.

By Theorem 2.2, R has a 2-factor free block C which is incident to at least
f2(k) cut edges. Each such cut edge joins a component of R with at least 3
vertices because R is a f2(k)-regular graph and f2(k) ≥ 3 is odd. It follows that
3f2(k) + |C| ≤ |R| and

f2(k) ≤ |R| − |C|
3

≤ k + 3− 1
3

=
k + 2
3

.

Let k = 6r+i, where r ≥ 1 and 1 ≤ i ≤ 6. Then we have f2(k) ≤ k+2
3 = 6r+i+2

3 =
2r + 1 + i−1

3 . Since 	 i−1
3 
 = 0 and f2(k) is odd, f2(k) ≤ 2r + 1 = k+3−i

3 . ��
As an immediate consequence of Theorem 2.3, we have the following new

extreme decomposition theorem of (k, W )-PBRRs.

Theorem 2.4. Let k ≥ 7 and 1 ≤ i ≤ 6 with i ≡ k (mod 6), and W be odd.
Then the following statements hold:
(i) If W > k+3−i

3 , then every (k, W )-PBRR can be decomposed into a (k, k+3−i
3 )-

PBRR and 3W−k−3+i
6 (k, 2)-PBRRs.

(ii) There are (k, W )-PMBRRs for every W ≤ k+3−i
3 .
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By the above decomposition theorem, we know, when W is odd and W >
k+3−i

3 , the disjoint union of one (k, k+3−i
3 )-USB and 3W−k−3+i

6 (k, 2)-USBs
forms a (k, W )-USB; when W is odd and W ≤ k+3−i

3 , no (k, W )-USB is the
disjoint union of smaller USBs. Therefore by the reduction scheme, for any fixed
k, we need to design the basic (k, r)-USBs for r = 1, 2, 3, 5, . . . , k+3−i

3 . Once these
basic USB has been designed, then we can combine m (k, 2)-USB to obtain a
(k, 2m)-USB, and combine one (k, k+3−i

3 )-USB and 6m−k+i
6 (k, 2)-USBs to ob-

tain a (k, 2m + 1)-USB. The SBs obtained in this way is scalable, and detailed
routing can be done efficiently.

3 The Design Scheme for Basic USBs

The USB design problem has been reduced to the designing of the basic (k, r)-
USBs for r = 1, 2, 3, 5, . . . , k+3−i

3 . Designing the basic USBs is the problem
kernel, and it is a real tough task except for r = 1, 2. The optimum (k, 1)-USB
and (k, 2)-USB were designed in [11, 7]. But for k ≥ 7 and odd r (3 ≤ r ≤ k+3−i

3 ),
no optimum (k, r)-USB is known yet. However, we can design approximated basic
(k, r)-USBs by the following inductive design scheme.

Let U(k, 1) and U(k, 2) be optimum (k, 1)-USB and (k, 2)-USB, respectively.
Construct a (k, 3)-USB U(k, 3) by, first making a copy of U(k, 1) and a U(k, 2),
and then adding some switches between them such that the resulting switch block
is routable for all (k, 3)-PMBRRs. A (k, 5)-USB U(k, 5) can then be constructed
by combining a copy of U(k, 3) and U(k, 2) and adding some switches such
that it is routable for all (k, 5)-PMBRRs. Continue this construction until a
U(k, k+3−i

3 )-USB is constructed.
Note that in the universalbility verification of U(k, r), we only check detailed

routings for (k, r)-PMBRRs, not for all (k, r)-PBRRs. This is because that those
decomposable (k, r)-PBRRs are routable in the union of U(k, r−2) and U(k, 2).

Next we illustrate this method in detail for k = 7. Since f2(7) = 3, we
need only construct a (7, 3)-USB. Denote by U(7, 1)+U(7, 2) the disjoint union
of U(7, 1) and U(7, 2). We next consider adding the minimum number edges
between U(7, 1) and U(7, 2) (called cross edges) so that the resulting graph
Ū(7, 3) is routable for every (7, 3)-PMBRRs. By Theorem 2.2, a (7, 3)-PMBRR
must be isomorphic to the 2-graph shown in Fig. 2(a). Let R be a (7, 3)-PMBRR.
Then to be routable in Ū(7, 3), there is at least one cross edge which will be used
in the detailed routing. We consider a detailed routing of R which uses exact one
of the cross edges. Suppose we use one cross edge to detailed route {i1, i2} and i1
corresponds to a vertex v in U(7, 1). Then we must use three independent edges
in U(7, 1)−{v} to implement three independent pairs in R−{i1, i2}. Therefore,
we should select {i1, i2} in R such that R−{i1} contains three disjoint pairs. It
is easy to see that such a {i1, i2} must be an edge in a triangle of R.

A smallest (in terms of number of edges) graph on seven vertices which will
always contain a triangle edge of any (7, 3)-PMBRR is given in Fig. 2-(b). We call
it a connection pattern. The labels of the vertices and the orientation of edges
in the pattern are arbitrary. A directed edge (i, j) in the pattern corresponds
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Fig. 2. A (7,3)-USB.

to a cross edge joining the i-th side of U(7, 1) and the j-th side of U(7, 2) (the
joining of the cross edge is not unique; it depends on only the label of the sides).
With this pattern, we obtain a (7, 3)-USB Ū(7, 3) as shown in Fig. 2(c).

We next consider the (7, 2h + 1)-USB obtained by combining Ū(7, 3) and
U(7, 2)s. Let Ū(7, 2h+ 1) = Ū(7, 3) +

∑h−1
i=1 U(7, 2).

Note that the number of switches in an optimum (k, W )-USB, denoted by
e2(k, W ), is bounded below by

(
k
2

)
W because there must be at least W switches

between any two sides of a (k, W )-USB.

Theorem 3.1. Let W (≥ 3) be an odd integer, then Ū(7, W ) is a USB with
approximation ratio |E(Ū(7,W ))|

e2(7,W ) ≤ 1 + 6
21W and flexibility Fs = 7.

Proof. By our construction, we see that Ū(7, 3) is a (7, 3)-USB. By Theorem 2.4,
every (7, W )-PBRR can be decomposed into a (7, 3)-PBRR and W−3

2 (7, 2)-
PBRRs. The (7, 3)-PBRR have detailed routing in Ū(7, 3), and each (7, 2)-PBRR
has a detailed routing in one of the W−3

2 U(7, 2). Therefore, Ū(7, W ) is universal.
|E(Ū(7, W ))| = (

7
2

)
W + 6 = 21W + 6 and e2(7, W ) ≥ (

7
2

)
W = 21W . Therefore,

|E(Ū(7,W ))|
e2(7,W ) ≤ 1 + 6

21W . ��

By the above theorem, we see when W is large, the ratio is close to 1. Hence
Ū(7, W ) is nearly optimal whenW is large. Since f2(k) = 3 for k = 8, 9, 10, 11, 12,
therefore, Ū(k, W ) can be constructed similarly for these ks.

Finally we provide an alternative design of k sides switch block which is
routable for every (k, W )-RRs. Let U(k, W ) =

∑�W
2 �

i=1 U(k, 2).

Theorem 3.2. If W is even, the U(k, W ) is an optimum (k, W )-USB. If W
is odd, U(k, W ) is a (k, W + 1)-SB routable for every (k, W )-RRs, and has
approximation ratio |E(U(k,W ))|

e2(k,W ) ≤ 1 + 1
W and flexibility Fs = k − 1.
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Proof. This is clearly true when W is even. For odd W , we need to show that
any (k, W )-RR R is routable in U(k, W ). Let R1 be any (k, 1)-RR and let R′ =
R∪R1. Then R′ is a (k, W +1)-RR. Since W +1 is even, R′ can be decomposed
into W+1

2 = �W
2 � (k, 2)-RRs. Each of these (k, 2)-RRs can be detail-routed in

one U(k, 2), therefore, R′ is routable in U(k, W ). Simply remove the detailed
routing for R1 yields a detailed routing of R in U(k, W ). Therefore, U(k, W ) is
routable for every(k, W )-RR.

If W is even, |E(U(k, W ))| = (
k
2

)
W ; otherwise |E(U(k, W ))| = (

k
2

)
(W + 1).

Therefore, |E(U(k,W ))|
e2(k,W ) ≤ 1 + 1

W . ��

4 Experimental Results

As we can see, USB is defined to have highest local routing capacity. There is no
theoretical proof that USB can lead to a high global routability, however we can
test the routing behavior by experiments. Universal property is an isomorphic
property. Two isomorphic USB designs may have different layouts. The routing
network in FPGA is determined by the settings of each switch blocks. If all switch
blocks use the the same layout, then we have a disjoint grid routing networks.
However, no analytical model for global routing is well-established. Lemieux
and Lewis [8] proposed an analytical framework for overall routings. We use the
probabilistic model [3] and experiment to justify the entire chip routability by
USBs with different layouts.

We adopt the well-known FPGA router VPR [1] for our experiment. The
logic block structure for our VPR runs is set to contain one 4-input LUT and
one flip-flop. The input or output pin of the logic block is able to connect to
any track in the adjacent channels (Fc = W ). Inside the switch box, each input
wire segment can connect to three other output wire segments of other channels
(Fs = 3).

The results in [4] shown a notable improvement on global routability of sym-
metric USB against the disjoint type and antisymmetric type in [10]. Their ex-
periments were done by using the modified CGE router [10] and CGE benchmark
circuits. In our experiment, we conduct a vast experiment on 21 large benchmark
circuits with Disjoint switch-blocks, symmetric USBs and an alternative USBs
of different channel widths.

Fig. 3(a), Fig. 3(b) and Fig. 3(c) show the actual connection of the Disjoint
switch-block, the symmetric USB and the alternative USB of channel width 8.
The alternative (4, 8)-USB is a union of 4 (4, 2)-USBs, which is isomorphic to
the symmetric (4, 8)-USB but has different layout.

Table 1 shows the results on the number of tracks required to route some
larger MCNC benchmark circuits [14] by FPGAs with the three SBs respec-
tively. Overall, the routing results of the symmetric USB and our proposed USB
FPGAs both use about 6% less tracks than that by Disjoint SBs. There is no big
differences between the symmetric USBs and the proposed ones; this indicates
that the global routability depends largely on the topological structures of the
switch blocks rather than their layouts.
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Table 1. Channel widths required for different benchmark circuits FC = W ,
FS = 3.

Disjoint Symmetric USB Alternative USB
alu4 10 10 (-0%) 10 (-8.3%)
apex2 12 11 (-8.3%) 11 (-8.3%)
apex4 13 12 (-7.7%) 13 (-0%)
bigkey 7 7 (-0%) 6 (-14.3%)
clma 13 11 (-15.4%) 12 (-7.7%)
des 8 7 (-12.5%) 7 (-12.5%)
diffeq 8 7 (-12.5%) 7 (-12.5%)
dsip 7 7 (-0%) 7 (-0%)

elliptic 11 10 (-9.1%) 10 (-9.1%)
ex1010 11 10 (-9.1%) 10 (-9.1%)
ex5p 14 13 (-7.1%) 13 (-7.1%)
frisc 13 12 (-7.7%) 12 (-7.7%)

misex3 11 11 (-0%) 11 (-0%)
pdc 17 16 (-5.9%) 16 (-5.9%)
s298 8 7 (-12.5%) 7 (-12.5%)
s38417 8 7 (-12.5%) 8 (-0%)
s38584.1 8 8 (-0%) 8 (-0%)

seq 12 11 (-8.3%) 11 (-8.3%)
spla 14 14 (-0%) 13 (-7.1%)
tseng 7 6 (-14.3%) 6 (-14.3%)
e64 8 8 (-0%) 8 (-0%)
Total 220 205 (-6.8%) 206 (-6.3%)

5 Conclusions

We have addressed the open USB design problems on odd densities. We have
provided an extreme decomposition theorem, reduced the USB design problem
to the basic USB design problem, and outlined an inductive design scheme for
designing the basic USBs. We have shown two types of universal switch blocks
for all (k, W )-RRs. The first are (k, W )-USBs with higher approximation ratio,
but have higher flexibility. The second uses one more track on each side, but with
the minimum flexibility k− 1. Our extensive experimental results further justify
that, under the same hardware cost, the USBs can bring the global routability
improvement of over 6% on the 2-D FPGA entire chip routings.
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