On Optimal Irregular Switch Box Designs

Hongbing Fan, Wilfrid Laurier University, Canada

Yu-Liang Wu, The Chinese University of Hong Kong

Chak-Chung Cheung, Imperial College London

Jiping Liu, University of Lethbridge, Canada

14th International Conference on Field Programmable Logic and Applications, Belgium

Outline

- Optimization metric & switch box model
- Previous work
- Our methodology
- Examples & results
- Conclusions
- Future work

Optimization metric

- Optimzie the area of Switch box (not latency)
 - Fewer channel width, fewer internal switch
- Applications
 - Customised FPGA, SoC designs (various IP cores)
 - Reconfigurable interconnection networks
 - Communication, parallel computing, city planning

Physical implementation -> Model

General switch box model

- A k sided switch box means that terminals are partitioned into k sides
- A switch box is **regular** if all sides have the same number of switches; otherwise it is **irregular**

Previous work

- Regular switch boxes
 - Flexibility, Routability model Rose et al, 1991
 - Universal switch box Chang et al, 1996
 - Hyper-universal switch box Fan et al, 2001
- Irregular switch boxes
 - 3-sided switch boxes Dehon et al, 1999
 - Rectangular switch boxes Wilton et al, 2001
- This paper: general irregular switch box designs
 - For any given channel density, routing capacity

Outline

- Optimization metric & switch box model
- Previous work
- Our methodology
- Examples & results
- Conclusions
- Future work

Defining channel density vector

- $(r_1, ..., r_k) SB$
 - k-sided switch box
 - $\circ r_i$ is the number of terminals on side i
 - \circ (r_1, \ldots, r_k) is called the channel density vector

Decomposing channel density vector

- $(w \times d + c) SB$
 - od density vector, c residual vector
 - **⊙** W integer scaler

$$d = (1,1,2)$$

$$d = (1,1,2)$$

$$d = (1,1,1)$$
 $d = (1,1,1)$

$$c = (0,0,0)$$

$$c = (0,0,0)$$

$$c = (0,1,2)$$

$$c = (0,1,2)$$

$$w = 1$$

$$w = 2$$

$$w = 1$$

$$\mathbf{w} = \mathbf{2}$$

Concept of combining switch boxes

- disjoint union of two switch boxes
- adding two channel density vectors

$$\odot$$
 (2, 1, 2, 1) + (2, 2, 2, 2) \rightarrow (4, 3, 4, 3)

- each switch box
 - accommodates separate routing requirements

Mapping routing requirements to switch box

- A feasible routing for routing requirements $R = [N_1, ..., N_m]$ in an $(r_1, ..., r_k)$ SB
 - \bullet below shows when k = 4, m = 7
 - N₂, N₄ are 3-pin nets, others 2-pin nets

Modeling routing requirement vector

- A net specifies a subset of connected terminals $\{1, \ldots, k\}$
- A net pattern set P consists of the all possible types of nets
- A P-net routing requirement is a collection of nets in set P

A *P*-net routing requirement can be expressed as a vector X satisfying a system of linear Diophantine equations

$$\mathbf{A} \mathbf{X} = (\mathbf{r}_1, \dots, \mathbf{r}_k)^T$$

where A is the connectivity matrix of P

Example of routing requirement vector

Consider a (4, 3, 4, 3)-SB with net pattern set (2-pin nets) $P = [\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1\}, \{2\}, \{3\}, \{4\}]$

The connectivity matrix of P is

A routing requirement (RR) R = {{1, 2}, {3, 4}, {2, 3}, {1, 3}, {1,3}, {1, 4}}

RR vector: X = (1, 2, 1, 1, 0, 1, 0, 0, 0, 0)

$$A X^T = (4, 3, 4, 3)^T$$

Switch box design problems

- A switch box is P-universal if it is routable for every
 P-net routing requirements
 - Universal if P consists of all 2-pin nets
 - Hyper-universal if P contains all possible types
- Switch box design problem
 - given channel density vector and net pattern set P
 - design a P-universal $(r_1, ..., r_k)$ -SB with the minimum number of switches
- Generic switch box design problem
 - given vectors d and c, and net pattern set P
 - design optimal $(w \times d + c)$ -SB for every integer w > 0
- Solve the SB design problem by selecting proper density vector, residual vector, and scaler

Challenges

There are three major problems in SB designs

Solution: 3-step algorithm

- 1) Decompose routing requirement vectors
- 2) route in different switch boxes
- 3) combine disjoint switch boxes

System of Linear Diophantine Equation

- A Diophantine equation is an equation in which only nonnegative integer solutions are considered
 - Example: $1027_{x_1} 712_{x_2} = 1$
- A system of linear Diophantine equation AX = b has
 a finite number of minimal solutions

Main contribution — Divide and Conquer theorem

- The set of minimal solutions of AX = 0 (Hilbert basis) is computed by using existing algorithms
- Theorem: any solution of AX = b can be expressed as the sum of a minimal solution of AX = b and linear combination of Hilbert basis of AX = 0
- The set of routing requirements can be generated efficiently by applying Hilbert basis algorithm

Implication:
Decompose RRV

Proof of theorem

Available upon request

Compute the Hilbert basis

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Compute minimal solutions

$$AX^T - \mathbf{d}^T w = \mathbf{c}^T$$

$$(1, 1, 1, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 1, 1),$$

 $(1, 0, 0, 0, 0, 1, 0, 1), (0, 1, 0, 0, 1, 0, 0, 1),$
 $(0, 0, 0, 1, 1, 1, 0, 2), (0, 0, 1, 1, 0, 0, 0, 1).$

(0, 1, 2, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 2, 0, 1)

General decomposition theorem

- Given: density vector d, residual vector c and net pattern set P
- Output: an integer *p* and a set of integers *D*
 - oany width w > 1, there is an integer q_w in D
 - • every RR for (w d + c)-SB ⇒
 - o one $(q_w d + c) RR$
 - o (w- qw)/p copies of (pd)-RRs
 - o E.g., w = 10, $q_w = 2$, $p = 2 \Rightarrow 4$ copies
- *P*-universal (w d + c)-SB
 - disjoint union of *P*-universal $(q_w d + c)$ -SB
 - $\circ (w q_w)/p$ copies of a P-universal $(p \ d)$ -SB

Design scheme for generic switch boxes

- Input: connectivity matrix A of net pattern set P
 - \diamond find the Hilbert basis B_0 of
 - $AX d^T w = 0$
 - ❖ B of all minimal solutions of
 - $AX d^T w = c^T$
- Determine p and D by the B₀ and B
- Design a P-universal (p d)-SB U₀ and a P-universal (r d + c)-SB U_r for every r in D, called them prime SBs
- 4. For every w > 1, let n be the minimum n such that w-np is in D Then U_{w-np} + nU₀ is a P-universal (w d + c)-SB

Outline

- Optimization metric & switch box model
- Previous work
- Our methodology
- Examples & results
- Conclusions
- Future work

Design example 1: (4, 5, 6) & (5, 6, 7)-HUSB

- Given: Terminal (v) (4,5,6), (5,6,7)
 - Compute (w, w+1, w+2)-HUSB problem

 - Net pattern P = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
 - Solved $p = 2, D = \{1, 2\}$
 - Design (p d)-SB U₀
 - (2, 2, 2)-SB
 - (r d + c)-SB U_r for every r in D
 - (1, 2, 3)-SB, (2, 3, 4)-SB

Design example 2: (w, 2w, w, 2w)-USB

Design optimal (w, 2w, w, 2w)-USBs for every w > 1

Given: density vector d = (1,2,1,2),
 residual vector c = (0,0,0,0) and net pattern set P = [{1,2}, {1,3},{1,4}, {2,3}, {2,4}, {3,4}, {1}, {2}, {3}, {4}]

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- 2. Compute: p and D, we obtain p = 2 and D = {1, 2}
- 3. Design optimal (2,4,2,4)-USB and (1,2,1,2)-USB

Design example 2 – Prime SBs

Optimal (1,2,1,2)-USB U1

Optimal (2,4,2,4)-USB U0

- 4. Output: optimal (w, 2w, w, 2w)-USBs
 - Even w, disjoint union of w/2 copies of U0
 - Odd w, disjoint union of one U1 and (w-1)/2 U0

Design example 2 – Compound SBs

 $w = 3 \Rightarrow U1 + U0$

 $w = 4 \Rightarrow 2 U0$

FPGA Experiments

- Given: design rectangular (w, 2w, w, 2w)-USBs
- Compute: optimal switch boxes with any w
- Output: use "VPR" on 21 MCNC benchmark circuits
- Compare the channel width to route the circuits

Disjoint-like rectangular switch box

Optimal rectangular switch box

Routing result with e64 benchmark

w=6, 2w = 12

Experimental results

Channel width reduction → smaller switch box & smaller FPGA area

	Disjoint-like	Optimal Design		Disjoint-like	Optimal Design
alu4	7	7	ex5p	11	10
apex2	8	8	frisc	10	9
apex4	10	9	misex3	9	8
bigkey	5	5	s298	6	6
$_{ m clma}$	9	9	s38417	6	5
des	6	5	s38584.1	6	6
diffeq	6	6	seq	9	8
dsip	5	5	spla	10	10
elliptic	10	9	tseng	5	5
ex1010	8	7	e64	6	6
Total				152	143 (-6.3%)

Channel densities required for different benchmark circuits

$$Fc = W, Fs = 3$$

Conclusions

- A general divide and conquer design theory and technique for a wide range of switch boxes
- Optimal design: construct by disjoint union of smaller prime switch boxes
- SB designs have linear number of switches and a linear time feasible routing algorithm
- Experiments show the optimal rectangular switch boxes improve of global FPGA routability
- Future work
 - Unidirectional switch boxes
 - Multi-sided switch boxes justification
 - Network-on-a-chip

The End

