On Optimal Irregular Switch Box Designs

Hongbing Fan, Wilfrid Laurier University, Canada

Yu-Liang Wu, The Chinese University of Hong Kong

Chak-Chung Cheung, Imperial College London

Jiping Liu, University of Lethbridge, Canada

14th International Conference on Field Programmable Logic and Applications, Belgium
Outline

- Optimization metric & switch box model
- Previous work
- Our methodology
- Examples & results
- Conclusions
- Future work
Optimization metric

- Optimize the area of Switch box (not latency)
 - Fewer channel width, fewer internal switch
- Applications
 - Customised FPGA, SoC designs (various IP cores)
 - Reconfigurable interconnection networks
 - Communication, parallel computing, city planning
Physical implementation → Model

6 x 5 crossbar

(3, 4, 6) - SB

(4, 2, 4, 2) - SB

(4, 4, 4, 4) - SB (regular)
General switch box model

- A k-sided switch box means that terminals are partitioned into k sides
- A switch box is *regular* if all sides have the same number of switches; otherwise it is *irregular*
Previous work

- Regular switch boxes
 - Flexibility, Routability model – Rose et al, 1991
 - Universal switch box – Chang et al, 1996
 - Hyper-universal switch box - Fan et al, 2001

- Irregular switch boxes
 - 3-sided switch boxes – Dehon et al, 1999
 - Rectangular switch boxes - Wilton et al, 2001

- This paper: general irregular switch box designs
 - For any given channel density, routing capacity
Outline

- Optimization metric & switch box model
- Previous work
- **Our methodology**
- Examples & results
- Conclusions
- Future work
Defining channel density vector

- \((r_1, \ldots, r_k)\) – SB
 - \(k\)-sided switch box
 - \(r_i\) is the number of terminals on side \(i\)
 - \((r_1, \ldots, r_k)\) is called the **channel density vector**

\[(w,w,2w)\)-SB

\[(1,1,2)\)-SB

\[(2,2,4)\)-SB

\[(w,w+1,w+2)\)-SB

\[(1,2,3)\)-SB

\[(2,3,4)\)-SB
Decomposing channel density vector

- \((w \times (d + c)) – SB\)
 - \(d\) - density vector, \(c\) - residual vector
 - \(w\) – integer scaler

\[\begin{align*}
(1,1,2) & - SB \\
(2,2,4) & - SB \\
(1,2,3) & - SB \\
(2,3,4) & - SB
\end{align*} \]

\[\begin{align*}
d & = (1,1,2) \\
c & = (0,0,0) \\
w & = 1 \\
d & = (1,1,2) \\
c & = (0,0,0) \\
w & = 2 \\
d & = (1,1,1) \\
c & = (0,1,2) \\
w & = 1 \\
d & = (1,1,1) \\
c & = (0,1,2) \\
w & = 2
\end{align*} \]
Concept of combining switch boxes

- disjoint union of two switch boxes
- adding two channel density vectors
 - \((2, 1, 2, 1) + (2, 2, 2, 2) \rightarrow (4, 3, 4, 3)\)
- each switch box
 - accommodates separate routing requirements
Mapping routing requirements to switch box

- A feasible routing for routing requirements $R = [N_1, \ldots, N_m]$ in an $(r_1, \ldots, r_k) - SB$
 - below shows when $k = 4, m = 7$
 - N_2, N_4 are 3-pin nets, others 2-pin nets

(a) a $(4, 4, 4, 4) - SB$
(b) a $(4, 4, 4, 4) - RR$
(c) a feasible routing
Modeling routing requirement vector

- A **net** specifies a subset of connected terminals \(\{1, \ldots , k\} \)
- A **net pattern set** \(P \) consists of the all possible types of nets
- A **\(P \)-net routing requirement** is a collection of nets in set \(P \)

A **\(P \)-net routing requirement** can be expressed as a vector \(X \) satisfying a system of linear Diophantine equations

\[
A X = (r_1, \ldots , r_k)^T
\]

where \(A \) is the connectivity matrix of \(P \)
Example of routing requirement vector

Consider a (4, 3, 4, 3)-SB with net pattern set (2-pin nets)

\[P = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1\}, \{2\}, \{3\}, \{4\}\} \]

The connectivity matrix of \(P \) is

\[
A = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

A routing requirement (RR)

\[R = \{\{1, 2\}, \{3, 4\}, \{2, 3\}, \{1, 3\}, \{1,3\}, \{1, 4\}\} \]

RR vector: \(X = (1, 2, 1, 1, 0, 1, 0, 0, 0, 0) \)

\[A \times X^T = (4, 3, 4, 3)^T \]
Switch box design problems

- A switch box is P-universal if it is routable for every P-net routing requirements
 - Universal if P consists of all 2-pin nets
 - Hyper-universal if P contains all possible types

- **Switch box design problem**
 - given channel density vector and net pattern set P
 - design a P-universal (r_1, \ldots, r_k)-SB with the minimum number of switches

- **Generic switch box design problem**
 - given vectors d and c, and net pattern set P
 - design optimal $(w \times d + c)$-SB for every integer $w > 0$

- **Solve the SB design problem by selecting proper density vector, residual vector, and scaler**
Challenges

- There are three major problems in SB designs

- **Problem 1**
 Compute all RR

- **Problem 2**
 Construct the optimal SB

- **Problem 3**
 Find a feasible Routing
Solution: 3-step algorithm

- 1) Decompose routing requirement vectors
- 2) route in different switch boxes
- 3) combine disjoint switch boxes

- density vector \mathbf{d}
- residual vector \mathbf{c}
- scaler \mathbf{w}
- net pattern set \mathbf{P}

- Solve SLDE using existing algorithm
- Apply Decomposition theorem
- Construct compound SB
A Diophantine equation is an equation in which only nonnegative integer solutions are considered

Example: $1027x_1 - 712x_2 = 1$

A system of linear Diophantine equation $AX = b$ has a finite number of minimal solutions
Main contribution – Divide and Conquer theorem

- The set of minimal solutions of $AX = 0$ (Hilbert basis) is computed by using existing algorithms.
- Theorem: any solution of $AX = b$ can be expressed as the sum of a minimal solution of $AX = b$ and linear combination of Hilbert basis of $AX = 0$.
- The set of routing requirements can be generated efficiently by applying Hilbert basis algorithm.

Solution of $AX = b$

- a minimal solution of $AX = b$
- Combination of Hilbert basis

Implication:
Decompose RRV

Proof of theorem
Available upon request.

On Optimal Irregular Switch Box Designs
Compute the Hilbert basis

\[B_0 : \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \]

\[(1, 1, 1, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1, 1, 0, 1), (1, 0, 0, 0, 1, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0, 0, 1, 0) \]

Input: \(AX = 0 \), a system of linear Diophantine equations:

\[\begin{align*}
\mathcal{E} & := \{ \epsilon_1, \ldots, \epsilon_n \}; \\
B & := \emptyset; \\
\text{while } \mathcal{E} \neq \emptyset \text{ do} & \\
& \quad \text{if } (X, \epsilon) \in AX = 0; \\
& \quad \quad \mathcal{B} := \mathcal{B} \cup \{ X, \epsilon \}; \\
& \quad \quad \mathcal{C} := \{ X \in \mathcal{E} \mid \forall S \in B, X \notin S \}; \\
& \quad \quad \mathcal{E} := \{ X + \epsilon \mid X \in \mathcal{C}, (AX', \epsilon') < 0 \}; \\
& \text{end while} \\
\text{Output } B & \end{align*} \]

Compute minimal solutions

\[B : \begin{pmatrix} 0 & 1 & 2 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} c \end{pmatrix} \]

\[(0, 1, 2, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 2, 0, 1) \]
General decomposition theorem

- Given: density vector d, residual vector c and net pattern set P
- Output: an integer p and a set of integers D
 - any width $w > 1$, there is an integer q_w in D
 - every RR for $(w \ d + c)$-SB \Rightarrow
 - one $(q_w \ d + c)$ – RR
 - $(w - q_w)/p$ copies of $(p \ d)$-RRs
 - E.g., $w = 10, q_w = 2, p = 2$ \Rightarrow 4 copies

- P-universal $(w \ d + c)$-SB
 - disjoint union of P-universal $(q_w \ d + c)$-SB
 - $(w - q_w)/p$ copies of a P-universal $(p \ d)$-SB
Design scheme for generic switch boxes

1. Input: connectivity matrix A of net pattern set P
 - find the Hilbert basis B_0 of
 - $AX - d^T w = 0$
 - B of all minimal solutions of
 - $AX - d^T w = c^T$

2. Determine p and D by the B_0 and B

3. Design a P-universal (p, d)-SB U_0 and a P-universal $(r, d + c)$-SB U_r for every r in D, called them prime SBs

4. For every $w > 1$, let n be the minimum n such that $w - np$ is in D Then $U_{w-np} + nU_0$ is a P-universal $(w, d + c)$-SB
Outline

- Optimization metric & switch box model
- Previous work
- Our methodology
- Examples & results
- Conclusions
- Future work
Design example 1: (4, 5, 6) & (5, 6, 7)-HUSB

- **Given:** Terminal (v) (4,5,6), (5,6,7)
- **Compute** (w, w+1, w+2)-HUSB problem
 - d = (1, 1, 1), c = (0, 1, 2)
 - Net pattern P = \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}
 - Solved p = 2, D = \{1, 2\}
- **Design** (p d)-SB U_0
 - (2, 2, 2)-SB
- **(r d + c)-SB** U_r for every r in D
 - (1, 2, 3)-SB, (2, 3, 4)-SB

On Optimal Irregular Switch Box Designs
Design example 2: \((w, 2w, w, 2w)\)-USB

Design optimal \((w, 2w, w, 2w)\)-USBs for every \(w > 1\)

1. Given: density vector \(d = (1,2,1,2)\), residual vector \(c = (0,0,0,0)\) and net pattern set \(P = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1\}, \{2\}, \{3\}, \{4\}\}\)

\[
A = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

2. Compute: \(p\) and \(D\), we obtain \(p = 2\) and \(D = \{1, 2\}\)

3. Design optimal \((2,4,2,4)\)-USB and \((1,2,1,2)\)-USB
Design example 2 – Prime SBs

4. Output: optimal \((w, 2w, w, 2w)\)-USBs
 - Even \(w\), disjoint union of \(w/2\) copies of \(U0\)
 - Odd \(w\), disjoint union of one \(U1\) and \((w-1)/2\) \(U0\)
Design example 2 – Compound SBs

\[w = 3 \Rightarrow U1 + U0 \]

\[w = 4 \Rightarrow 2 U0 \]
FPGA Experiments

- Given: design rectangular \((w, 2w, w, 2w)-USBs\)
- Compute: optimal switch boxes with any \(w\)
- Output: use “VPR” on 21 MCNC benchmark circuits
- Compare the channel width to route the circuits

Disjoint-like rectangular switch box

Optimal rectangular switch box
Routing result with e64 benchmark

$w=6$, $2w = 12$
Experimental results

Channel width reduction → smaller switch box & smaller FPGA area

<table>
<thead>
<tr>
<th></th>
<th>Disjoint-like</th>
<th>Optimal Design</th>
<th>Disjoint-like</th>
<th>Optimal Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>alu4</td>
<td>7</td>
<td>7</td>
<td>ex5p</td>
<td>11</td>
</tr>
<tr>
<td>apex2</td>
<td>8</td>
<td>8</td>
<td>frisc</td>
<td>10</td>
</tr>
<tr>
<td>apex4</td>
<td>10</td>
<td>9</td>
<td>misex3</td>
<td>9</td>
</tr>
<tr>
<td>bigkey</td>
<td>5</td>
<td>5</td>
<td>s298</td>
<td>6</td>
</tr>
<tr>
<td>clma</td>
<td>9</td>
<td>9</td>
<td>s38417</td>
<td>6</td>
</tr>
<tr>
<td>dcs</td>
<td>6</td>
<td>5</td>
<td>s38584.1</td>
<td>6</td>
</tr>
<tr>
<td>diffeq</td>
<td>6</td>
<td>6</td>
<td>seq</td>
<td>9</td>
</tr>
<tr>
<td>dsip</td>
<td>5</td>
<td>5</td>
<td>spla</td>
<td>10</td>
</tr>
<tr>
<td>elliptic</td>
<td>10</td>
<td>9</td>
<td>tseng</td>
<td>5</td>
</tr>
<tr>
<td>ex1010</td>
<td>8</td>
<td>7</td>
<td>e64</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>152</td>
<td>143 (-6.3%)</td>
</tr>
</tbody>
</table>

Channel densities required for different benchmark circuits

\[F_c = W, F_s = 3 \]
Conclusions

- A general divide and conquer design theory and technique for a wide range of switch boxes
- Optimal design: construct by disjoint union of smaller prime switch boxes
- SB designs have linear number of switches and a linear time feasible routing algorithm
- Experiments show the optimal rectangular switch boxes improve of global FPGA routability
- Future work
 - Unidirectional switch boxes
 - Multi-sided switch boxes justification
 - Network-on-a-chip
The End

Thank you for your questions!