
ZIGGURAT-BASED HARDWARE GAUSSIAN RANDOM NUMBER GENERATOR

Guanglie Zhang, Philip H.W. Leong ∗

The Chinese University of Hong Kong,
Shatin, NT Hong Kong

{glzhang, phwl}@cse.cuhk.edu.hk

Dong-U Lee, John D. Villasenor †

University of California,
Los Angeles, USA

{dongu, villa}@icsl.ucla.edu

Ray C.C. Cheung‡, Wayne Luk §

Imperial College London,
London, UK

{r.cheung, w.luk}@ic.ac.uk

ABSTRACT

An architecture and implementation of a high performance
Gaussian random number generator (GRNG) is described.
The GRNG uses the Ziggurat algorithm which divides the
area under the probability density function into three re-
gions (rectangular, wedge and tail). The rejection method
is then used and this amounts to determining whether a ran-
dom point falls into one of the three regions. The vast major-
ity of points lie in the rectangular region and are accepted to
directly produce a random variate. For the non-rectangular
regions, which occur 1.5% of the time, the exponential or
logarithm functions must be computed and an iterative fixed
point operation unit is used. Computation of the rectangular
region is heavily pipelined and a buffering scheme is used
to allow the processing of rectangular regions to continue
to operate in parallel with evaluation of the wedge and tail
computation. The resulting system can generate 168.8 mil-
lion normally distributed random numbers per second on a
Xilinx XC2VP30-6 device.

1. INTRODUCTION

Gaussian random number generators (GRNG) are used in
a large number of computationally intensive modeling and
simulation applications including heat transfer [1], commu-
nications systems [2], and evolutionary programming [3].
Given their importance, there has been surprisingly little re-
search on their efficient hardware implementation. McCol-
lum et al. used a lookup table followed by linear interpola-
tion to compute the inverse cumulative distribution function
in order to generate random variates with arbitrary distri-
bution [4]. Lee et al. [2] proposed using the Box-Muller
algorithm [5] to generate normally distributed random num-
bers. The elementary functions involved in its implementa-
tion are performed using non-uniform piecewise polynomial

∗Research partially supported by the H.K. Government RGC Grant,
Ref. No. CUHK4333/02E
†Research partially supported by the U.S. Office of Naval Research
‡Research partially supported by the Croucher Foundation
§Research partially supported by the U.K. EPSRC Grant, number GR/N

66599 and GR/R 31409

approximation. The Wallace method [6] involves transform-
ing a pool of random numbers to a new pool of random num-
bers. Lee et al. made a hardware implementation of the Wal-
lace method and showed the speed and size advantages over
the Box-Muller method [7].

We propose the Ziggurat method [8] as an efficient al-
gorithm to use in a GRNG. To date, no hardware implemen-
tations of this method have been reported. The Ziggurat al-
gorithm allows fast integer operations to be used to produce
most of its outputs in a single cycle. For a small percentage
of outputs, elementary functions such as the natural loga-
rithm and exponential function need to be computed. These
are implemented using polynomial approximations using an
arithmetic logic unit (ALU) and state machine. The result-
ing system can generate 168.8 million normally distributed
random numbers per second on a Xilinx XC2VP30-6 de-
vice. The key contributions of this paper are:

• We develop a 5-stage pipelined architecture for the
Ziggurat method that combines a single-cycle paral-
lel datapath for the common cases, and a buffered se-
quential ALU supporting elementary function evalua-
tion for the infrequent cases.

• We advocate the Tausworthe uniform random number
generator (URNG) for custom computing machines
that perform simulation since it has strong theoretical
support and better quality than the more commonly
used linear feedback shift register. This paper shows
that the hardware implementation of the Tausworthe
generator is fast and has small area; furthermore, it
has superior performance when evaluated using the
DIEHARD random number test suite.

• We propose an on-chip χ2 test circuit which allows
the distribution of random numbers to be monitored
at runtime. This greatly reduces the bandwidth for
full speed testing of GRNGs and allows continuous
quality checking of the GRNG.

• We demonstrate that, for applications where accurate
modeling of the tails of the Gaussian distribution are
required, our method is smaller and faster than all pre-
viously reported designs (Table 3).

The remainder of this paper is organized as follows. Sec-
tion 2 describes the Ziggurat method for generating Gaus-
sian distributed random numbers. Section 3 provides meth-
ods for evaluating elementary functions using polynomial
approximations. Section 4 presents the architecture of our
random number generator. Section 5 reports results, and
Section 6 draws conclusions.

2. THE ZIGGURAT METHOD

The Ziggurat method uses the rejection method to generate
a random variate from an arbitrary decreasing probability
density function. Our description of the Ziggurat method in
this section follows the notation of Marsaglia [8].

The rejection method for generating a random variate
can be described as follows. Let y = f(x) be a function with
finite area, C be the set of points (x, y) under the curve and
Z be a finite area superset of C, i.e. Z ⊃ C. Random points
(x, y) are taken uniformly from Z until (x, y) ∈ C and x is
returned as the random variate [5, 8]. The density of such
an x will be cf(x), with c a normalizing value that makes
cf(x) a probability density function (i.e.

∫
cf(x)dx = 1).

For a normal distribution, we use f(x) = exp[− x2

2],
x > 0. C is the area under this curve. The distribution is
made two-sided by the introduction of a randomly chosen
sign, and is scaled to ensure unit area as described above. Z
is chosen as the union of n sections, Ri (0 < i ≤ n), made
up of (n−1) rectangles and a bottom strip which tails off to
infinity. The rectangles and bottom strip are chosen so that
they are all of equal area, v and their right-hand edge is de-
noted xi. The leftmost rectangle,R0 is assumed to be empty
and x0 = 0. The following pseudocode describes the com-
plete Ziggurat algorithm (which shows the rectangle, wedge
and tail regions):
01 INITIALIZATION
02 n is the size of the w and k tables.
03 i = 0..n-1 and r = xn−1.
04 w0 = 0.532v/f(r); k0 = b232rf(r)/vc.
05 wi = .532xi; ki = b232(xi−1/xi)c.
06 {fi}, where fi = e−i

2/2.
07 U(0,1) is a uniform random number generator in (0,1).
08 REPEAT
09 Generate a signed random 32-bit integer j.
10 Set index: i← j & (2n − 1). Set x← jwi.
11 IF |j| < ki THEN RETURN x. /* rectangle */
12 IF i = 0 THEN /* tail */
13 DO
14 Generate iid uniform (0,1) variates u1, u2.
15 x← −ln(u1)/r, y ← −ln(u2).
16 WHILE u2 + u2 < u2

1.
17 RETURN x > 0 ? (r + x) : −(r + x).

18 IF (fi + (fi−1 − fi)U(0, 1)) < e−x
2/2 /* wedge */

19 RETURN x.
20 UNTIL FALSE.

The values of xi (i = 1, 2, . . . (n−1)) are needed for the
tables in the hardware implementation and are determined
by equating the area of each of the rectangles with that of the
base region. If this area is v, the equations are as follows:

v = xi[f(xi−1)− f(xi)] = rf(r) +

Z ∞

r
f(x)dx. (1)

In order to determine r, a function z(r) is first defined
as follows:

FUNCTION z(r)
xn−1 = r.
v = rf(r) +

R∞
r
f(x)dx.

FOR i = (n-2) DOWNTO 1
xi = f−1(v/xi+1 + f(xi+1)).

RETURN (v − x1 + x1f(x1)).

The root of z(r) (i.e. the value of r such that z(r) = 0)
is found numerically, e.g. using the bisection method. The
values for the xi are then calculated from r.

The random point is only accepted if it falls under the
pdf curve, otherwise it is rejected. The probability of ac-
cepting a point, Paccept is given by:

Paccept = area(C)/area(Z) =

R∞
−∞ e−x

2/2dx

2vn
. (2)

Finally, the probability that a point is not drawn from a
rectangular region, Pnrect (i.e. it is a wedge, tail or rejected)
can be calculated as follows:

Pnrect = 1− area(rect)/area(Z)

=

n−2X

i=1

xi(f(xi)− f(xi+1)) + xn−1f(xn−1) (3)

3. ELEMENTARY FUNCTION EVALUATION

The fast and accurate computation of elementary functions
are necessary for an efficient implementation of the Ziggurat
method. In order to achieve high accuracy using minimal
resources, polynomial approximations are used.

We consider the exponential and logarithm functions re-
quired in the Ziggurat algorithm and describe their imple-
mentation using polynomial evaluation as proposed in [9]
for single precision floating point. A general polynomial
Pn(x) can be written as Pn(x) = Cnx

n + Cn−1x
n−1 +

· · ·+ C1x+ C0 =
∑n
i=0 Cix

i where n is the degree of the
polynomial, andCi is the coefficient of the ith term. A func-
tion is approximated over a specified input interval [a, b]. If
the input values are outside this interval, range reduction is
employed. Thus the process for computing the exponential
or logarithm function involves three steps: the reduction of
the given argument X to a related argument x in a inter-
val [a, b], the computation of the exponential for the reduced
argument x, and the reconstruction of the desired function
from its components. For the methods described below, the
peak relative errors are 7.6 × 10−8 and 7.1 × 10−8 for the
exponential and logarithm functions respectively if all the
computations are done in single precision floating point [9].

In our implementation, we use 36 bits accumulators and
18×18 bits multipliers. The format of the two’s complement
fixed point fractions used as inputs to the multipliers are 3
integer bits and 15 fractional and the peak relative error is
2−15 for both the exponential and logarithm functions.

The range reduction for the exponential function is ac-
complished by the identities eX = 2kex = ekln2ex =
ex+kln2. An integer k is found such that the fraction x is
within a specified interval. Then X = x + kln2. As x is
restricted to the interval −0.5ln2 ≤ x ≤ +0.5ln2, k can
be calculated by k = bxlog2e + 0.5c where b c represents
the integer truncation function which returns the largest in-
teger that is less than or equal to its argument. Following
range reduction, the exponential function for reduced ar-
gument x is computed according to the following formula
(x ∈ [− ln2

2 ,
ln2
2]).

ex ≈ (1.9875691500 · 10−4x5 + 1.3981999507 · 10−3x4

+8.3334519073 · 10−3x3 + 4.1665795894 · 10−2x2

+1.6666665459 · 10−1x+ 5.0000001201 · 10−1)x2 + x+ 1.0
(4)

To evaluate the natural logarithm of a given argumentX ,
the range reduction for the reduced argument x is computed
using the identities

lnX = ln(2kx) = lnx+ ln2k = lnx+ kln2. (5)

We first find the k such that X = 2kx and x in the range
[0.5, 1). This is done by using a left shifter to find the first set
bit in X . The logarithm function for the reduced argument
x is then computed by the function approximation.

4. ARCHITECTURE

The Z used in the Ziggurat algorithm is designed so that
random points falling in the rectangular region occur the
vast majority of the time. Computation in these cases is ex-
tremely fast. For a small percentage of situations (1.5% for
n = 256 as calculated from 3), wedge and tail region accep-
tance must be handled and the computation of elementary
functions is necessary. Fig. 1 is a block diagram showing
the main components of the GRNG. We use a pipelined dat-
apath (stage 1-3) to compute the rectangular regions and an
iterative operation unit (OU) is used to handle the wedge
and tail regions. First-in-first-out (FIFO) buffers are used so
that a number of wedge/tail computations can be queued for
processing by the operation unit while new random numbers
from rectangular regions are being generated. An optional
histogram unit (HU) allows full speed testing of the design
and can be used to apply a χ2 test. The HU allows the qual-
ity of the GRNG to be continuously monitored.
Tausworthe Random number Generator. Linear feed-
back shift registers (LFSR) are often used to generate uni-
form random numbers in hardware. While traditional LF-
SRs are sufficient for many purposes, the Tausworthe ran-
dom number generator offers slightly superior randomness
with modest hardware cost, so is preferable for applications
such as ours in which extremely stringent noise quality stan-
dards are being applied [5, 10]. The Tausworthe URNG
combines three LFSR based random number generators to

�����������

	
�

�
��

�

�������

�����

��������

����

��������	��

�����������

����������

���
�
	��

����������	��

� !

���
"

�

���
#

$����%���

������

&���'����

	��
(��

�����	
��

�������

�'�)��

*������+���

��

&���,

 ��%���

 ��%��#

 ��%��"

 ��%��-

 ��%��. ".

"/

"/

"#"#�0�0

"/

"#

0

�0

"#

Fig. 1. Block diagram showing the architecture of the
GRNG with optional on-chip test module. Horizontal
dashed lines indicate pipeline registers and the bit-width of
each bus is also shown.

obtain improved statistical properties. A generator with pe-
riod length≈ 288 is given in [10]. Fig. 4 shows the hardware
implementation of the Tausworthe RNG.
Rectangular Region Datapath and FIFOs. In pseudocode
(line 13-15), it generates a random point and decides whether
or not it is in the rectangular region. The computation in-
volves a multiplication to get x and comparison of |j| with
ki. If the condition is true, the (otherwise unused) most sig-
nificant bit (MSB) of x is set and x is written to the rect-
angular region output (FIFO1). This datapath should be
made very efficient for the high acceptance rate of x. Our
pipelined design is shown in Fig. 1.

When the condition is false, the random point may cor-
respond to a wedge or tail. Then a marker with the MSB
being reset is written to FIFO1, and the value x is written to
FIFO2 which connects the rectangular region datapath with
the OU. This buffering serves to decouple the computation
of the rectangular regions, either a Gaussian random number
or a marker indicating a wedge/tail is written to FIFO1 every
clock cycle (unless it becomes full). The OU is responsible
for processing inputs received via FIFO2 and must write its
outputs to FIFO3. When the random point x is from the
tail region or accepted by the wedge region, the MSB of the
value is also set and write to FIFO3.

������

����

		�
 ����

����

������

���

		�� ���

����

������

���

		�� ����

����

����� ����� �����

�������������

Fig. 2. Architecture of Tausworthe URNG

When an output is read from the GRNG, a number is
read from FIFO1 and its MSB is used to control a multi-
plexer. If the MSB is set, the value from FIFO1 is used,
otherwise a read from FIFO3 is returned. Meanwhile, if
the MSB of the data from FIFO3 is set, the ultimate out-
put is valid random number, otherwise, it is a rejected trial
for which no valid random number is generated (the proba-
bility of this occurring will be discussed in Section 5). Note
that the MSB is used as a marker and does not form part of
the random number.

Operation Unit (OU). The block diagram of the operation
unit is shown in Fig. 4. It is organized as a register file and
an ALU which includes two adders and a multiplier. In ad-
dition, a ROM, used to store polynomial coefficients to com-
pute the elementary functions ln and exp is used. The OU
is sequenced via a hardwired finite state machine.

���

���

���

���	

���	���

����	��

�

�

�

������������

��	���	��
��	�

������

��������

�	�	

�����

�����
�
���

�
�

�

�
�

���	�

�	�	�

Fig. 3. Architecture of Operation Unit

Polynomial Evaluation. The OU must compute the ln and
exp functions in lines 19 and 22 of the Ziggurat pseudocode
respectively. This turns out to be the most computationally
expensive part of the Ziggurat algorithm, but fortunately,
since these correspond to the wedge and tail regions which
occur with much lower probability than the rectangular re-
gions, the speed with which one must compute these ele-
mentary functions is not so critical. As an example, for

n = 256, as used in our implementation, the combined prob-
ability of a wedge, tail or the sample being rejected is 1.5%
(3) and so, the speed for these sections need only be 1.5% of
the speed for a rectangular region.

The direct evaluation of a polynomial involves evaluat-
ing each monomial CiXi individually. This takes i mul-
tiplications for each monomial and n additions, resulting
in n(n + 1)/2 multiplications for a polynomial of degree
n. Horner’s rule [11], as typically used in both software
and hardware implementations, achieves better numerically
stability and efficiency by factoring the terms as: Pn(x) =
(((Cnx+Cn−1)x+Cn−2)+ · · ·+C1)x+C0. Computation
starts from the innermost parentheses using the coefficients
of the highest degree monomials and works outwards.

Control Logic with State Machine. We use a finite state
machine to implement the control logic. One-hot encoding
is employed to maximize speed and minimize implementa-
tion area [12]. The state machine begins at “S Start” and
first waits for the REQ signal which corresponds to FIFO2
being non-empty. When the REQ signal is valid, the state
machine makes a choice among the different state sequences
for wedge and tail regions according to whether the INDEX
signal is 1 or 0 respectively. The state machine generates
the address of the coefficients ROM, read and write sig-
nals for the register file and the select signal for the mul-
tiplexor. In the case of a wedge (lines 22-23 in pseudocode),
the function e−x

2/2 is evaluated in the “S EXP” state and
compared with fi + [fi−1− fi]×U in the “S Wedge” state.
If INDEX= 0, we evaluate a tail region (lines 16-21 in
pseudocode). The state machine will calculate the two loga-
rithms and do the comparison in the “S LOG” and “S Tail”
states respectively. Output from the wedge or tail computa-
tions is written to FIFO3 in the “S End” state. After this op-
eration, the state machine will settle in the “S NULL” state
to wait for another REQ signal to “S Start” and for the next
wedge or tail region.

In the histogram unit, the initial values of the RAM are
all zero. The higher order bits of the GRNG output form the
address of a dual-port RAM and the location corresponding
to the generated output is incremented. The other port of the
dual-port RAM can be used to access the histogram without
interrupting the operation of the GRNG.

5. RESULTS

An implementation of the architecture described in Section 4
with n = 256 is made on a Xilinx Virtex-II Pro XC2VP30-
6FF896C FPGA [12] and all results in this section are for
this part unless otherwise specified. In order to achieve high
performance, some special on-chip features of the Virtex-II
FPGA are used, in particular, the SRL16 shift registers, de-
lay locked loop (DLL), dedicated 18×18 hardware multipli-
ers and dual-port Block SelectRAM+ resources. The design

is written in VHDL and synthesized using Synplify Pro 7.3.
Place and route is performed using the Xilinx ISE 6.2i.

In the subsections that follow, we will first compare the
Tausworthe URNG and an LFSR-based URNG in terms of
area utilization and the quality of the generated random num-
bers. We then describe an implementation of the GRNG
on an FPGA, discuss its performance and compare it with
previously published Box-Muller and Wallace implementa-
tions. In the last subsection, we present some statistical tests
for the GRNG.
Tausworthe URNG. We compared the Tausworthe URNG
with a maximum length LFSR-based URNG. The LFSR used
was the primitive pentanomial x88+x87+x17+x16+1 over
GF (2) and a random initial state. The 32-bit Tausworthe
uniform random number generator uses 64 slices and can
operate above 300 MHz. The 88 tap LFSR can be imple-
mented in 3.5 slices since each slice can implement a 34-bit
shift register and an extra lookup table is required to com-
pute the feedback [12]. 32 of these are required to have a
parallel 32-bit output so the resource utilization of the LFSR
is 112 slices.

It is not possible to prove a sequence is random. How-
ever, the DIEHARD test developed by Marsaglia [13] is
widely considered to be one of the most stringent URNG
tests. Although the DIEHARD test suite is one of the most
comprehensive publically available sets of randomness tests,
unfortunately there are no well-defined pass criteria. Intel
calculated that the entire 250 test suite passes with a 95%
confidence interval for P-values between 0.0001 and 0.9999
[14], and this method is used for our testing.

The two outputs of URNGs are compared with DIEHARD.
Results are shown in Table 1 with failed tests shown in bold.
As can be seen, the Tausworthe generator passes all tests
whereas the LFSR fails the minimum distance test.
Gaussian Random Number Generator (GRNG). In the
GRNG implementation, n = 256 is used. A single dual-
port 512 × 36 bits block SelectRAM+ is used to store both
w and k arrays, each being 256 entries in size.

The GRNG produces 35-bit outputs and 32-bit values
are maintained in the rectangular region datapath for all op-
erations except the multiplier which takes 18 × 18 inputs
and produces a 36-bit result. Similarly, the OU’s datapath is
36-bits except for the inputs to the multiplier which are 18-
bits. The data width and size of the major blocks used in the
datapath of the GRNG are summarized in Fig. 1. Place and
route results from the CAD tools, showing maximum clock
frequency and resource utilisation are given in Table 2 .

The random point generated in the rejection method is
accepted with probability of Paccept (Equation 2) which is
0.993 for n = 256. In the case that the cycle results in the
point being rejected, no output is produced. The throughput
of the implementation, can thus be calculated by:

MaxThroughput = fCLK × Paccept

Table 1. DIEHARD test results for Tausworthe and LFSR
URNGs. (Failed tests in bold)

TEST Tausworthe LFSR
Birthday 0.908125 0.718022
OPERM5 0.659361 0.894649

Binary Rank (31× 31) 0.782536 0.894649
Binary Rank (32× 32) 0.357046 0.768956

Binary Rank (6× 8) 0.324027 0.261791
Bitstream 0.598578 0.443253

OPSO 0.431957 0.571626
OQSO 0.492004 0.559064
DNA 0.432068 0.525910

Stream Count-the-1 0.459779 0.564513
Byte Count-the-1 0.609182 0.560009

Parking Lot 0.941697 0.460448
Minimum Distance 0.337831 0.999999

3D Spheres 0.952286 0.634016
Squeeze 0.113189 0.855206

Overlapping Sums 0.139815 0.717343
Runs Up 0.555513 0.575984

Runs Down 0.253845 0.552341
Craps 0.395120 0.841941

Table 2. Implementation results for GRNG on XC2VP30-6
and XC3S200-4 FPGAs.

XC2VP30-6 XC3S200-4
SLICEs 880 out of 13,696 (6%) 908 out of 1,920 (47%)
Block RAMs 5 out of 136 (2%) 4 out of 12 (33%)
MULT18X18s 2 out of 136 (13%) 2 out of 12 (16%)
DCMs 1 out of 8 (12%) 1 out of 4 (25%)
Period of “CLK” 5.88ns (170MHz) 6.106ns (163.8MHz)
Period of “CLK2” 11.76ns (85MHz) 12.21ns (81.9MHz)

Our implementation shows 170 M × 0.993 which is
168.8 million samples / second. It is possible that the dis-
tribution of random numbers causes several wedge and tail
requests to be queued in the OU, and the GRNG will stall
waiting for an output of the OU. Our simulations show that
this effect occurs infrequently enough that it does not sig-
nificantly affect the throughput of the implementation since
there are only 50 stalled cycles during 109 cycles of simula-
tion. We envisage that most applications would not be able
to process data at this rate and this will result in even fewer
stalled cycles.

To make a fair comparison, the design is retargeted for
a Virtex-II XC2V4000-6 device using the same 170 MHz
target frequency. Table 3 shows a comparison between the
Ziggurat design, Wallace [7] and Box-Muller [2] designs for
both hardware and software designs. It can be seen that the
Ziggurat implementation uses less resources and is faster
than the other two implementations. One drawback of the
Wallace design is the use of previously generated random
numbers, leading to poor distributions in those regions [15].
The Ziggurat method does not suffer from this effect.

In order to find out how small of a device can imple-
ment our design, an XC3S200, the second smallest device

Table 3. Comparisons of different noise generators implemented on XC2V4000-6 (one sample noise is generated in every
clock cycle) and the software implementations using P4-2GHz.

Ziggurat Wallace [7] Box-Muller [2] Ziggurat [15] Wallace [15] Box-Muller [15]
Clock 168MHz 155MHz 133MHz 2GHz 2GHz 2GHz
SLICEs 891 770 2514 - - -
Block RAMs 4 6 2 - - -
MULT18X18s 2 4 8 - - -
Throughput (M/sec) 168 155 133 16.1 52.6 3.6

in Spartan-3 FPGA family, is fitted in. The implementation
results are shown in Table 2. As the maximal frequency
of implementation is 163.8 MHz, the throughput can reach
162.6 million samples / second in this case.
Quality of GRNG’s Random Numbers. In order to check
the distribution of the random numbers generated by our
design, we apply the chi-square (χ2) goodness-of-fit test
[16, 17]. The chi-square test determines if the sample under
analysis is drawn from a population that follows the speci-
fied Gaussian distribution. For the χ2 test computation, the
data are divided into k bins and the test statistic is defined as:
χ2 =

∑k
i=1

(Oi−Ei)2

Ei
where Oi is the observed frequency

for bin i and Ei is the expected frequency for bin i. The
expected frequency can be calculated by the probability pi
that each observation falls into the category i and the to-
tal number of observations t. So the expected frequency is
Ei = tpi. We generate 1 billion (109) normal random num-
bers with our hardware design and test them using the χ2

test based on 512 bins spaced uniformly over [−8, 8]. The
χ2

511 statistic is 422.539. For a 95% level of confidence,
the critical value is 565, showing that our hardware Ziggu-
rat design produces good quality results. If y1 and y2 are
normally distributed random numbers, e−(y2

1+y2
2)/2 should

be uniformly distributed in (0,1). This transformation is ap-
plied and the DIEHARD test runs. The resulting samples
pass all the DIEHARD test.

6. CONCLUSION

An architecture for a hardware Gaussian random number
generator which can generate 168.8 million random num-
bers per second is described. The Ziggurat algorithm com-
bines a high speed parallel datapath for the common rect-
angular region case and a sequential circuit for the infre-
quent wedge and tail regions. The resulting implementation
is compact, fast and generates high quality Gaussian ran-
dom numbers with correct distribution in the tails. Future
work includes automating selection of the best method for
elementary function evaluation, and retargeting the design
for different FPGAs.

7. REFERENCES

[1] M. Gokhale, J. Frigo, C. Ahrens, J. Tripp, and R. Minnich,
“Monte Carlo radiative heat transfer simulation on a Recon-

figurable Computer,” in Proc. Field Programmable Logic and
Applications, vol. LNCS 3203. Springer, 2004, pp. 95–104.

[2] D. Lee, W. Luk, J. Villasenor, and P. Cheung, “A Gaus-
sian noise generator for hardware-based simulations,” IEEE
Trans. on Computers, vol. 53, no. 12, pp. 1523–1534, 2004.

[3] K. Chellapilla, “Combining mutation operators in evolution-
ary programming,” IEEE Transactions on Evolutionary Com-
putation, vol. 2, no. 3, pp. 91–127, 1998.

[4] J. McCollum, J. Lancaster, D. Bouldin, and G. Peterson,
“Hardware acceleration of pseudo-random number genera-
tion for simulations applications,” in Proc. of Annual South-
eastern Symposium on System Theory, 2003, pp. 299–303.

[5] D. Knuth, Seminumerical algorithms, ser. The Art of Comp.
Prog. Addison-Wesley, 1997, vol. 2.

[6] C. Wallace, “Fast pseudorandom generators for normal and
exponential variates,” ACM Transations on Mathematical
Software (TOMS), vol. 22, no. 1, pp. 119–127, 1996.

[7] D. Lee, W. Luk, G. Zhang, P. Leong, and J. Villasenor,
“A hardware Gaussian noise generator using the Wallace
method,” IEEE Transactions on VLSI, 2004, submitted.

[8] G. Marsaglia and W. W. Tsang, “The Ziggurat Method for
Generating Random Variables,” Journal of Statistical Soft-
ware, vol. 5, no. 8, 2000.

[9] S. Moshier, Methods and programs for mathematical func-
tions. Halsted Press, 1989.

[10] P. L’Ecuyer, “Maximally equidistributed combined Taus-
worthe generators,” Mathematics of Computation, vol. 65,
no. 213, pp. 203–213, 1996.

[11] I. Munro, “Optimal Algorithms for Parrallel Polynomial
Evaluation,” Journal of Comp. and Sys. Sci., vol. 7, pp. 189–
198, 1973.

[12] Xilinx, Inc., http://www.xilinx.com.
[13] G. Marsaglia, Diehard: a battery of tests of randomness,

http://stat.fsu.edu/˜geo/diehard.html, 1997.
[14] Intel Platform Security Division, “The intel ran-

dom number generator,” Intel technical brief, 1999,
ftp://download.intel.com/design/security/rng/techbrief.pdf.

[15] D. Lee, W. Luk, J. Villasenor, and P. Leong, “Design Param-
eter Optimization for the Wallace Gaussian Random Number
Generator,” ACM Transactions on Modeling and Computer
Simulation, 2004, submitted.

[16] R. D’Agostino and M. Stephens, Goodness-of-Fit Tech-
niques. Marcel Dekker Inc., 1986.

[17] G. W. Snedecor and W. G. Cochran, Statistical Methods.
Iowa State University Press, 1989.

