
A Scalable Hardware Architecture for Prime Number Validation

Ray C.C. Cheung, Ashley Brown, Wayne Luk
Department of Computing

Imperial College London, UK
r.cheung, ashley.brown, w.luk@ic.ac.uk

Peter Y.K. Cheung
Department of EEE

Imperial College London, UK
p.cheung@ic.ac.uk

Abstract

This paper presents a scalable architecture for
prime number validation which targets reconfig-
urable hardware. The primality test is crucial
for security systems, especially for most public-key
schemes. The Rabin-Miller Strong Pseudoprime Test
has been mapped into hardware, which makes use of
a circuit for computing Montgomery modular expo-
nentiation to further speed up the validation and to
reduce the hardware cost. A design generator has
been developed to generate a variety of scalable and
non-scalable Montgomery multipliers based on user-
defined parameters. The performance and resource
usage of our designs, implemented in Xilinx reconfig-
urable devices, have been explored using very large
prime numbers. Our work demonstrates the flexi-
bility and trade-offs in using reconfigurable platform
for prototyping cryptographic hardware in embedded
systems. It is shown that, for instance, a 1024-bit pri-
mality test can be completed in less than a second,
and a low cost XC3S2000 FPGA chip can accommo-
date a 32k-bit scalable primality test with 64 parallel
processing elements.

1. Introduction

For centuries, the problem of validating prime
numbers, the primality test, has posed a great chal-
lenge to both computer scientists and mathemati-
cians [5]. The problem of identifying Prime and
Composite numbers is known as one of the most im-
portant problems in arithmetic. Many security appli-
cations also involve large numbers: while it is easy
to multiply prime numbers to get a product, the re-
verse process of recovering the primes is much more
difficult.

Field programmable gate arrays offer a rapid-
prototyping platform for the verification of embedded
systems [16]. FPGAs are also used as active compo-
nents in security systems, such as Firewall proces-
sors [12] and Elliptic Curve Cryptographic proces-
sors [13]. As the threat of attacks appears to be in-
creasing, many existing systems do not seem to be

secure enough. One of the reasons is due to the use
of weak key generation. It has been recognised that
strong prime number generation is important, and the
prime validation is an intrinsic part of the generation.
Here we define validation as the process of perform-
ing prime testing on a given number.

This paper presents a scalable architecture for
prime number validation which targets reconfigurable
hardware such as FPGAs. In particular, users are al-
lowed to select predefined scalable or non-scalable
modular operators for their designs. Our main con-
tributions include:

• Parallel designs for Montgomery modular arith-
metic operations (Section 3).

• A scalable design method for mapping the
Rabin-Miller Strong Pseudoprime Test into
hardware (Section 4).

• An architecture of RAM-based Radix-2 scalable
Montgomery multiplier (Section 4).

• A design generator for producing hardware
prime number validators based on user-specified
parameters (Section 5).

• An implementation of the proposed hardware
architectures in reconfigurable devices, with an
evaluation of its effectiveness compared with
different size and speed tradeoffs (Section 6).

The rest of the paper is organized as follows. Sec-
tion 2 describes the basic principles of the Rabin-
Miller algorithm and the scalable Montgomery mod-
ular multiplication algorithm, and related work. Sec-
tion 3 presents a design flow for mapping scal-
able prime number validators into hardware. Sec-
tion 4 covers a scalable architecture for modular mul-
tiplication. Section 5 presents a design generator
GenDesign which produces architectures with dif-
ferent design trade-offs, based on user-specified pa-
rameters. Section 6 evaluates experimentally the per-
formance and area usage of the proposed approach
using FPGAs, and compares it with different archi-
tectures. Finally, Section 7 summarises our current
and future research.



2. Background and Related work

Primality test is essential for prime number gener-
ation. Cryptography often uses large prime numbers,
for instance, RSA public key algorithm requires 512-
bit, 1,024-bit for key generation [21]. Much research
work has been done on primality test and generation,
and most algorithms are based on factorization [20].
In [2], the primality test has been proved to be solv-
able in polynomial time. However, it requires a log
operation which is expensive for hardware implemen-
tation; it also requires knowledge of the primality of
preceding numbers, which is impractical for arbitrary
prime testing.

In [10], Joye et al has proposed an efficient prime
number generation scheme based on pseudo-random
number generation and implemented the design on a
smart-card platform. Lu et al [14] has further devel-
oped the RSA key generation for smart card using dif-
ferent prime number algorithms.

There is a special class of very large prime num-
bers which have the representation of 2n − 1. They
are called Mersenne prime numbers. For example,
the 41st Mersenne prime number 224,036,583 − 1 was
discovered in May 2004. A clustered workforce
GIMPS [9] in the Internet is currently dedicated on
locating the next Mersenne number.

2.1. Rabin-Miller Primality Test

In this paper, we have selected the Rabin-Miller
probabilistic primality test algorithm (figure 1) as the
core of the primality test. This algorithm is based
on the properties of strong pseudoprimes and has
also been adopted by Mathematica’s PrimeQ com-
mand [15]. This algorithm is developed by Rabin [19]
based on Miller’s [18] idea. The algorithm can
quickly determine the primality of a given large num-
ber with a controllably small probability of error [1].
It requires a number of small primes for repeatedly
testing the input number. The probability of falsely
identifying a composite as a prime decreases with ev-
ery additional small prime used. This method enables
tradeoff between accuracy (more small primes) and
efficiency (fewer small primes) for different applica-
tions.

From the above algorithm, “Inconclusive”
implies the number p maybe prime. The selection
of number b is based on a set of small primes Z where

Z = 2, 3, 5, 7, 11, 13, 17, 19, ..., n ≤ p− 1

With the use of first eight small primes, the 100%
accuracy of primality test can be achieved for num-
bers up to 3.4 × 1010 [1]. The actual number of
small primes can be customised by the design gen-
erator presented in Section 4 in this paper.

Input: The number under primality test: p

1. Random choose a number b in [1, p-1] ∈ Z
2. Let p = 2(q×m)+1 where m is an odd integer
3. IF either
4. Case 1: bm = 1 (mod p) or
5. Case 2: there is an integer i in [0, q-1]

6. such that bm×2i = -1 (mod p)
7. RETURN "Inconclusive"
8. ELSE
9. RETURN "Composite"

Figure 1. The Rabin-Miller Probabilistic
Primality Test Algorithm.

Input: X * Y (mod M), Output: S
1. S = 0
2. FOR i = 0 to n - 1
3. (Ca,S(0)) = xi*Y

(0) + S(0)

4. IF S(0)
0 = 1 THEN

5. (Cb,S(0)) = S(0) + S(0)

6. FOR j = 1 to e
7. (Ca,S(j)) = Ca + xi*Y

(j) + S(j)

8. (Cb,S(j)) = Cb + M(j) + S(j)

9. S(j−1) = (S(j)
0 ,S(j−1)

w−1..1
)

10. END FOR
11. ELSE
12. FOR j = 1 to e
13. (Ca,S(j)) = Ca + xi*Y

(j) + S(j)

14. S(j−1) = (S(j)
0 ,S(j−1)

w−1..1
)

15. END FOR
16. END IF
17. s(e) = 0
18. END FOR

Figure 2. The Multiple Word Radix-2
Montgomery Multiplication Algorithm.

2.2. Scalable Montgomery Algorithm

The fundamental operation of the RSA public key
cryptosystem is modular exponentiation, achieved by
repeated modular multiplications. The Montgomery
modular multiplication [17] has been widely used
to speed up the multiplication, squaring and expo-
nentiation. There are many different extended al-
gorithms [11] and software implementations based
on the Montgomery algorithm, and the high-radix
Montgomery modular exponentiation has been im-
plemented in reconfigurable hardware [3] and opti-
mised for specific reconfigurable architecture on RSA
cryptosystems [6].

The reusability and scalability of the Montgomery
multiplier have been investigated in [23] such that
the design is no longer restricted to a fixed preci-
sion. The input operands are partitioned into multi-
ple words. Figure 2 shows the algorithmic descrip-
tion of the Radix-2 Montgomery multiplication. The
operand Y (multiplicand) is scanned word-by-word
and the operand X (multiplier) is scanned bitwise.
The loop index n is the bit width of the prime number
and e is the number of partitions in the operand Y .

The scalable design of Montgomery multiplication
has been implemented as a coprocessor in reconfig-



HDL Design EntryPrime number width
User specific
word width

Montgomery
constant

Perform Rabin-Miller
Primality Test

Validate large primes

Flexible small
prime number

Case 1:
Perform modular
exponentiation

Case 2:
Perform modular
squaring

non-scalable or scalable montgomery multiplier can be selectively used

Synthesized
Hardware Block

Number p
under test

Figure 3. The design flow of the scalable prime number validator.

urable RSA System-on-Chip building block in [8].
Furthermore, a high-radix design of scalable modu-
lar multiplier has also been discussed in [22]. We ob-
serve that the scalable design is particularly useful for
very large precision such as the prime test.

3. Design Flow

In this section we present the design flow for our
scalable prime number validator as shown in figure 3.
The input to the system includes user-specified con-
straints, such as the bit-width of the input prime num-
ber and the word-width which is required for the scal-
able multiplier, while the output from the system is
a synthesizeable hardware block that can be embed-
ded in different cryptographic designs. This flexible
design flow enables upgrade of existing security sys-
tems with small overhead.

The major features of the proposed design include:

• A variable compile-time prime number validator
in which user can easily update the complexity
of the system by controlling the prime width.

• The variable input small primes determine the
accuracy and performance of the system.

• The user-specified word-width controls the
modular operation taken in the hardware.

• Users are able to select different Montgomery
architectures for hardware implementation and
thus enhance rapid prototyping.

3.1. Speeding Up Computation

In this section, we show how we improve the hard-
ware design of the standard operation by non-scalable
and scalable Montgomery operations. The Rabin-
Miller algorithm is first implemented using standard
multiplication and exponentiation with a sequential
modulo-multiply. We observe that one of the bottle-
necks of the Rabin-Miller algorithm is the modular

exponentiation in testing the two valid checks in Sec-
tion 2.

Montgomery algorithm is widely used for modular
multiplication and exponentiation. It requires a con-
stant at the start of algorithm to facilitate conversion
between standard and Montgomery space. The con-
stant c is (2(2×(width(p)+2)) % p) where width(p) is
the bit-width of the prime number p under test. In
this paper, this constant c has been precomputed and
saved in hardware. Figure 4 shows the pseudo-code
of the hardware implementation. Note that the state-
ments embraced by parallel{...} mean that they are
executed concurrently in hardware.

3.2. Montgomery modular multiplication

Current modular multiplication approaches are
mostly based on the Montgomery algorithm [17].
The simpler combinational logic used in this design
reduces the critical path and thus accelerates the cal-
culation. An efficient hardware implementation has
been presented in [7]. Our modular multiplication
component is built based on the design in [3].

The basic idea of the Montgomery algorithm is
to multiply two integers modulo M , in other words
(A×B mod M ) without division by M . We first use
the generated Montgomery constant c to transform
the integers into m-residues and compute the multi-
plication with these m-residues. Finally, we trans-
form this result back to the normal representation.
Note that modular multiplication is used in modu-
lar exponentiation, since it is beneficial if we com-
pute a series of multiplications in the transformed do-
main, the Montgomery space. Figure 4 shows the
pseudo-code of the hardware description. For ex-
ample, “q = S + (B0 ? A : 0)” checks if the LSB of
B is true, then “q = S + A” else “q = S”. Fig-
ure 5 shows an example of code-level optimisation
which has greatly reduced the overall number of cy-
cles for more than 50% for the design using non-
scalable Montgomery multipliers. In Section 4, we



Algorithm for computing S = A × B mod M

parallel {
1. S = 0
2. j = width(A) + 2

}
3. FOR i = j to 0

parallel {
4. q = S + (B0? A : 0)
5. S = shiftRight(q + (q0? M : 0))
6. B = shiftRight(B)

}
7. END FOR
8. RETURN S

Figure 4. Generating Montgomery mod-
ular multiplication S.

Pre-optimisation
1. FOR i = j to 0
2. q = S + (B0? A : 0)
3. S = shiftRight((S + (q0? M : 0) + (B0? A : 0))
4. B = shiftRight(B)
5. END FOR

Optimisation
1. #define q (S + (B0? A : 0)
2. FOR i = j to 0

parallel {
3. S = shiftRight(q + (q0? M : 0))
4. B = shiftRight(B)

}
5. END FOR

Modular squaring (both scalable and non-scalable)
1. Mont mod mult sq(R) {

// transform R into Montgomery space
2. R = MontgomeryModularMulti[0](c, R)

// perform squaring
3. R = MontgomeryModularMulti[0](R, R)

// transform the final result into normal space
4. R = MontgomeryModularMulti[0](1, R)

}

Figure 5. Hardware optimisation for
modular multiplication and squaring.

introduce the scalable design and its optimisation us-
ing embedded memory.

3.3. Montgomery modular exponentiation

Figure 6 shows the algorithm for calculating the
modular exponentiation using the Montgomery algo-
rithm. This algorithm is not limited to the input bit-
width and is suitable for replacing the standard se-
quential modulo-multiplier. The values of X and 1
are first transformed into Montgomery space by us-
ing the Montgomery constant c. Since there is no
data dependency between the modular squaring and
multiplying operation in line 6 and line 7, both oper-
ations are put into separated hardware and execute in
parallel. The final result is transformed back to the
standard domain for the Rabin-Miller primality test.

The datapath of the modular exponentiation unit
is depicted in figure 7. Two parallel multipliers have
been deployed in this unit together with four tempo-
rary storages, P0, P1, Z0 and Z1. The inputs to this

Algorithm for computing S = XE mod M

1. P[2] = 0, Z[2] = 0;
parallel {
// Apply two parallel multipliers

2. P[0] = P[1] = MontgomeryModularMulti[0](c, 1)
3. Z[0] = Z[1] = MontgomeryModularMulti[1](c, X)
4. j = width(E) - 1
}

5. FOR i = j to 0
parallel {

6. P[!i0] = E0?
MontgomeryModularMulti[0](P[i0],Z[i0]):P[i0]

7. Z[!i0] = MontgomeryModularMulti[1](Z[i0], Z[i0])
}

8. E = shiftRight(E);
9. END FOR
10.RETURN S = MontgomeryModularMulti[0](1, P[i0])

Figure 6. Generating Montgomery mod-
ular exponentiation S (both scalable and
non-scalable).

unit are X and E which are stored in registers or
memory depending on the architecture of the multi-
plier. The pre-stored Montgomery constant c is used
for the first step calculation in figure 6. The control
path, other temporary storage and memory decoding
unit are not shown in this figure.

BRAM / Registers (P0, P1, Z0, Z1)

BRAM / Register
store Montgomery

Constant c

BRAM / Register
store Constant 1

BRAM/Register
Input X

Parallel Scalable /
non-scalable
Multiplier 0

Parallel Scalable /
non-scalable
Multiplier 1

BRAM/Register
Input E

Figure 7. The architecture of the Expo-
nentiation unit using two parallel Mont-
gomery multipliers and multiple Block-
RAMs.

4. Scalable modular multiplier

The previous section presents the general design
flow of primality test using non-scalable multiplier.
In this section, we present the mapping of scalable
Montgomery multiplication as shown in Section 2
into technology independent hardware.

The scalable Montgomery algorithm MWR2MM
is shown in figure 2 for multiplying X and Y . The
general idea is to repeatedly multiply Xi, the ith bit
of X , with Y . The parallelism of the design can be



Processing
Element 1

Processing
Element 2

Processing
Element p...

18k-bits BRAM
RAM

decoder

Storing n-bit X

p

Xi+1 Xi+p-1

1

1

1BRAM
holds
M

BRAM
holds
Y

w

w

18k-bits BRAM

Storing result S

w w

Compute: S = X * Y mod M using scalable Montgomery algorithm

Xi

Figure 8. The architecture of the scalable Montgomery multiplier.

explored by applying multiple processing elements
(PEs) to calculate the Xi values in parallel, since
there is no data dependency between these calcula-
tions. The datapath of the multiplier using p PEs is
shown in figure 8. We can see that the RAM decoder
produces the p-bits, Xi, Xi+1, . . .Xi+p−1 and feeds
these bits into p PEs. These signals are valid for j
cycles and the memory decoder then extracts the next
p-bits from the memory storing X .

For the scalable version, the modular multiplier
is replaced by the one described in figure 2. Note
that the number of clock cycles and the performance
of the scalable MWR2MM algorithm depends on the
number of bits of the number under test and the user-
specified partition size which is the word-length. The
words extracted from Y,M are serially put into the
first PE and are then pipelined through the other PEs.
Figure 10 shows the data dependency involved in the
multiplication. In this simplified figure, only three
PEs are shown. Note that two intermediate pipeline
registers are installed between every two PEs. We can
see that at time t0 and t1 in figure 10, only the first PE,
PE1, operates while other PEs are stalled.

In the cycle when j = 0, the PE element deter-
mines the addition of M for the next j cycles within
this PE element. We can refer to line 4-10, and line
12-15 in figure 2 for more details. The exact datap-
ath of a single PE is described in figure 9. We use a
multiplexor to select and store S(0)

0 , the bit-0 of the
lowest word in S, in a register only when j = 0. The
input Sj is latched for computing the Sj−1 in the next
cycle as shown in line 9 and 14 of figure 2.

We retarget the scalable Montgomery multiplier
in FPGA and explore the available resources such as
embedded memory. For instance, if we use a shift
register for n-bit data, the hardware usage is linearly
proportional to the input bit-width. In order to save
area, our design stores the n-bit data into Block-RAM
(BRAM) which holds up to 18k-bit data. Together

xi

Yj Mj

register

Sjw w w

w w

w

product
generator

product
generator

adder &
shift alignment

S(j-1)

c

1

j

register

delay one cycle

1

Figure 9. The architecture of a single
Processing Element (PE).

with all the temporary storage, each design takes 20
BRAMs which is half of the available BRAMs in
XC2V1000 FPGA chip. In figure 8, each data bit in
BRAM-X is decoded for a PE while in each cycle,
the jth data in BRAM-Y and BRAM-M are stored in
the first PE and propagated through the pipeline reg-
isters. The outputs of PE1, . . . PEp−1 are stored in
the intermediate registers, so that in each cycle only
the last PE, PEp, is responsible to update the content
in BRAM-S.

5. Hardware Design Generator

This section presents the GenDesign tool which
we develop for transforming user-constraints into
Hardware Description Language (HDL) format, as
well as implementing hardware designs. GenDesign
is coded in C. Developers can easily embed the gener-
ated validator into their security designs. This genera-



S0

S1

S2

S3

S4

Single
PE

X0

X1

X2

Y0
M0

Y1
M1

Y2
M2

Y3
M3

Y4
M4

t0

t1

t2

t3

t4

Y0
M0

Y1
M1

Y2
M2

Y0
M0

delay 2
clock cycles
(insert 2
stage registers)

S0

S0

S1

S1

S2

S3

j = 0
determine the 
addition of M

Read from
BRAM-S

... ... ...

Figure 10. The dependency graph of the
computation of scalable Montgomery
multiplier using three processing ele-
ments.

tor enhances designer productivity and exploits avail-
able resources from the rapid-prototyping platform.

The objective of this design generator is to acceler-
ate the overall design flow from specification to final
implementation. Using this tool, designers can spec-
ify architectural-specific description of their designs.
The predefined libraries consist of scalabe and non-
scalable Montgomery operators based on the Rabin-
Miller algorithm. The existing libraries are developed
in Handel-C [4], and with slightly modification, the
design generator is able to support other HDL output
format for synthesis.
GenDesign enables customisable designs such

that users can have full control to the output HDL
file. Two major operations in the design generator are
the architectural selection routine and RAM decod-
ing routine. In our design, the width of most internal
signals are dependent on the prime number bit width.
Second, user-specified word width controls the iter-
ation of the inner while loop in the scalable Mont-
gomery multiplier (the value e in figure 2). Third,
besides the predefined small prime numbers, users
are able to add or remove small prime numbers of
the Rabin-Miller algorithm in the final HDL output.
Consider step 14 in figure 2 as an example:

S(j−1) = (S(j)
0 ,S(j−1)

w−1..1)

the predefined libraries provide the exact implemen-
tation of a single PE for this particular bit concatenate
operation. The bits in the jth and (j − 1)th word
from S are concatenated using an internal register.
GenDesign is then used to expand the design into
p parallel PEs.

6. Results

Our designs can be implemented on any FPGA-
based prototyping platform. For small size problems,
we select the RC200E development board as the test-
ing platform which contains the Xilinx XC2V1000-
4FG456C FPGA chip. For large size problems, the
RC2000 development board which has a Virtex II
XC2V6000-4FF1152 FPGA has been selected for
implementation. We also place and route our designs
on a low cost Spartan XC3S2000-4-FG900 chip. The
generated designs are synthesized by using Celoxica
DK2 and PDK tools [4]. The FPGA chip is then con-
figured as a prime number validator.

Results are divided into two parts: Performance
and Area. Table 1 shows the performance and
area comparisons between non-scalable Montgomery
multiplication and scalable Montgomery multiplica-
tion. From the collected results, the non-scalable de-
signs produce the fastest execution time with a lin-
early increase of area penalty, while the scalable de-
signs achieve relatively small and stable increase in
both resource usage and critical path delay as the de-
sign scale grows. In the same table, we observe that
by adopting multiple PE elements, the total number
of cycles taken for the primality test has been much
reduced while there is a slight effect to the delay path.
As shown in [22], speed up of 2 to 3 times can be
achieved when we use two or three processing ele-
ments in the scalable designs when compared to the
design with only one PE. Our experimental results
confirm this speed improvement.

We also study the tradeoff of speed and resource
usage of the scalable Montgomery multiplier using
Virtex chip in three different dimensions: degree of
processing element parallelism, prime-size and word-
size. In each case, one of these three parameters has
been fixed and the results are shown in Table 2, 3
and 4. In Table 2, we observe that if we double the
number of concurrent processing elements, the area is
also doubled. As our scalable architecture extensively
uses BRAM and minimises other components in the
datapath, the effect of area increase the prime-size is
slight. In Table 3, there are 8 PEs, the comparison
of different prime-size for two word sizes is shown.
With the use of memory decoding components, the
complexity of addressing has been much reduced, re-
sulting in a relatively slow increase in area usage. Ta-
ble 4 shows the effect of changing the word-size with



Virtex II - XC2V1000 / XC2V6000 Spartan - XC3S2000
Prime size 128-bit 256-bit 512-bit 1,024-bit 128-bit 256-bit 512-bit 1,024-bit

Non-scalable design
Area (slices) 2,630 5,140 10,153 20,131 2,630 5,140 10,153 20,131

Clock cycle (ns) 36.75 49.51 80.72 122.34 43.67 62.35 95.01 162.24
Performance (ms) 0.64 3.34 21.49 129.28 0.76 4.21 25.29 171.45

Scalable design (8 PE, word-size:w = 8-bit)
Area (slices) 2,651 2,726 2,768 2,872 2,622 2,700 2,736 2,842

Clock cycle (ns) 31.66 30.78 31.07 32.62 40.38 34.72 39.68 37.75
Performance (ms) 20.69 109.37 734.39 5478.14 26.39 123.36 937.82 6338.95

Scalable design (32 PE, word-size:w = 8-bit)
Area (slices) 9,064 9,144 9,192 9,333 9,019 9,092 9,146 9,283

Clock cycle (ns) 30.17 29.81 29.47 31.03 40.87 40.61 38.94 39.03
Performance (ms) 12.70 56.07 286.18 1776.80 17.20 76.38 378.11 2235.08

Table 1. Primality test comparison.

respect to the overall performance. Finally, we draw
our summary in figure 11.

8 PE 16 PE 32 PE 64 PE
Prime size p = 1,024-bit

Area (slices) 1,165 2,193 4,278 8,636
Clock cycle (ns) 20.43 27.24 28.36 34.11

Performance (ms) 3.35 2.48 1.55 1.25
Prime size p = 4,096-bit

Area (slices) 1,198 2,253 4,404 8,864
Clock cycle (ns) 19.65 23.85 23.03 26.73

Performance (ms) 47.68 29.82 15.23 9.83

Table 2. Processing Element compari-
son with word size (w = 8).

Prime-size (bit) 1,024 2,048 4,096 8,192
Word size w = 8-bit

Area (slices) 1,165 1,197 1,198 1,230
Clock cycle (ns) 20.43 18.91 19.65 20.28

Performance (ms) 3.35 11.78 47.68 194.11
Word size w = 32-bit

Area (slices) 3,581 3,628 3,634 3,673
Clock cycle (ns) 32.43 38.77 31.31 27.20

Performance (ms) 1.73 7.01 20.54 67.72

Table 3. Prime-size comparison using
Scalable Montgomery Multiplier with 8
Processing Elements (8 PEs).

The design of 16k-bit primality test can be fitted
into twenty 18k-bit BRAMs, which means a single
XC2V1000 or a low cost Spartan XC3S2000 chip
can accommodate a 32k-bit test. Since memory is
the major limitation of the scalable multiplier, we can
use off-chip memory or cascading multiple FPGAs
for testing the Mersenne numbers. Another simple
method to test 2,048 bits prime number X is to par-
tition the input number into 2 parts: A, B and each
part contains 1,024 bits. We assume that the 1,024 bit
hardware validation has been implemented. We can
use simple algebraic and divide-and-conquer meth-
ods to test this number. For instance, X × 2n =
A× 2n/2 +B and (X × 2n)2 = (A× 2n/2 +B)2 =

Word-size (bit) w=4 w=8 w=16 w=32
Prime size 128-bit

Area (slices) 762 1,110 1,939 3,499
Clock cycle (ns) 20.98 18.31 24.02 34.19

Performance (ms) 0.14 0.08 0.07 0.08
Prime size 1,024-bit

Area (slices) 828 1,165 1,985 3,581
Clock cycle (ns) 22.08 20.43 24.23 32.43

Performance (ms) 6.89 3.35 2.19 1.73

Table 4. Word-size comparison for 128-
bit and 1,024-bit Scalable Montgomery
Multiplication using 8 Processing Ele-
ments (8 PEs).

less PE more PE

small
word size

large
word size

Smallest
design

Fastest & 
largest design

More resource
usage, faster 

less resource
usage

Figure 11. The analysis of the scalable
Montgomery multiplier.

A × A × 2n + 2AB × 2n/2 + B2. Since modular
arithmetic is commutative, associative and distribu-
tive, again we could use this method to perform pri-
mality test on very long integers.

The major overhead of the scalable multiplier is
the two stall operations happened to every PE ele-
ment. It means that if we apply 32 PE elements
in a 128-bit test, (2 × 32 × (128/32)) stall cycles
have been wasted. However, this effect is smaller
when the input numbers are larger. Our flexible de-
sign scheme can fit different problem objectives from
small Elliptic Curve Cryptography, medium RSA to
large Mersenne number test.



7. Conclusions

This paper presents a scalable architecture for
prime number validation which targets reconfigurable
hardware. Two significant algorithms have been dis-
cussed: Rabin-Miller and Montgomery algorithms.
The Rabin-Miller Strong Pseudoprime Test has been
successfully mapped into hardware. Several mod-
ular multipliers have been developed as libraries in
the design generator, GenDesign. In particular, the
Montgomery modular multiplication is the core of
other modular operations used in the primality test.
The scalability and parallelism of this design have
been explored for very large prime numbers. We
systematically implement the design for different bit
lengths on reconfigurable devices using both scalable
and non-scalable multipliers, and study the trade-
off amongst different designs. Our architectures and
tools appear to be useful for exploring efficient de-
signs for use in embedded systems.

On-going and future developments include:
(1) The extension of this scalable architecture across
multiple reconfigurable hardware device enables the
division of the original large problem and expands
the available memory space for validating Mersenne
numbers. (2) Run-Time Reconfiguration (RTR)
techniques can be also applied for the validation.
The implemented design can run-time select differ-
ent algorithms such as Fermat test or the sieve of
Eratosthenes method [20].

8. Acknowledgment

The support of Celoxica, Xilinx, the Croucher
Foundation and UK EPSRC (Grant number GR/R
31409, GR/R 55931, GR/N 66599) is gratefully ac-
knowledged.

9. References

[1] F. Arnault, Rabin-Miller Primality Test: Composite
Numbers Which Pass It, Math. Comput. 64, 355-361,
1995.

[2] M. Agrawal et al, Primes in P, ITT Kanpur, August,
2002.

[3] T. Blum and C. Paar, High Radix Montgomery Mod-
ular Exponentiation on Reconfigurable Hardware,
IEEE Transactions on Computers, vol. 50, no. 7,
pp.759-764, July, 2001.

[4] Celoxica: http://www.celoxica.com/

[5] R. Crandall and C. Promerance, Prime Numbers - A
Computational Perspective, Springer, 2001.

[6] A. Daly and W. Marnane, Efficient Architectures
for implementing Montgomery Modular Multiplica-
tion and RSA Modular Exponentiation on Recon-
figurable logic, International Symposium on Field-
Programmable Gate Arrays, pp. 40-49, 2002.

[7] S. E. Eldridge and C. D. Walter, Hardware Implemen-
tation of Montgomery’s Modular Multiplication Algo-
rithm, IEEE Transactions on Computers, vol. 42, no.
7, pp. 693-699, 1993.

[8] V. Fischer and M. Drutarovsky, Scalable RSA Pro-
cessor in Reconfigurable Hardware - a SoC Building
Block, XVI Conference on Design of Circuits and Inte-
grated Systems (DCIS), pp. 327-332, November, 2001.

[9] The Greatest Internet Mersenne Prime Search:
“http://www.mersenne.org/”

[10] M. Joye, P. Paillier and S. Vaudenay, Efficient Gener-
ation of Prime Numbers, Cryptographic Hardware and
Embedded Systems, pp. 340-354, 2000.

[11] C.K. Koc, T. Acar and B. S. Kaliski, Analyzing and
Comparing Montgomery Multiplication Algorithms,
IEEE Micro, vol. 16, no. 3, pp. 26-33, 1996.

[12] T. K. Lee, S. Yusuf, W. Luk, M. Sloman, E. Lupu and
N. Dulay, Compiling policy descriptions into reconfig-
urable firewall processors, IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 39-
48, 2003.

[13] K. Leung et al, FPGA Implementation of a Mi-
crocoded Elliptic Curve Cryptographic Processor,
IEEE Symp. on FCCM, pp. 68-76, 2000.

[14] C. Lu et al, Implementation of fast RSA key generation
on smart cards, ACM symposium on Applied comput-
ing, pp. 214-220, 2002.

[15] “http://mathworld.wolfram.com/Rabin-
MillerStrongPseudoprimeTest.html”

[16] M. Meerwein et al., Embedded Systems Verification
with FPGA-Enhanced In-Circuit Emulator, Interna-
tional Symposium on System Synthesis, 2000.

[17] P. Montgomery, Modular Multiplication without Trial
Division, Math. of Computation, vol. 44, pp. 519-521,
1985.

[18] G. L. Miller, Riemann’s Hypothesis and Tests for Pri-
mality, Journal of Computer Systems Science, Vol. 13,
No. 3, pp. 300-317, Dec, 1976.

[19] M. O. Rabin, Probabilistic Algorithm for Primality
Testing, Journal of Number Theory, Vol. 12, pp. 128-
138, 1980.

[20] H. Riesel, Prime Numbers and Computer Methods for
Factorization, Progress in Maths., vol. 126, 1994.

[21] B. Schneier, Applied Cryptography, John Wiley,
1996.

[22] A. F. Tenca, G. Todorov and C. K. Koc, High-Radix
Design of a Scalable Modular Multiplier, Crypto-
graphic Hardware and Embedded Systems, pp. 189-
205, May, 2001.

[23] A. F. Tenca and C. K. Koc, A Scalable Architecture for
Modular Multiplication Based on Montgomery’s Algo-
rithm, IEEE Transactions on Computers, Vol 52, No. 9,
pp. 1215-1221, September, 2003.


