
Inversion-Based Hardware Gaussian Random Number Generator:
A Case Study of Function Evaluation via Hierarchical Segmentation

Dong-U Lee #1, Ray C.C. Cheung ∗2, John D. Villasenor #3, Wayne Luk ∗4

#Electrical Engineering Department, University of California
Los Angeles, CA 90095, USA

1dongu@icsl.ucla.edu
3villa@icsl.ucla.edu

∗Department of Computing, Imperial College London
London, SW7 2BZ, UK

2rcheung@imperial.ac.uk
4w.luk@imperial.ac.uk

Abstract— We present the design and implementation of a
Gaussian random number generator (GRNG) via hierarchical
segmentation. Gaussian samples are generated using the in-
version method, which involves the evaluation of the inverse
Gaussian cumulative distribution function (IGCDF). The IGCDF
is highly non-linear and is evaluated via piecewise polynomial
approximations (splines) with a hierarchical segmentation scheme
that involves uniform splines and splines with size varying by
powers of two. This segmentation approach adapts the spline
sizes according to the non-linearity of the function, allowing
efficient evaluation of the IGCDF. Bit-widths of the fixed-point
polynomial coefficients and arithmetic operators are optimized
in an analytical manner to guarantee a precision accurate to one
unit in the last place. Our architecture generates 16-bit Gaussian
samples accurate to 8.2σ (standard deviations). A pipelined
implementation on a Xilinx Virtex-4 XC4LX100-12 FPGA yields
371 MHz and occupies 543 slices, 2 block RAMs, and 2 DSP
slices, generating one sample every clock cycle.

I. INTRODUCTION

The evaluation of functions commonly occurs in numerous
applications including communications, computer graphics,
signal processing, and Monte Carlo simulations. In this paper,
we examine hardware-based evaluation of the inverse Gaussian
cumulative distribution function (IGCDF) required for the
inversion method [1]. The inversion method is commonly used
for generating random samples from arbitrary distributions. It
is based on the observation that a random sample y with the
cumulative distribution function (CDF) F can be generated by
y = F−1(x), where x is a uniform random variate between
zero and one. Although F can be the CDF of any distribution,
we consider the Gaussian distribution case with mean of zero
and variance of one.

The availability of Gaussian random numbers is essential to
many simulation applications including channel code evalua-
tion, molecular dynamics simulation, and financial modeling.
Due to recent advances in field-programmable technology,
hardware-based simulations attract increasing attention due to
their huge performance advantages over traditional software-
based methods. Transferring software-generated Gaussian
samples to the hardware device is highly inefficient and can
be a performance bottleneck, hence it is desirable to have a
Gaussian random number generator (GRNG) on the hardware

0 0.5 1
−6

−3

0

3

6

x

y

y = F−1(x)

(a) y = F−1(x)

0 0.5 1
0

3

6

x

y

y = |F−1(x/2)|

(b) y = |F−1(x/2)|

Fig. 1. Plot of (a) the inverse Gaussian CDF and (b) the actual curve for
approximation over 2−32 ≤ x ≤ 1− 2−32.

device itself. In GRNGs, the quality of the Gaussian samples
plays a key factor, since deviations from the ideal distribution
can degrade simulation results and lead to incorrect conclu-
sions. Attention needs to be paid to the samples that lie at
the tails of the Gaussian probability density function (PDF),
i.e., samples that lie multiples of σ (standard deviations)
away. Although these samples occur relatively rarely, they are
important because they can cause events of high interest.

As depicted in Fig. 1(a), the IGCDF is highly non-linear
due to its singularities at x = 0 and x = 1, making it
difficult to accurately approximate. Very few contributions
exist in the literature concerning hardware implementations
of the inversion method. Chen et al. [2] employ a lookup
table that has the advantage of being very simple, but has the
disadvantage of memory requirements that increase exponen-
tially with the number of bits at the input x. For example,
for a 16-bit input / 16-bit output lookup table, a table size
of 1 mega byte is needed. McCollum et al. [3] evaluate
the IGCDF via linear interpolation, with equally-spaced data
points. Their implementation leads to a large table size of
262 kilo bytes. In contrast to the above papers, we use non-
uniformly sized splines combined with formal error analysis
to achieve highly accurate Gaussian samples with very low
memory requirements: our implementation involves less than
1 kilo byte (Section IV-B). A comprehensive discussion on
other hardware GRNGs can be found in [4].

The key contributions of this paper include:
• applying hierarchical segmentation for producing a hard-

ware GRNG architecture based on the inversion method;
• accurate error analysis and bit-width optimization leading

to a guaranteed worst-case error bound of 1 unit in the
last place (ulp);

• hardware realizations of the proposed architecture target-
ing advanced FPGAs.

The rest of this paper is organized as follows. Section II
shows an overview of the inversion-based GRNG design. Sec-
tion III discusses hierarchical segmentation used for evaluating
the IGCDF. Section IV describes bit-width optimization for the
internal signals of the GRNG. Section V evaluates the GRNG
and provides FPGA implementation results. Concluding re-
marks are given in Section VI.

II. OVERVIEW

For the design of inversion-based GRNG, the following
parameters must be supplied:

1) GRNG periodicity (e.g. 1015);
2) Gaussian sample bit-width (e.g. 16 bits);
3) IGCDF approximation method (e.g. degree-1 splines,

degree-2 splines, etc.).
The first task is to perform hierarchical segmentation on the
IGCDF curve, which partitions the curve into non-uniformly
sized degree-d splines (piecewise polynomials). Since the
IGCDF is symmetric around x = 0.5, one only needs to
consider the absolute value of the first half of the function,
i.e. y = |F−1(x/2)| (Fig. 1(b)). Chebyshev coefficients [5]
are used for the splines.The second task is bit-width optimiza-
tion, which minimizes the bit-widths of the coefficients and
operators while conforming to the Gaussian sample precision
requirement. Finally, using the segmentation, coefficients, and
bit-width information, VHDL code suitable for FPGA or ASIC
implementation is generated.

Fig. 2 depicts a high-level architecture of the inversion-
based GRNG. A uniform random number generator (URNG) is
used to provide the input x and a random sign for the Gaussian
sample. The IGCDF evaluation unit approximates the function
y = |F−1(x/2)|, and the multiplexor selects the positive or
the negated y. The bit-width of x, denoted by Bx, dictates the
maximum attainable standard deviation maxσ of the GRNG.
From Fig. 1(b) the maximum y occurs at the smallest non-zero
value of x. Hence

maxσ = |F−1(2−Bx−1)| = F−1(1− 2−Bx−1). (1)

In order to meet the GRNG periodicity requirement, first,
the periodicity of the URNG should be equal or greater than
than the requested GRNG periodicity N . Second, the N
samples generated should faithfully follow the true Gaussian
distribution even at the far tails of the Gaussian PDF. Although
in principle, the Gaussian PDF spans infinitely, for a given pool
of N samples we can limit maxσ. More precisely, we select
a maxσ such that the theoretical number of samples whose
magnitude is greater than maxσ within the pool of N samples
is kept below 0.5, i.e.

N × (2× F (−maxσ)) < 0.5 (2)

Uniform
Random
Number
Generator
(URNG)

Inverse
Gaussian CDF

(IGCDF)
Evaluation Unit

x
Bx

0
1

y
By

sign
1

Negate
Gaussian
Samples

Fig. 2. High-level architecture of inversion-based GRNG.

where F is the Gaussian CDF. Substituting Eqn. (1) into
Eqn. (2) we obtain the following relationship between Bx and
N

N × (2× F (−F−1(1− 2−Bx−1))) < 0.5
⇒ Bx > − log2

(
1

4N

)− 1.
(3)

In this work we consider the example of a GRNG with
N = 1015 and 16-bit two’s complement fixed-point Gaussian
samples, which is adequate even for the most ambitious
simulation applications such as the evaluation of low-density
parity check codes in very low bit error rates [6]. To meet the
first requirement, using Eqn. (3) we find that the required Bx

is 51 which results in maxσ = 8.1. However, in order to make
a fair comparison with the Box-Muller based GRNG described
in [4], we set Bx = 52 which results in maxσ = 8.2. Since
the maximum Gaussian sample value is 8.2, five bits need to
be allocated for the integer part to avoid overflow, and the
remaining eleven bits are used for the fractional part. In order
to generate high-quality Gaussian samples, we ensure that
every sample is guaranteed to be faithfully rounded (accurate
to 1 ulp). This means that samples will have an absolute
maximum error of less than or equal to 2−11 compared to an
ideal (infinitely precise) inversion-based GRNG. Although the
example GRNG described here delivers 16-bit samples out to
8.2σ, the architecture itself is scalable for arbitrary multiples
of σ and sample precisions.

III. HIERARCHICAL SEGMENTATION

A. Framework

For implementing spline-based approximations in hardware,
uniform segmentation, in which all segment lengths are equal,
is the most common type of segmentation [7]. Although
uniform segmentation has the advantage of simple coefficient
indexing (by using the most significant bits), in contrast with
non-uniform segmentation, it does not allow segment lengths
to be customized to the non-linearity of the function. This
can lead to impractically large tables for functions like y =
|F−1(x/2)| .

The non-uniform segmentation we employ for efficient
IGCDF approximation is called the hierarchical segmentation
method [8]. In its general form, it utilizes a selection from
a set of four segmentation schemes: US, P2SL, P2SR, and
P2SLR. In US, segments are uniformly sized. In P2SL, the
segment sizes increase by powers of two from the beginning
of the input interval to the end of the interval, while in P2SR

the segment sizes decrease by powers of two from start to end.
In P2SLR, segment sizes increase by powers of two until the

TABLE I
SEGMENT RANGES IN BINARY REPRESENTATION FOR Bx = 8, P2SL

OUTER SEGMENTATION, AND Bx0 = 5. THE FIVE BITS CORRESPONDING

TO x0 ARE HIGHLIGHTED IN BOLD. THE BITS TO THE LEFT OF THE

VERTICAL PARTITION LINES CORRESPOND TO x̂0 .

Segment Address, j Segment Range

0 0 0 0 0 0 | 0 0 0 ∼ 0 0 0 0 0 | 1 1 1
1 0 0 0 0 1 | 0 0 0 ∼ 0 0 0 0 1 | 1 1 1
2 0 0 0 1 | 0 0 0 0 ∼ 0 0 0 1 | 1 1 1 1
3 0 0 1 | 0 0 0 0 0 ∼ 0 0 1 | 1 1 1 1 1
4 0 1 | 0 0 0 0 0 0 ∼ 0 1 | 1 1 1 1 1 1
5 1 | 0 0 0 0 0 0 0 ∼ 1 | 1 1 1 1 1 1 1

midpoint of the interval and then decrease by powers of two
until the end is reached. The hierarchical aspect arises because
segmentation is applied twice. In the first pass, the entire
interval is subdivided using one of the above four methods
into several outer segments. In the second pass, each outer
segment is further subdivided into inner segments using US.

The absolute value of the derivative at the interval endpoints
is used to drive the choice of the outer segmentation scheme.
High derivatives at one or both ends trigger use of P2SL,
P2SR, or P2SLR; in the case where both derivatives are small
then uniform segmentation is used. y = |F−1(x/2)| has a high
derivative near zero and hence P2SL is chosen for the outer
segmentation.

The Bx bits of the input x are split into three partitions: x0,
x1, and x2. x0 and x1 are used to index the outer and inner
segmentation respectively, while x2 is used for the polynomial
arithmetic. The number of addressable segments si of the
partition i is constrained as follows:

si = 2Bxi , if Λi = US (4)
si = Bxi + 1, if Λi = P2SL (5)

where Bxi denotes the bit-width and Λi denotes the segmen-
tation of the partition i.

Consider the case when Bx = 8, the outer segmentation is
P2SL, and Bx0 = 5. As illustrated in Table I, it is possible to
construct a maximum of six segments. With the exception of
the initial segments, the segment lengths increase by powers
of two. The P2SL segment address for a given x0 can be
computed by

P2SL addr =

{
Bx0 − LZD(x0), if MSB(x0) = 0
Bx0 , if MSB(x0) = 1

(6)

where LZD(x0) and MSB(x0) return the number of leading
zeros and the most significant bit of x0 respectively.

Let x̂i denote the set of bits that remains constant within
an outer segment (bits left to the vertical partition lines in
Table I). For instance in Table I, when j = 3, then x̂0 = 001.
The inner segmentation uses Bx1 bits immediately right of
x̂0. For the case when the outer segmentation is P2SL, Bx̂0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

x

y

y = |F−1(x/2)|

Fig. 3. Hierarchical segmentation applied to the IGCDF using degree-2
splines and εreq = 0.3× 2−11.

(the number of bits corresponding to x̂0) can be computed as
follows

Bx̂0 =

{
Bx0 , if P2SL addr = 0
Bx0 − P2SL addr + 1, otherwise. (7)

B. Segmentation Algorithm

Once the outer segmentation scheme is chosen via the
derivative method, the next issue is the determination of Bx0 .
If Bx0 is too small, there will be insufficient granularity in
the outer segments to follow the local non-linearities of a
function. On the other hand, if Bx0 is too large, there will
be too many outer segments and the total number of segments
will be unnecessarily large. The optimal Bx0 that result in the
minimal number of segments can be found via linear search,
where Bx0 is set to zero initially and is gradually incremented.

The core of the segmentation algorithm requires four param-
eters: the input interval [a, b), the polynomial degree d to be
used for the splines, and the desired maximum absolute error
εreq at the output. For each segment in the outer segmentation,
the Chebyshev coefficients for the approximating polynomial
of appropriate degree are computed. If the approximation
error εmax is too high, the number of segments in the inner
segmentation is incremented by successive powers of two until
the εmax of all inner segments are less than or equal to the
required error εreq. This process is performed for all outer
segments. Two tables are generated: ROM0 which is needed
for ROM1 address computation, and ROM1 which holds the
polynomial coefficients to each segment. ROM0 stores the Bx1

and the offset corresponding to each outer segment. The offset
is simply the number of rows in ROM1 prior to the row in
ROM1 corresponding to the current outer segment.

Fig. 3 illustrates the segmentation when the algorithm is
applied to the IGCDF using degree-2 splines with an error
requirement of εreq = 0.3 × 2−11. The black and grey
vertical lines indicate the boundaries for the outer and inner
segmentations. A total of 144 segments are required. 51 bits
are allocated for Bx0 , which results in the minimal number of
segments.

C. Hardware Architecture

Fig. 4 shows the architecture of the IGCDF evaluation
unit for degree-2 splines. The P2S unit performs the P2SL

x
52

0
index

1
...

...
M-1

C1C2

BC2 BC1

BD2

Bx0 Bx1 Bx2

P2S
unit

0
index

1
...

...
s0-1

offset
bit

selection
unit

x0 x1 x2

Bx1

ROM0

ROM1

addr

Address Decoding

Polynomial Evaluation

Q
Q

Bx0

C0

BC0

BD0 Q
Q

y

BD1

16

Q
Bx2~

Bx0

Fig. 4. The IGCDF evaluation unit for degree-2 splines. The grey square
boxes labeled “Q” perform quantization operations.

address and the Bx̂0 computation (Eqn. (6) and Eqn. (7)). The
bit selection unit selects the appropriate bits for x0, x1, and
x2 from the input x in conjunction with ROM0. Two barrel
shifters are present inside this unit, due to the variable natures
of Bx̂0 and Bx1 . The grey square boxes labeled “Q” perform
quantization operations.

Since x0 and x1 are implicitly known for a given segment,
x2 is used instead of x for the polynomial arithmetic to
reduce the size of the operators. x2 is scaled to occupy the
range [0, 1), which in turn requires appropriate transformations
on the Chebyshev coefficients [4]. Because the minimum
sum of Bx̂0 and Bx1 is 4 bits, the maximum Bx2 is 48
bits. x2 is quantized before it is supplied to the multipliers.
This quantization step can potentially save hardware, since
in this particular application, the output y is allowed to be
significantly less precise than the input x2.

IV. BIT-WIDTH OPTIMIZATION

The preceding section does not consider finite precision
effects. However, for hardware implementations, it is desirable
to minimize the bit-widths of the coefficients and operators for
area and speed efficiency, while respecting the error constraint
at the output signal. Two’s complement fixed-point arithmetic
is assumed throughout. Given a signal x, its integer bit-
width (IB) is denoted by IBx and its fractional bit-width
(FB) is denoted by FBx, i.e. Bx = IBx + FBx. IB
controls the range, while FB controls the precision of a signal.
The bit-width allocation problem is split into two stages:
range analysis for determining the minimal IBs followed by
precision analysis for determining the minimal FBs required.
For both analysis phases, we use an adaptation of the MiniBit
technique [9].

A. Range Analysis

To compute the dynamic range of a signal, the local min-
ima/maxima and the minimum/maximum input values of each
signal are examined. The local minima/maxima can be found
by computing the roots of the derivative. Once the dynamic
range has been found, the required IB can be computed triv-
ially. Since splines are being used, the polynomial evaluation
circuit needs to be shared among different sets of coefficients.
The IB for each signal is found for every segment and stored
in a vector. Since the signal needs to be wide enough to
avoid overflow for the data with the largest dynamic range,
the largest IB in the vector is used.

B. Precision Analysis

The following three sources of error exist: (1) the inherent
error ε∞ due to approximating the function with polynomials,
(2) quantization error εQ due to finite precision effects (i.e.
roundoff errors due to quantization) incurred when evaluating
the polynomials, and (3) the error of the final output rounding
step, which can cause a maximum error of 0.5 ulp. In the
worst case, ε∞ and εQ will contribute additively, so to achieve
faithful rounding, their sum must be less than 0.5 ulp. We
allocate a maximum of 0.3 ulp for ε∞ and the rest for
εQ, which is found to provide a good balance between the
two error sources. This is the reason why the IGCDF error
requirement has been set to 0.3× 2−11 in Section III-B.

Quantization is usually performed in two modes: truncation
which can cause a maximum error of 2−FB (1 ulp), and round-
to-nearest which can cause a maximum error of 2−FB−1 (0.5
ulp). Round-to-nearest must be performed at the output signal
y to achieve faithful rounding, but either rounding mode can be
used for the internal signals. Since truncation results in better
delay and area characteristics over round-to-nearest, it is used
for the internal signals. Note that the polynomial coefficients
are rounded to the nearest at compile-time.

For the addition/subtraction z = x ± y, the error εz at the
output z is given by

εz = εx + εy + 2−FBz (8)

where 2−FBz is the quantization error at z assuming that
truncation is performed. Similarly, for the multiplication z =
x× y, we get

εz = xεy + yεx + εxεy + 2−FBz . (9)

Note that εz is at its maximum when x and y are at their
maximum absolute values. The addition and multiplication
error expressions in Eqn. (8) and Eqn. (9) are applied to every
operator, and a constraint for achieving faithful rounding can
be generated for the output signal.

Consider the degree-2 polynomial evaluation circuitry in
Fig. 4. Assuming max(|x̃2|) = 1, we derive the following
error terms for the output and the internal signals:

εy = εD0 + 2−FBC0−1 + 2−FBy−1 + ε∞ (10)

εD0 = εD1 + D12
−FBx + εD12

−FBx + 2−FBD0 (11)

εD1 = εD2 + 2−FBC1−1 + 2−FBD1 (12)

εD2 = 2−FBC2−1 + C22
−FBx

+ 2−FBC2−12−FBx + 2−FBD2 . (13)

Note that the inherent approximation error ε∞ has been
added to εy . Combining Eqn. (10) ∼ Eqn. (13) and knowing
that FBy = 11, we can obtain the following constraint for
faithfully rounded y:

2−12 ≥ (2−FBC2−1(1 + 2−FBx) + C22
−FBx

+ 2−FBD2 + 2−FBC1−1 + 2−FBD1)(1 + 2−FBx)

+ D12
−FBx + 2−FBD0 + 2−FBC0−1 + ε∞. (14)

After applying hierarchical segmentation algorithm to the
degree-2 case, we find that ε∞ = 1.4620×10−4, max(|D1|) =
1.9559×10−1, and max(|C2|) = 3.8570×10−2. The inequal-
ity in Eqn. (14) leads to an optimization problem, where the
goal is to find the smallest FB to each signal that satisfy the
constraint. We address this problem using Adaptive Simulated
Annealing (ASA) [10], which allows faster convergence times
than traditional simulated annealing. In ASA, the user is
required to supply a constraint function and a cost function.
For the constraint function, error functions such as Eqn. (14)
are supplied. For the cost function, we supply an FPGA area
estimation model for each of the main components: memory,
adders, and multipliers.

Table II gives the IBs and the FBs found by the range
and precision analysis phases. A negative IB identifies the
number of bit positions after the binary point that are always
zero. As discussed in Section III-C, quantizing the input x̃2

has made a notable impact; reducing its original bit-width of
49 bits to just 23 bits.

The total width of the three coefficients is 12+15+21 = 48
bits and the number of segments have been found to be 144
in Section III-B. Therefore, the size of the table holding the
polynomial coefficients (ROM1 in Fig. 3) is 48× 144 = 6912
bits. The size of the segmentation information table ROM0
is found to be just 520 bits, resulting in a total memory
requirement of 6912+520 = 7432 bits. This contrasts with the

TABLE II
BIT-WIDTHS OBTAINED AFTER BIT-WIDTH OPTIMIZATION FOR THE

DEGREE-2 CASE.

Signal x̃2 C2 C1 C0 D2 D1 D0

B 23 12 15 21 16 15 22

(IB, FB) (0,23) (-3,15) (-1,16) (5,16) (-3,19) (-1,16) (-1,23)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

E
rr

or
 [u

lp
]

x

Fig. 5. Error plot of 216 randomly selected samples for degree-2 spline
approximation.

large memory requirements of Chen et al. [2] and McCollum et
al. [3] discussed in Section I.

V. EVALUATION AND RESULTS

In order to test the accuracy of the Gaussian samples, we
compare ten billion samples from this GRNG against the
ones generated from a floating-point accuracy software-based
IGCDF approximation. As anticipated, the ulp error of all
samples are found to be less than 1 ulp. In addition, over
96% of the samples are observed to be accurate to 0.5 ulp
(i.e. exactly rounded). Fig. 5 shows an ulp error plot of 216

randomly selected samples for degree-2 splines. The black
curve indicates the inherent approximation error ε∞, while
the grey curve indicates the error with finite precision effects.

Fig. 6 shows the PDF of the generated Gaussian samples
for a population of one million samples between 7σ and 8.2σ.
Even in such high σ regions, the GRNG faithfully follows the
ideal Gaussian distribution. Statistical tests, such as the χ2

test or the Anderson-Darling test [11] are not necessary, since
(a) we know that the derivation of the inversion-based GRNG
algorithm itself is correct and (b) we generate the samples
accurately within the 16-bit resolution.

The FPGA implementations presented of this section are
written in VHDL and are mapped on a Xilinx Virtex-4
XC4VLX100-12 device. Synplicity Synplify Pro 8.4 is used
for synthesis, and Xilinx ISE 8.1.02i is used for placement
and routing. The URNG in Fig. 2 is realized via two 32-bit
Tausworthe URNGs [12]. The Tausworthe URNG combines
three linear feedback shift register (LFSR) based URNGs to
obtain improved statistical properties, over traditional LFSRs.
It generates a 32-bit uniform random number per cycle, and
has a large period of 288(≈ 1025) which is significantly larger
than our periodicity requirement N = 1015. Fig. 7 explores
the area variation of different degree spline approximation with

7 7.2 7.4 7.6 7.8 8 8.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−11

x

P
D

F
(x

)

Fig. 6. PDF of the generated Gaussian samples for a population of one
million samples between 7σ and 8.2σ. The black solid line indicates the
ideal Gaussian PDF.

6 8 10 12 14 16 18 20
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

A
re

a
[s

lic
es

]

Precision [bits]

Degree−1
Degree−2
Degree−3

Fig. 7. Area comparisons of different degree spline approximations.

precision. The “precision” refers to the number of fractional
bits of the Gaussian samples and Bx is kept constant at 52.
In order to examine the tradeoffs of different degrees, designs
are combinatorial and use slices only. For precisions below
12 bits, degree-1 is the most area efficient. For precisions
between 12 and 16 bits, degree-2 is the most desirable, while
for precisions above 16 bits, degree-3 is the most attractive.
Since we are aiming for 11 bits of precision in this work,
degree-1 or degree-2 splines are likely to be the best option.

Table III summarizes implementation results of degree-
1 and degree-2 spline GRNGs on a Xilinx Virtex-4
XC4VLX100-12 FPGA. Both designs are deeply pipelined and
can generate 16-bit samples accurate to 1 ulp at a maximum
of 8.2σ. The designs have similar slice usage and clock speed,
but exhibit different block RAM and DSP slice tradeoffs.
The degree-1 implementation has a throughput of 371 million
samples per second, which is more than 10 times faster
than the fastest GRNG implementation reported on an Intel
Pentium-4 3 GHz PC [4]. Higher throughputs can be obtained
by placing multiple GRNGs on the same device. Implementing

TABLE III
IMPLEMENTATION RESULTS OF DEGREE-1 AND DEGREE-2 SPLINE GRNGS

ON A XILINX VIRTEX-4 XC4VLX100-12 FPGA.

Method Degree-1 Degree-2
Slices 543 579
Block RAMs 2 1
DSP Slices 2 4
Clock Speed [MHz] 371 370
Samples / Cycle 1 1
Million Samples / Sec 371 370
Throughput / Slice 0.683 0.639

the same specification of our inversion-based GRNG (8.2σ
and 16-bit samples) with the direct table lookup approach
by Chen et al. [2] would require an impractical lookup table
size of 252 × 16 bits = 8 peta bytes. Similarly, the equally-
spaced linear interpolation method by McCollum et al. [3]
would lead to a large memory requirement of approximately
16 giga bytes, primarily due to the inefficiency of uniform
segmentation when applied to the IGCDF curve.

Table IV compares of our designs against three other
GRNGs: the Box-Muller & central limit theorem design in
Xilinx System Generator 7.1 [13], the Ziggurat design in [14],
and the Box-Muller design in [4]. Note that the Xilinx design
is based on Xilinx’s AWGN core 1.0 [15] which follows the
architecture by Boutillon et al. [16]. In order to make the
comparisons fair, all designs are implemented on a Xilinx
Virtex-II XC2V4000-6 FPGA. To the best to our knowledge,
the Box-Muller based design in [4] and the proposed inversion-
based designs are the only GRNGs in the literature that can
generate samples accurate to 1 ulp. The table indicates that
our designs and the Box-Muller design in [4] have the best
throughput/slice ratio, the maximum obtainable σ multiple,
and the best sample quality. Although the inversion-based
GRNGs exhibit half the throughput of [4], they occupy slightly
over one-third of the FPGA resources of [4]. For applications
that require just a single Gaussian sample per cycle, the design
in [4] would be wasteful since it inherently generates two
samples per cycle. Moreover, slight correlations exist between
the two samples in the Box-Muller design. The inversion-based
GRNGs do not suffer from such drawbacks.

VI. CONCLUSIONS

We have presented a flexible GRNG architecture based
on the inversion method. The highly non-linear IGCDF, the
core of the inversion method, has been approximated via the
hierarchical segmentation method. This segmentation approach
adapts the spline sizes according to the behavior of the
function, allowing efficient approximation of the IGCDF. Bit-
widths of the coefficients and operators have been minimized
in an analytical manner, resulting in area efficiency and 1
ulp accuracy for every Gaussian sample generated. A degree-
1 spline implementation on Xilinx Virtex-4 XC4LX100-12

TABLE IV
COMPARISONS OF DIFFERENT GRNGS IMPLEMENTED ON A XILINX VIRTEX-2 XC2V4000-6 FPGA. “CLT” REFERS TO THE CENTRAL LIMIT THEOREM.

Design Xilinx [13] Zhang [14] Lee [4] Proposed
Method Box-Muller & CLT Ziggurat Box-Muller Inversion (Degree-1) Inversion (Degree-2)
Slices 653 891 1528 548 585
Block RAMs 4 4 3 2 1
Block Multipliers 8 2 12 2 4
Clock Speed [MHz] 168 170 233 232 231
Samples / Cycle 1 0.993 2 1 1
Million Samples / Sec 168 168 466 232 231
Throughput / Slice 0.26 0.19 0.30 0.42 0.39
maxσ 4.8 N/A 8.2 8.2 8.2
Sample Quality Low High Very High Very High Very High
Sample Bit-Width 16 32 16 16 16
ulp Accuracy Guarantee No No Yes Yes Yes

FPGA occupies 543 slices, 2 block RAMs, and 2 DSP slices.
It runs at 371 MHz, generating a sample every clock cycle.
Current and future work includes extending the inverse CDF
evaluation approach across other distributions and exploring
the use of RNGs in various applications.

ACKNOWLEDGMENTS

The authors thank Hyungjin Kim and David Choi for their
assistance. The support of the U.S. Office of Naval Research
(Contract number N00014-06-1-0253), the U.S. National Sci-
ence Foundation (Grant number CCR-0120778 and CCF-
0541453), the Croucher Foundation, Xilinx Inc., and the U.K.
Engineering and Physical Sciences Research Council (Grant
number EP/C509625/1, EP/C549481/1, and GR/R 31409) is
gratefully acknowledged.

REFERENCES

[1] W. Hörmann and J. Leydold, “Continuous random variate generation
by fast numerical inversion,” ACM Trans. Modeling and Computer
Simulation, vol. 13, no. 4, pp. 347–362, Oct 2003.

[2] J. Chen, J. Moon, and K. Bazargan, “Reconfigurable readback-signal
generator based on a field-programmable gate array,” IEEE Trans.
Magnetics, vol. 40, no. 3, pp. 1744–1750, May 2004.

[3] J. McCollum, J. Lancaster, D. Bouldin, and G. Peterson, “Hardware
acceleration of pseudo-random number generation for simulation appli-
cations,” in Proc. IEEE Southeastern Symp. System Theory, 2003, pp.
299–303.

[4] D. Lee, J. Villasenor, W. Luk, and P. Leong, “A hardware Gaussian
noise generator using the Box-Muller method and its error analysis,”
IEEE Trans. Computers, vol. 55, no. 6, pp. 659–671, Jun 2006.

[5] J. Muller, Elementary Functions: Algorithms and Implementation,
2nd ed. Birkhauser, 2006.

[6] L. Sun, H. Song, Z. Keirn, and B. Vijaya Kumar, “Field programmable
gate array (FPGA) for iterative code evaluation,” IEEE Trans. Magnetics,
vol. 42, no. 2, pp. 226–231, Feb 2006.

[7] J. Detrey and F. de Dinechin, “A parameterized floating-point exponen-
tial function for FPGAs,” in Proc. IEEE Int’l Conf. Field-Programmable
Technology, 2005, pp. 27–34.

[8] D. Lee, W. Luk, J. Villasenor, and P. Cheung, “Hierarchical segmentation
schemes for function evaluation,” in Proc. IEEE Int’l Conf. Field-
Programmable Technology, 2003, pp. 92–99.

[9] D. Lee, A. Abdul Gaffar, O. Mencer, and W. Luk, “MiniBit: bit-
width optimization via affine arithmetic,” in Proc. ACM/IEEE Design
Automation Conf., 2005, pp. 837–840.

[10] L. Ingber, Adaptive Simulated Annealing (ASA) 25.15, 2004,
http://www.ingber.com/#ASA.

[11] D. Knuth, Seminumerical algorithms, 3rd ed., ser. The Art of Computer
Programming. Addison-Wesley, 1997, vol. 2.

[12] P. L’Ecuyer, “Maximally equidistributed combined Tausworthe genera-
tors,” Mathematics of Computation, vol. 65, no. 213, pp. 203–213, Jan
1996.

[13] Xilinx System Generator User Guide v7.1, Xilinx Inc., 2005,
http://www.xilinx.com.

[14] G. Zhang, P. Leong, D. Lee, J. Villasenor, R. Cheung, and W. Luk,
“Ziggurat-based hardware Gaussian random number generator,” in Proc.
IEEE Int’l Conf. Field-Programmable Logic and its Applications, 2005,
pp. 275–280.

[15] Additive White Gaussian Noise (AWGN) Core v1.0, Xilinx Inc., 2002,
http://www.xilinx.com.

[16] E. Boutillon, J. Danger, and A. Gazel, “Design of high speed AWGN
communication channel emulator,” Analog Integrated Circuits and Sig-
nal Processing, vol. 34, no. 2, pp. 133–142, Feb 2003.

