An FPGA-Based Acceleration Platform for Auction
Algorithm

Pengfei Zhu*, Chun Zhang*, Hua Lif, Ray C.C. Cheung’ and Bryan Hu*
*Department of Electrical and Computer Engineering,
University of Alberta, Canada
TDepaItment of Mathematics and Computer Science,
University of Lethbridge, Canada
iDepaﬂment of Electronic Engineering, City University of Hong Kong, China

Abstract—Auction algorithms have been applied in various
linear network problems, such as assignment, transportation,
max-flow and shortest path problem. The inherent parallel char-
acteristics of these algorithms are well suited for FPGA hardware
implementation. In this paper, we focus on the acceleration
of auction algorithm to solve assignment problem. The main
contribution is to set up a flexible platform to generate efficient
and extendable application-based hardware acceleration. It aims
at solving both symmetric and asymmetric assignment problem.
Experimental results show that 10X speedup can be achieved
using 128 Processing Elements for the problem size of 500.

I. INTRODUCTION

The assignment problem (AP) is one of the fundamental
combinatorial optimization problems, which tries to find the
maximum weight matching in a weighted bipartite graph.
Naturally, it is useful to solve such problems as assigning
employees to tasks or machines to production jobs. Further-
more, it is also a key building block in several applications of
network modeling in real world. For example, to allocate and
route the traffic in a large city or coordinating a large fleet of
service people to respond to requests. Thus it is essential to
develop an efficient implementation of assignment problem to
deal with these ambitious tasks.

Due to its importance, the assignment problem has been
studied extensively in the literature [1][2]. Among various
approaches, auction [3] and Hungarian [1] algorithm are two
efficient methods to solve the problem optimally. Compared to
Hungarian algorithm, the auction algorithm exhibits a natural
parallel computing characteristic, which is well suited for
hardware acceleration. Although they have various forms,
different auction-based algorithms share similar working flow
as [4][3]. Therefore, although we focus on [3] in this paper, it
can be extended to other auction algorithms with little efforts.

In this paper, we propose to build a common platform for
accelerating auction algorithm using FPGAs. The assignment
problem is used as a concrete example to illustrate the effec-
tiveness of the proposed method. Two implementation archi-
tectures, Jacobi and Gauss-Seidel are discussed, and the latter
one is proved to be more efficient for hardware acceleration.
In addition, a CAD flow is implemented to automatically map
the problem of different sizes into hardware. To the best of
our knowledge, this is the first paper to set up auction-based
architecture based on FPGAs.

978-1-4673-0219-7/12/$31.00 ©2012 IEEE

In existing work of FPGA implementation to solve assign-
ment problem [5][6], Hung and Wang proposed a computing
system based on recurrent neural network. It takes a few
seconds to compute 100 x 100 assignment problem, which is
not efficient enough to meet the practical needs. In contrast,
our proposed architecture can deal with a 500 x 500 problem
in milliseconds. Other work related with hardware implemen-
tations of auction algorithm can be referred to [7]. Recently,
Vasconcelos and Rosenhahn [7] used GPU to accelerate auc-
tion algorithm and achieved 7X with problems from 400 to
4000. Our results show that we can achieve more than 10X
when problem size is 500.

The organization of this paper is as follows. In Section II,
we introduce the preliminaries. In Section III, two different
kinds of hardware implementation architectures are discussed
and compared. In Section IV, we discuss the implementation
details of the proposed architecture. The experimental results
are shown in Section V. Section VI concludes the paper and
proposes the future work.

II. PRELIMINARIES
A. The Assignment Problem

In graph theoretic terms, the assignment problem aims at
finding a maximum weight matching of a weighted bipartite
graph. Given m agents and n objects (m < n), and a benefit
a;; associated with the assignment of object j to agent i,
the assignment problem is to find an assignment of each
agent to exactly one object that maximizes the total benefit.
Furthermore, objects are allowed to remain. It can be described
as a linear programming problem as:

m—1n—1
Zaij “ Tij (1
0 j=0

Maximize

i=

Subject to an—1 2)

0

3 .

1

2y =1¥=01..m-1 ()
=0
Tij € {0,1},V’L =0,1,...,

where z;; = 1 if and only if object j is assigned to agent 1.

m—-1,7=0,1,....n—1 (4

1002

B. Auction Algorithm

Auction algorithm is one of the classical methods to op-
timally solve the assignment problem [3][4]. Intuitively, it
borrows the idea of market equilibrium in economy. Consider
the assignment problem as an auction where agents bid for
objects. Suppose that agent ¢ has potential benefit a;; in
bidding for object j at the price of p;, and then the net benefit
will be a;; — p;. To its best interest, each agent will always
want to get the object with largest net benefit. However, due to
the competition from other agents, the assignment progresses
in an auction manner.

Several variations of the auction algorithm for solving as-
signment problem exist in the literature [3][4][8]. In this paper,
we focus on the forward auction algorithm [3], which is widely
known to have good performance in CPU implementation.
However, the same discussions and implementation framework
can be adapted to other variations as well.

TABLE 1
PSEUDO-CODE OF FORWARD AUCTION ALGORITHM

Input: agents m, objects n; benefit matrix A
Output: assignment ®

1 BEGIN

2 INIT p;=0, ®;=-1 for all objects j;

put all unassigned agents in a list;
set the number of assigned agents, nAssi=0
3 WHILE nAssi = m
/* Bidding Phase */
4 Get an unassigned agent ¢ from the list
5 FOR all the objects j
6 Compute the net benefit, a;; — p;
7 GET Vi]'ri’ Wijri and]1
/* Assignment Phase */

8 COMPUTE the bid of agent ¢ for object j;
9 IF &;, !=-1

10 ADD &, to the list

11 ELSE

12 nAssi++

13 d;.=i;

14 pj,=bid

15 RETURN &

16 END

Basically, the forward auction algorithm is composed of two
phases in each iteration: the bidding and assignment phase.

Bidding Phase: each agent ¢ € I, where I is the set of
unassigned agents, finds an object j; with the best net benefit,
and gives its reasonable bid, that is,

bij, = pj; + Vij, — Wij, +¢€ (5)

where Vi, = n\lgx{aij —Dpj}

Wij, = vﬂfﬁ;i{“iﬂ' —pj}

€: a constant

Assignment Phase: each object j that is selected as best bid
by the agents in I, determines the highest bidder i;, raises its
price to b;;,, and gets assigned to the highest bidder i;; The
agent that is assigned to j at the beginning of iteration (if any)
get unassigned.

Jacobi Implementation Gauss-Seidel Implementation

price vector price vector
T 111 [ITITIT 1]
z 1 P% arrﬂ w) | PE array
(5| w—p 5 T
o o I B
benefit matrix benefit matri

Fig. 1. Jacobi implementation (left) and Gauss-Seidel implementation (right)
of auction algorithm

III. FPGA-BASED ARCHITECTURE EXPLORATION

The key point of using FPGA for acceleration lies in
extracting the parallelism in a target problem. Considering the
forward auction algorithm, there are two potential hardware
architectures, namely, Jacobi and Gauss-Seidel, to expose the
parallel computing flow. In this section, we make a comparison
of these two architectures and argue the latter one is better for
acceleration.

A. Jacobi Parallelization Architecture

Jacobi parallelization regards each agent as an individual
processing element and allows them to bid for objects simul-
taneously. The problem can be understood in an easier way,
shown in the left part of Figure 1. For the m-to-n assignment,
a benefit matrix A that each row represents an agent and
each column represents an object is introduced. The element
of the benefit matrix a;; represents the benefit that agent 4
bids for object j. The prices of all the objects are stored
in a separate vector. At the beginning of each iteration, the
processing elements array (1-D array of PEs) computes the
net benefits for the first column. The corresponding price is
provided for all the PEs. Then it goes through all the columns
to compute the bids of the unassigned rows.

B. Gauss-Seidel Parallelization Architecture

Opposite to Jacobi method, the Gauss-Seidel method re-
gards each object as an individual PE, shown in the right part
of Figure 1. Each PE is responsible for computing the net
value of one object. At first, the PE array computes the net
benefit for the first several columns at the same time. After
finishing the computation of the first block, it moves forward a
block to calculate the next set of net values. By several steps
of computation, it will go through all the columns, to find
the best object of the computed agent. Different from Jacobi
method, it computes one bid per iteration.

C. Jacobi method vs. Gauss-Seidel method

The major reason for the difference is due to the fact that
during the auction process, the number of assigned agents
increases to the problem size quickly. The Jacobi architecture,
whose processing granularity is agent, leads to a large number
of idle PEs as there are few unassigned agents left. Different
from the Jacobi architecture, the Gauss-Seidel architecture
handles one agent at a time, and the bids for different objects

1003

o
2

o o o o o
P -

o
N

Analysis of latency influence on performance

—e— num of PEs: 16
—+— num of PEs: 64
num of PEs: 128

—— num of PEs: 256

P
| Data e
[PE g v v, v, | !
| Array ” block_j
] PE 0 PE 1 PE 2 PEp | bid
<S¢
vy, yval, yvaly yva,
Search Task
best_j | Vij ‘ Wij
Meg‘rory 110 Control
| FIFO v v v Unit
host PC e
Logic >
Yo v v
best | Vi | | Wi
bid
BiLogic W»J
vy i
Addr —
1l Id_i igned i
ian | 0
Assignment e L >
Engine i
A
: empty |

Fig. 2. Gauss-Seidel Architecture with p PEs for parallel computation.

are computed in parallel. As each agent will always need
to compare all objects, the hardware usage does not drop.
Experiments show that Gauss-Seidel architecture achieves a
6X speedup on average compared to Jacobi architecture.

IV. PLATFORM IMPLEMENTATION

In this section, we discuss in detail the implementation
of Gauss-Seidel architecture. We develop a flexible hardware
platform which can automatically generate the architecture of
user-specified size to solve assignment problems of arbitrary
size efficiently. It ensures that no PE will be idle during
bidding phase throughout the whole computation progress. We
leverage the Block RAMs (BRAMs) in modern FPGAs to keep
the instances data so as to save the energy dealing with the
interface to the external memory or host machine. Figure 2
illustrates the detailed architecture implemented in FPGA.

A. Gauss-Seidel Architecture

The architecture is composed of five modules, I/O FIFOs,
PE Array, Search Task, Assignment Engine, and Control Unit.
Among them, PE Array and Search Task module are two data-
intensive computing units. The basic units to compose these
two modules have regularity in structure, which brings the
benefit of highly extendable architecture.

1) PE Array: PE array is composed of a number of
identical PEs in one dimension. Each PE aims at computing
a net benefit in the bidding phase (corresponding to line 6
in Table I). Inside a PE, one distributed RAM is used as a
cache to store a group of prices in a specific order when the
problem size is larger than the number of PEs, which often
is the case. Since the number of prices grows linearly with
problem size, it is costless to keep the prices in a FPGA. All
the PEs are identical in data-processing behavior so that they
share the same control signal.

To update a specified price, we use a decoder to select the
target PE and provide the address of the local RAM at the
same time, so that we can access any price in the PE array.

2) Search Task: After an array of net benefits are calcu-
lated, search task computes the best net value, second best
net value and the best value’s location in the PE array in
this block. The search task module consists of many regular

Latency percentage within iteration

o

o
o

1000 2000 3000 4000 5000
Assignment problem size

Fig. 3. The percentage of cycles consumed by the latency within iteration.

two-input comparators, bringing the benefit of extensibility.
And it is pipelined to prevent clock frequency from dropping
dramatically when architecture size increases.

3) Assignment Engine: The goal of Assignment Engine is
to derive all the required values to compute the bid and to
complete the functions in assignment phase (corresponding to
line 7-14 in Table I).We map those lines into three steps and
each step takes one clock cycle. In the first step, the best net
value V;,, its location in the PE array j;, and the second best
bid W;;,, are computed (line 7). Based on the derived data,
the bid b;; can be computed at this time (line 8). Meanwhile,
the assignment status of object j; is checked (line 9). Finally,
it completes the three functions in assignment phase (line 10,
13, 14 in Table I).

B. Influence of search task on performance

There is no doubt that better performance can be achieved
by a parallel architecture with more processing elements. The
latency introduced by the search task has the negative impact
on the overall performance. In each assignment phase the price
of the bid object requires updating, it has to wait until search
task finishes the latest computation.

Since full pipeline of the search task module introduces
high latency, which heavily affects the performance, we reduce
the pipeline by half. We make sure that search task module
does not become the longest path in the whole design. The
latency introduced in search task is 4, 6 and 8 cycles when the
number of PEs is 16, 64 and 128 respectively. The influence on
performance based on different architecture size is depicted in
Figure 3. From the figure, we can see that given a certain
architecture size, the percentage of latency decreases and
more cycles will be spent on effective computation when the
problem size increases. Moreover, for the problems of small
size, it is wise to implement a relatively small architecture, to
avoid the influence of high latency.

V. EXPERIMENTAL RESULT

The proposed Gauss-Seidel architecture for dense assign-
ment problem is implemented on Xilinx Virtex-5 LX110T
FPGA with a speed grade of -1. A CAD flow is employed
to generate the architecture of user-specified size in verilog

1004

TABLE I
RESOURCE UTILIZATION BASED THE ON ARCHITECTURE OF TWO
SELECTED SIZE AND THEIR CLOCK FREQUENCY

Size
Resources 16 128
Used | Utilization Used Utilization
Registers 1647 2% 10834 15%
LUT as logic 2265 4% 13501 19%
LUT as mem. 540 3% 4127 23%
BRAMs 6 4% 34 23%
[Freq. (MHz) | 220 [139 |

HDL. We use ModelSim 6.2¢g for simulation, and Xilinx ISE
12.2 to synthesize and place and route our design.

The architectures of several sizes have been mapped into
hardware. For a single Virtex-5 LX110T FPGA, we can
implement more than 400 PEs for parallel computation. Table
2 shows the resource utilization for two selected architectures.
From the table we can see that LUTs are heavily consumed
when the architecture size is 128. This is because the search
task module consumes a large amount of resources, nearly
95%. The timing report shows that the clock frequency
decreases with the increasing architecture size. There is no
surprise that the large usage of FPGA routing resource results
in the difficulty in routing task, which increases the time
consumed by routes. However, the clock frequency can be
further improved by manual floor planning.

To test the performance of the proposed architecture, we
have used the most common classes of instances used in the
literature [9] to test AP algorithms, which is called uniform
random class. This class includes that the entries of the benefit
matrix are integers uniformly randomly generated in [0, K],
with K = 1000. As symmetric problem often needs more time
to compute, we use it as the worst case to test the performance.

For comparison, we implement a C program based on the
public FORTRAN codes originally written by the author of
[4]. The program was run on a PC with a Pentium Dual
Core CPU running at 2.7GHz with 4.00GB RAM. Symmetric
assignment problems of size from 200 to 500 are tested due
to the limitation of BRAM resources. We use 5 instances
of uniform random class per problem size to test. All the
assignment results are optimal verified by public codes of
Hungarian algorithm. The speedup is computed as follows:

Computation time by CPU
Computation time by FPGA

Speedup =

The computation time is core calculation time to execute the
algorithm. The speedup of 16-PEs and 128-PEs architectures
on four sets of assignment problems is shown in Figure 4.
There is an increasing trend of speedup when the problem
size grows, because the latency influence degrades and more
cycles are spent on effective computation, so the proposed
architecture can achieve a higher speedup ratio for large
problems. Currently, the speedup is more than 10X when the
problem size reaches 500.

The speedup of 16-PEs and 128-PEs architectures

Problem size

Fig. 4. The speedup is averaged based on 5 random generated instances. The
architecture contains 16 PEs and 128 PEs for parallel computing respectively.
The problem size covers from 200 to 500.

VI. CONCLUSION

In this paper we explored two classes of auction-based par-
allel architecture for solving assignment problem and figured
out that Gauss-Seidel method is more suitable for parallel
implementation.Then we set up a general platform which
generates extendable hardware architecture using CAD flow.
It can efficiently deal with assignment problem of any size.
The proposed architecture can achieve more than 10X speedup
with 128 PEs on problems at size 500.

Currently, the scale problem is unknown due to the resource
limitation of on-chip memory. We are considering high-speed
interfaces to solve memory problem. In the future, we plan to
extend our hardware architecture to other problems in linear
network field as well.

ACKNOWLEDGMENT

This research work has been supported by NSERC (Natural
Sciences and Engineering Research Council of Canada).

REFERENCES

[1] H. Kuhn, “The Hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83-97, 1955.

[2] J. Wang, “Analogue neural network for solving the assignment problem,”
Electronics Letters, vol. 28, no. 11, pp. 1047-1050, 1992.

[3] D. Bertsekas, “The auction algorithm: A distributed relaxation method for
the assignment problem,” Annals of Operations Research, vol. 14, no. 1,
pp. 105-123, 1988.

, “Auction algorithms for network flow problems: A tutorial intro-

duction,” Computational Optimization and Applications, vol. 1, no. 1, pp.

7-66, 1992.

D. Hung and J. Wang, “Digital hardware realization of a recurrent neural

network for solving the assignment problem,” Neurocomputing, vol. 51,

pp. 447461, 2003.

[6] ——, “A FPGA-based custom computing system for solving the as-
signment problem,” in FPGAs for Custom Computing Machines, 1998.
Proceedings. IEEE Symposium on. 1EEE, 1998, pp. 298-299.

[7] C. Vasconcelos and B. Rosenhahn, “Bipartite graph matching computation

on GPU,” in Energy Minimization Methods in Computer Vision and

Pattern Recognition. Springer, 2009, pp. 42-55.

D. Bertsekas and D. Castafion, “A forward/reverse auction algorithm

for asymmetric assignment problems,” Computational Optimization and

Applications, vol. 1, no. 3, pp. 277-297, 1992.

[9] M. Dell’Amico and P. Toth, “Algorithms and codes for dense assignment
problems: the state of the art,” Discrete Applied Mathematics, vol. 100,
no. 1-2, pp. 17-48, 2000.

[4]

[5

—

[8

—_—

1005

