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Abstract— In this paper, we propose an FPGA-based hardware
architecture for conducting real-time prediction of neural activ-
ity using a second-order generalized Laguerre-Volterra model
(GLVM). This architecture serves as a rapid prototype of the
prediction module of the future cognitive neural prosthetic device.
We validate the functionality of the hardware model by utilizing
the neuronal firing data of behaving rats trained to perform the
delayed nonmatch-to-sample (DNMS) memory task.

I. INTRODUCTION

Cognitive neural prosthesis design has been a field of
interest in recent years. This type of prosthesis, if successfully
developed, would provide more fundamental treatment to dis-
eases related to cognitive impairment, such as the Alzheimer’s
disease (AD) [1].

A mathematical model describing how information carried
by the biosignals flows through the brain regions is im-
portant to the development of the neural prosthetic devices.
One approach is parametric modeling [2], which has been
intensively implemented for simulating the detailed biological
mechanisms/processes underlying the information processing.
However, this approach typically requires a large number
parameters, which are difficult to estimate, and intensive
computation, which are not feasible in real time applications.

In view of the above, we refer to the non-parametric
models (data-driven models), which use engineering modeling
techniques such as network analyses, information theory and
statistical methods to investigate the behavior of biological
neurons or neural networks. The generalized Laguerre-Volterra
model (GLVM), which is proposed by Song et al. [3], is one
of these well-functioning non-parametric models.

Previous studies carried by Volterra [4], Wiener [5] and
Marmarelis [6] have demonstrated that for any nonlinear and
time-invariant system with finite memory length, the system
output can be represented as a functional power series of the
system input, as described by eq. 1.

In (1), the system dynamics is revealed through the temporal
convolution between system input and the kernel functions
k; while the system nonlinearity is suggested by multiple
convolutions between the input and the higher order kernel
functions. In the GLVM, we use the real-time Laguerre expan-
sion of Volterra kernels and the point process filters to track the
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nonlinear time-variant neural system. The detailed description
of the generalized Laguerre-Volterra (GLV) algorithm can be
found in [7].
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Real-time prediction of neural activity is critical to the
neural prosthetic applications because the spiking activity
of the neural ensemble is very time-sensitive to the stimuli
imposed. Comparing to the software-based prototyping of the
GLVM (which is unable to guarantee real time), cycle-accurate
hardware can well achieve this purpose. Among various hard-
ware platforms, the Field-Programmable Gate Array (FPGA),
due to its reconfigurability and excellent parallel processing
capability, becomes an ideal choice of implementation and
early-stage prototyping tool for the prosthetic device.

The complete flow of the GLV algorithm consists of two
stages. The first is parameter estimation, which is to use
the recorded neuronal firing input/output data to estimate the
model coefficients. The second is output prediction, which
uses the estimated coefficients and novel input to predict the
model output. Accordingly, for a working prosthetic device,
there are two main modules, i.e. estimation module and predic-
tion module. For power and area considerations, it is desirable
that the estimation module be designed as the extracorporeal
system and the prediction module the brain implant.

In [8], we have demonstrated an efficient hardware archi-
tecture which adopts the GLV algorithm to estimate the model
coefficients. That serves as an early prototyping of the estima-
tion module for the prosthesis. In this paper, we describe the
FPGA-based hardware framework of the prediction module,
utilizing second-order Volterra kernels.

The main contribution of our work consists of three parts:
1) we propose the first FPGA-based hardware architecture op-
timized for predicting neural activity using high-order Volterra
kernels; 2) we demonstrate that this architecture is easily
scalable and is area-efficient; 3) we validate the functionality
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Fig. 1.

Overview of the hardware framework. The light-blue boxes indicate functional units. The white rectangular boxes indicate key registers or register

arrays. The prediction module can be divided into four major components (A to D) according to their functionalities. H-extl and H_ext2 are augmented
horizontal vector (H) extension units. The three MUXes (from left to right) are FIFO writing selection MUX, channel selection (64 to N) MUX and input

selection MUX for the convolution operation.

of this architecture using neuronal firing data from behaving
rats performing the DNMS task.

II. HARDWARE FRAMEWORK

The hardware framework of the prediction module is shown
in Fig. 1. This architecture consists of four parts (as indicated
by the four regions in the figure): 1) a Universal Asynchronous
Receiver/Transmitter (UART) component which serves as
the data interface between the FPGA and the host device;
2) a convolution component which conducts the temporal
convolution between system input and the kernel functions;
3) an augmented horizontal vector H (convolution product)
expansion component which operates among the elements
of H, expanding the vector space, and a multiplication-and-
accumulation (MAC) component which performs the MAC
operation between H and the Laguerre coefficients C; 4) an
threshold trigger (TT) which generates the neural spikes using
a threshold function.

A. Data Interface (Region A)

The RS-232 serial interface is adopted in this prediction
module. In current experimental settings, the sampling rate
by the multi-electrode array is 2kHz; the 115,200 baud rate
is fast enough to meet this sampling frequency. The serial
interface employing the UART protocol has a lower power-
area product than its counterpart in the estimation module,
which is suitable for implantable applications. The prototyping
board comprises an embedded component which transforms
the RS-232 voltage to the FPGA operation voltage. The 16x
oversampling technique is adopted to reduce data transmission
error. A customizable control unit is designed to transform
serial data into 8-bit data frames and store the data frames
into input FIFOs. The number of FIFOs to be used depends
on the number of inputs. In current experimental settings, 64
electrodes are used and there are 8 input FIFOs in the interface.
The input FIFO caches data between different clock domains

(UART and processing core). The output data are sent back
to be host device via identical datapath.

B. The Vector Convolution Component (Region B)

The vector convolution algorithm can be found in Sec.
II-D of [8]. This component is similar to the one shown
in [8], but with two distinct features. First, the datapath
here can be fully pipelined due to the elimination of the
feedback path of the Laguerre coefficients in the estimation
module. In the prediction module, the coefficient appears a
constant vector. Second, before conducting vector convolution,
the component allows to choose N most significant inputs
from the 64 sampling channels. Previous experiments suggest
that not all inputs to the system contribute to the output
spikes. Introducing too many inputs would, on the contrary,
deteriorates the quality of prediction. The effective inputs can
be identified by conducting GLV model selection [9]. And the
selection result can be sent to the prediction module via the
data interface proposed in Sec. IV-A.

C. Processing of Convolution Products (Region C)

The number of variables M of a second order model after the
convolution stage can be counted as M = My + Msgs + Mo,
M; is the number of variables in the augmented horizontal
vector H produced by the vector convolution unit. Mg ac-
counts for the interactions among different basis functions of
each individual input by multiplication between the element
pairs (in all permutation). Given L the number of basis func-
tions, L(L 4 1)/2 multiplication operations are needed. My,
accounts for the interactions among different basis functions
from different inputs. C%; * L? pair-wise multiplications are
needed in this case. The extended horizontal vector and the
Laguerre coefficients are then sent to the MAC component.
The value of the membrane potential w can be acquired at the
root stage of the adder array in the MAC component.
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Fig. 2. The calculation results by the FPGA-based hardware platform and the software platform (bin size: 3,500). (a)-(c): calculation results of the membrane
potentials by software (sw), hardware (hw) and difference of the two data sets; (d): Gaussian white noise (u=0, c2=0.25); (e): calculation result of pre-threshold

membrane potential by hardware; (f): predicted model output (6=1.50).

D. The Threshold Trigger (Region D)

Upon being calculated, w is first added to a Gaussian noise
quantity which is invented to simulate the intrinsic neuronal
noise and the noise contributed by unobserved model inputs.
Therefore, a Gaussian random number generator (GRNG) is
constructed to simulate this noise term. Our GRNG is designed
based on a uniform random number generator (URNG) whose
structure is first proposed by Tkacik et al. [10]. It is imple-
mented by the bitwise XOR operations between the lower
32 bits of a 43-bit Linear Feedback Shift Register (LFSR)
and the lower 32 bits of a 37-bit Cellular Automata Shift
Register (CASR). Each 100 numbers generated by the URNG
are added to form the Gaussian distribution. The summation
of the membrane potential and the noise is compared to a
threshold value 6 which can be defined by the user. If the
threshold is crossed, an output spike will be generated. The
prediction result is fed back to the vector convolution unit as
the ‘after potential’ for iterative calculation.

III. RESULTS

Our test data are acquired from the male Long-Evans rats
aged from four to six months which are trained to perform
the delayed nonmatch-to-sample (DNMS) task [11]. The hip-
pocampal neuronal firing activities are recorded by the multi-

electrode array when the rats are performing the task. The
recorded signals are processed by the spike sorting algorithm.

We use the FPGA-based hardware module and software
(whose precision is already validated by experiments [3])
to process one session of the neuronal firing data (Animal
# 1150). The calculation results of the membrane potential
are shown in Fig. 2(a) (software) and Fig. 2(b) (hardware)
respectively. The difference between the two data sets are
shown in Fig. 2(c). We calculate the normalized mean square
error between the two data sets to be at 10~!! scale. The func-
tionality of the hardware platform can thereby be validated.

Fig. 2(d) plots the noise wave. Fig. 2(e) plots the summation
product of the membrane potential and the Gaussian noise. The
predicted neuronal spikes by the TT component are shown in
Fig. 2(f). The spiking threshold € can be defined by the user.
The higher 0 is set, the higher the false negative rate (FNR)
will be. On the other hand, lower 6 will incur higher false
positive rate (FPR).

The prediction module runs on a Xilinx Virtex-5
XC5VLX110T FPGA which is part of the XUPV5-LX110T
board. This prediction core consumes 35,045 FPGA Slice
LUTs, and 4,542 Slice Registers while operating at a fre-
quency of 16MHz (optimal speed to coordinate with the Baud).
There is a remarkable reduction in the area compared with our



previous estimation module architecture. This is mainly due to
the elimination of the Laguerre coefficient estimation circuitry
in the prediction module and also reduced model inputs by the
introduction of the ‘64 to N’ input selection component.

Another feature of our design is its multi-fold scalability,
which can be derived by module reuse and MISO model
extension. In some deign components, such as vector convo-
Iution and MAC, different number of processing elements can
be implemented, according to the number of effective model
inputs that would affect the system data throughput. In case
that the device to be used is resource-limited, the design can be
implemented with multiple FPGAs, each representing a MISO
model. This is due to the data-irrelevance of MIMO model
outputs in the proposed GLV algorithm [7].

IV. DISCUSSION
A. Filtering Techniques for Coefficients Calculation

The coefficients used in this work are estimated using the
Steepest Descent Point Process Filter (SDPPF). While it works
effectively for estimation of the Laguerre coefficients, other
filtering techniques such as the Stochastic State Point Process
Filter (SSPPF) may perform better in terms of accuracy. With
the SSPPEF, we also estimate the variance of the Laguerre
coefficients as shown in eq. 10 of [12].

We have implemented the SSPPF in our software model. For
the FPGA implementation of the SSPPF, there are particular
challenges, mainly lying in the inversion operation of the large-
size covariance matrices. The size of W in eq. 10 of [12] can
be identified when the number of effective inputs N and the
number of basis functions L are determined, accordingly to the
GLV algorithm, as shown in Fig. 3. Efficient hardware archi-
tecture has yet to be invented to accommodate this intensive
computational requirement (/N>3), taking into consideration
of the datapath and memory access pattern optimization for
efficient chip resource allocation and power reduction.

B. Adoption of Advanced Design Paradigms

As an early-stage prosthetic prototype, the current hardware
system has its limitations and is subject to further optimiza-
tions. For the future neuroprosthetic device (an ASIC chip),
power and area are two important concerns. In order to reduce
power consumption and extend battery life, both circuit-level
design optimization and process technology improvement are
needed. In the fabrication stage, transistors with reduced char-
acteristics length and the high-K metal gate process optimized
for low power applications can be well utilized. Advanced de-
sign paradigms, such as fault-tolerance can also be introduced
to enhance the flexibility and robustness. Bio-compatibility
should to be considered in future design effort.

V. CONCLUSIONS

We propose the first FPGA-based circuit architecture for
research of neural activity utilizing the second order Volterra
kernels. This architecture is very efficient for online prediction
of neuronal firing signals in experimental settings. Potentially,
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Fig. 3. Dimension of the covariance matrix with different N and L.

it has a wide usage for the development of future neuropros-
thetic devices. The proposed architecture can be integrated
with our previous architecture [8] in order to form a complete
full-scale neural signal processing system.
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