On Strong Locality Properties of Alternative Wires in Digital Circuits

Yu-Liang Wu, Wang Wong,
Kai-Cheung Cheng and Chak-Chung Cheung
The Chinese University of Hong Kong, Hong Kong

Hongbing Fan, University of Victoria, Canada

The 11th Workshop on Synthesis And System Integration of Mixed Information technologies

Outline

- Definition & Revision
- Improvement on GBAW
- Analysis of Locality Properties of Digital Circuit
 - Distribution
 - Topological
 - o Pattern
- Speed Comparison
- Conclusion

Definition - N-Local Patterns

- Target WireWire(s) to be removed
- Alternative WireWire(s) added to the circuit
- N-Local
 - Distance between Target Wire and Alternative Wire is N levels of circuit depth

N-local Pattern

N-local Pattern Example:

1-Local Pattern

2-Local Pattern

Definition - Locality vs. Distributivity

- Distribution of AW
 - Is Alternative Wires evenly distribution?
 - Graph Representation

Revision of RAMBO

- Redundancy Addition-and-removal for Multilevel Boolean Optimization
- Methodology: ATPG Based
- Time consuming

Revision of GBAW

- Graph Based Alternative Wiring
- Methodology: Pattern matching

GBAW improvements

- Implement the improvements
 - Partial Pattern Matching
 - Reverse Matching
- Locality Analysis
 - Analysis on GBAW data
 - Testing on RAMBO vs. GBAW

Partial Pattern Matching

Reverse Searching

- Implement Reverse Searching
- Increase GBAW's search power

Forward Order

Search from fanin to fanout

Search from fanout to fanin

Backward Order (Old GBAW cannot find this pattern)

Statistics of finished GBAW

- Simulation Environment

 - Public MCNC Benchmark Circuit 100 Trials

	Old GBAW		New GBAW	
Circuit	Cluster-3 AW found	CPU Time (s)	Cluster-3 AW found	CPU Time (s)
C432	0	0.35	0	0.42
C499	0	0.44	0	0.44
C880	AW Increased 53%			0.76
C1355		1.13		
C2670	14	0.54	15	0.54
C3540	8	1.47	12	1.82
C6288	0	2.6	0	2.76
Sum of Other Circuits	159	26.23	248	25.3
Total	181	36.79	275	34.97

Locality – CAD Tools Features

- Implication Based (e.g. RAMBO)
 - very slow
 - Rely on ATPG testing on the redundancy
- Recursive Learning (e.g. RAMFIRE)
 - Limit the learning space
 - **●10 times faster than RAMBO**
- Graph Based (e.g. GBAW)
 - Rely on pattern matching

Locality - Introduction

- Usage of Localities
 - Information about AW properties

- Three types of Locality Properties
 - Distribution Locality
 - Topological Locality
 - Pattern Locality

Distribution Locality

- Study on All AW located
- Difference from Topological Locality
 - Locate multiple AW for each target wire
 - More choice for future usage, e.g. perturb & simplify

Distribution Locality

Statistics

Published papers claim that 30% of circuit wires got AW

Circuit	Wires Tested		AW Found	
C432	399		248	
C499	886		30	
C880	806		252.	
C1355	1087	108	865 / 30288= 35	%
C2670	1583		471	
C3540	. 289		1137	
C6288	5227		1344	
Sum of Other	18011		7137	
Total	30288		10865	

Topological Locality

- Locate only the closest AW
- 1st wire definition
- Why choose the 1st wire?
 only one AW can be chosen for actual usage

Statistics

About 30% wires got AW

Circuit	Wires Tested	AW Found	
C432	399	188	
C499	886	30	
C880	806	216	
C1355	1087	3610 / 30288 = 3	28 %
C2670	1583	352	
C3540	2287	802	
C6288	5227	1344	
Sum of Other Circuits	18011	5432	
Total	30288	8610	

Analysis on AW Circuit Depth

Pattern Locality

- Study focused on the pattern occurrence
 - Full Overview on occurrence of patterns
 - Most AW are found within 2-local patterns
- 1-Local Pattern

Matching relies on a few patterns only

Uneven Distribution

2-Local Pattern

Champion Patterns — Simple

Pattern 13 for 1-local

Pattern 23 for 2-local

Locality Conclusion

- Locality RAMBO result
 - Similar Pattern Locality
 - **●95% AW within 2-local depth**
- Implication on AW properties
 - About 30% of circuit wire got AW
 - Concentrate within 2-local
 - Rely heavily on simple patterns

Speed comparison

- Same Testing environment
 - Ultra 5/270, 128MB RAM
 - Standard MCNC benchmark circuits

Conclusions

- AW properties
 - Tend to be close to the target wire
 all AW & the 1st AW
 - Most are from simple patterns
- GBAW advantages
 - Implement simple pattern matching
 - As a result, consume very little CPU time
 - Can be integrated into various CAD tools