
A SCALABLE SYSTEM-ON-A-CHIP ARCHITECTURE FOR PRIME NUMBER VALIDATION

Ray C.C. Cheung and Ashley Brown
Department of Computing, Imperial College London, United Kingdom

Abstract

This paper presents a scalable SoC architecture for prime
number validation which targets reconfigurable hardware.
The primality test is crucial for security systems, especially
for most public-key schemes. The Rabin-Miller Strong
Pseudoprime Test has been mapped into hardware, which
makes use of a circuit for computing Montgomery modu-
lar exponentiation to further speed up the validation and to
reduce the hardware cost. A design generator has been de-
veloped to generate a variety of scalable and non-scalable
Montgomery multipliers based on user-defined parameters.
The performance and resource usage of our designs, im-
plemented in Xilinx reconfigurable devices, have been ex-
plored using the embedded PowerPC processor and the soft
MicroBlaze processor. Our work demonstrates the flexibil-
ity and trade-offs in using reconfigurable platform for de-
veloping System-on-a-Chip applications. It is shown that,
for instance, a 1024-bit Primality test can be completed in
less than a second, and a low cost XC3S2000 FPGA chip
can accommodate a 32k-bit scalable primality test with 64
parallel processing elements.

1 Introduction

For centuries, the problem of validating prime numbers, the
Primality test, has posed a great challenge to both computer
scientists and mathematicians [6]. The problem of identi-
fying Prime and Composite numbers is known as one of
the most important problems in arithmetic. Many security
applications also involve large numbers: while it is easy to
multiply prime numbers to get a product, the reverse pro-
cess of recovering the primes is much more difficult.

Field programmable gate arrays offer a rapid-prototyping
platform for the verification of embedded systems.FPGAs
are also used as active components in security systems,
such as Firewall processors [12]. As the threat of attacks
appears to be increasing, many existing systems do not
seem to be secure enough. One of the reasons is due to
the use of weak key generation. It has been recognised
that strong prime number generation is important, and the
prime validation is an intrinsic part of the generation. Here
we define validation as the process of performing prime
testing on a given number.

This paper presents a scalable SoC architecture for prime
number validation which targets reconfigurable hardware
such as FPGAs. In particular, users are allowed to se-
lect predefined scalable or non-scalable modular opera-
tors for their designs [4]. Our main contributions in-
clude: (1) Parallel designs for Montgomery modular arith-
metic operations (Section 3). (2) A scalable design method
for mapping the Rabin-Miller Strong Pseudoprime Test
into hardware (Section 4). (3) An architecture of RAM-
based Radix-2 Scalable Montgomery multiplier (Section
4). (4) A design generator for producing hardware prime
number validators based on user-specified parameters (Sec-
tion 5). (5) Implementation of the proposed hardware ar-
chitectures in FPGAs, with an evaluation of its effective-
ness compared with different size and speed tradeoffs (Sec-
tion 6). (6) Evaluation of a SoC approach using customised
IP blocks with both hard [5] and soft processor (Section 7).

The rest of the paper is organized as follows. Section 2 de-
scribes the related work. Section 3 presents a design flow
for mapping scalable prime number validators into hard-
ware. Section 4 covers a scalable architecture for modu-
lar multiplication. Section 5 presents a design generator
GenDesign which produces architectures with different
design trade-offs, based on user-specified parameters. Sec-
tion 6 provides experimental results of one single IP-block.
Section 7 describes the SoC-based framework using em-
bedded processors. Finally, Section 8 summarises our cur-
rent and future research.

2 Background and Related work

Primality test is essential for prime number generation.
Cryptography often uses large prime numbers. For in-
stance, RSA public key algorithm requires 512-bit, 1,024-
bit for key generation [17]. Much research work has been
done on primality test and generation, and most algorithms
are based on factorization [16]. In [2], the primality test has
been proved to be solvable in polynomial time. However,
it requires a log operation which is expensive for hardware
implementation; it also requires knowledge of the primal-
ity of preceding numbers, which is impractical for arbitrary
prime testing. Joye et al [10] has proposed an efficient
prime number generation scheme based on pseudo-random
number generation using a smart-card implementation. Lu
et al [13] has further developed the RSA key generation for
smart card using different prime number algorithms.



Input: The number under primality test: p

1. Random choose a number b in [1, p-1] ∈ Z
2. Let p = 2(q×m)+1 where m is an odd integer
3. IF either
4. Case 1: bm = 1 (mod p) or
5. Case 2: there is an integer i in [0, q-1]
6. such that bm×2i = -1 (mod p)
7. RETURN "Inconclusive"
8. ELSE
9. RETURN "Composite"

Figure 1: The Rabin-Miller Probabilistic Primality Test

There is a special class of very large prime numbers
which have the representation of 2n − 1. They are called
Mersenne prime numbers. The 40th Mersenne prime num-
ber 224,036,583 − 1 has been discovered in May 2004. A
clustered workforce GIMPS [9] in the Internet is currently
dedicated on locating the next Mersenne number.

2.1 Rabin-Miller Primality Test

In this paper, we have selected the Rabin-Miller probabilis-
tic primality test algorithm [15] (Figure 1) as the core for
the primality test. The algorithm can quickly determine
the primality of the given large number with a control-
lably small probability of error [1]. It requires a num-
ber of small primes for repeatedly testing the input num-
ber. The probability of falsely identifying a composite
as a prime decreases with every additional small prime
used. This method enables the tradeoff between accuracy
(more small primes) and efficiency (fewer small primes)
for different applications. As shown in the algorithm,
“inconclusive” implies the number p maybe prime.
The selection of number b is based on a set of small primes
such as 2, 3, 5, ... With the use of first eight small primes,
the 100% accuracy of primality test can be achieved for
numbers up to 3.4× 1010 [1].

2.2 Scalable Montgomery Algorithm

The fundamental operation of the RSA public key cryp-
tosystem is modular exponentiation, achieved by repeated
modular multiplications. The Montgomery modular mul-
tiplication [14] has been widely used to speed up the mul-
tiplication, squaring and exponentiation. There are many
different extended algorithms [11] and software implemen-
tation based on the Montgomery algorithm, and the high-
radix Montgomery modular exponentiation has been im-
plemented in reconfigurable hardware [3].

The reusability and scalability of the Montgomery multi-
plier have been investigated in [18, 19] such that the de-
sign is no longer restricted to a fixed precision. The in-
put operands are partitioned into multiple words. Figure 2
shows the algorithmic description of the Radix-2 Mont-
gomery multiplication. The operand Y (multiplicand) is
scanned word-by-word and the operand X (multiplier) is
scanned bitwise. The loop index n is the bit width of
the prime number and e is the number of partitions in the
operand Y . The scalable design of Montgomery multipli-

Input: X * Y (mod M), Output: S
1. S = 0
2. for i = 0 to n - 1
3. (Ca,S(0)) = xi*Y(0) + S(0)

4. if S(0)
0 = 1 then

5. (Cb,S(0)) = S(0) + S(0)

6. for j = 1 to e
7. (Ca,S(j)) = Ca + xi*Y(j) + S(j)

8. (Cb,S(j)) = Cb + M(j) + S(j)

9. S(j−1) = (S(j)
0 ,S(j−1)

w−1..1)
10. end for
11. else
12. for j = 1 to e
13. (Ca,S(j)) = Ca + xi*Y(j) + S(j)

14. S(j−1) = (S(j)
0 ,S(j−1)

w−1..1)
15. end for
16. end if
17. s(e) = 0
18. end for

Figure 2: The Multiple Word Radix-2 Montgomery Multiplica-
tion Algorithm

cation has been implemented as a coprocessor in reconfig-
urable RSA System-on-Chip building block in [8]. Further-
more, a high-radix design of scalable modular multiplier
has also been discussed. We observe that the scalable de-
sign is particularly useful for very large precision such as
the prime test.

3 Design Flow

In this section we present the design flow for our scalable
prime number validator. The input to the system includes
user-specified constraints, such as the bit-width of the input
prime number and the word-width which is required for
the scalable multiplier, while the output from the system is
a synthesizeable hardware block that can be embedded in
different cryptographic designs. This flexible design flow
facilitates the ability to upgrade existing security systems
with very small overhead.

The major features of the proposed validator include: (1)
A variable compile-time prime number validator in which
user can easily update the complexity of the system by
controlling the prime width. (2) The variable input small
prime numbers determine the accuracy and performance of
the system. (3) The user-specified word-width controls the
modular operation taken in the hardware. (4) Users are able
to select different Montgomery architectures for hardware
implementation and thus enhance rapid prototyping.

The Rabin-Miller algorithm is first implemented using
standard multiplication and exponentiation with a sequen-
tial modulo-multiply. We observe that one of the bottle-
necks of the Rabin-Miller algorithm is the modular ex-
ponentiation in testing the two valid checks in Section
2. Montgomery algorithm is widely used for modu-
lar multiplication and exponentiation. It requires a con-
stant at the start of algorithm to facilitate conversion be-
tween standard and Montgomery space. The constant c is
(2(2×(width(p)+2)) % p) where width(p) is the bit-width of
the prime number p under test. In this paper, this constant
c has been precomputed and saved in hardware. Note that



HDL Design EntryPrime number width
User specific
word width

Montgomery
constant

Perform Rabin-Miller
Primality Test

Validate large primes

Flexible small
prime number

Case 1:
Perform modular
exponentiation

Case 2:
Perform modular
squaring

non-scalable or scalable montgomery multiplier can be selectively used

Synthesized
Hardware Block

Number p
under test

Figure 3: The design flow of the scalable prime number validator

Algorithm for computing S = A × B mod M

parallel {
1. S = 0
2. j = width(A) + 2

}
3. FOR i = j to 0

parallel {
4. q = S + (B0? A : 0)
5. S = shiftRight(q + (q0? M : 0))
6. B = shiftRight(B)

}
7. END FOR
8. RETURN S

Figure 4: Generating Montgomery modular multiplication S

the statements embraced by parallel{...} mean that they
are executed concurrently in hardware.

3.1 Montgomery modular multiplication

Current modular multiplication approaches are mostly
based on the Montgomery algorithm [14]. The simpler
combinational logic used in this design has shortened the
critical path and thus accelerates the calculation. An effi-
cient hardware implementation has been presented in [7].
The basic idea of Montgomery’s algorithm is to multiply
two integers modulo M in other words, (A × B mod M )
without division by M . We first use the generated Mont-
gomery constant c to transform the integers in m-residues
and compute the multiplication with these m-residues. Fi-
nally, we transform this result back to the normal represen-
tation. Note that modular multiplication is used in modular
exponentiation, since it is beneficial if we compute a series
of multiplications in the transformed domain, the Mont-
gomery space. Figure 4 shows the pseudo code of the hard-
ware description. For example, “q = S + (B0 ? A : 0)”
checks if the LSB of B is true, then “q = S + A” else
“q = S”.

3.2 Montgomery modular exponentiation

Figure 5 shows the algorithm for calculating the modular
exponentiation using the Montgomery algorithm. This al-

Algorithm for computing S = XE mod M

1. P[2] = 0, Z[2] = 0;
parallel {
// Apply two parallel multipliers

2. P[0] = P[1] = MontgomeryModularMulti[0](c, 1)
3. Z[0] = Z[1] = MontgomeryModularMulti[1](c, X)
4. j = width(E) - 1
}

5. FOR i = j to 0
parallel {

6. P[!i0] = E0?
MontgomeryModularMulti[0](P[i0],Z[i0]):P[i0]

7. Z[!i0] = MontgomeryModularMulti[1](Z[i0], Z[i0])
}

8. E = shiftRight(E);
9. END FOR
10.RETURN S = MontgomeryModularMulti[0](1, P[i0])

Figure 5: Generating Montgomery modular exponentiation S
(both scalable and non-scalable)

gorithm is not limited to the input bit-width and is suitable
for replacing the standard sequential modulo-multiplier.
The X and 1 value is first transformed into Montgomery
space by using the Montgomery constant c. Since there
is no data dependency between the modular squaring and
multiplying operation in line 6 and line 7, both operations
are put into separated hardware and execute in parallel. The
final result is transformed back to the standard domain for
the Rabin-Miller primality test.

The datapath of the modular exponentiation unit is depicted
in figure 6. Two parallel multipliers have been deployed in
this unit together with four temporary storages, P0, P1, Z0

and Z1. The inputs to this unit are X and E which are
stored in registers or memory depending on the architecture
of the multiplier. The pre-stored Montgomery constant c is
used for the first step calculation in figure 5. The control
path, other temporary storage and memory decoding unit
are not shown in this figure.

4 Scalable modular multiplier

The previous section presents the general design flow of
primality test using non-scalable multiplier. In this section,



Processing
Element 1

Processing
Element 2

Processing
Element p...

18k-bits BRAM
RAM

decoder

Storing n-bit X

p

Xi+1 Xi+p-1

1

1

1BRAM
holds
M

BRAM
holds
Y

w

w

18k-bits BRAM

Storing result S

w w

Compute: S = X * Y mod M using scalable Montgomery algorithm

Xi

Figure 7: The architecture of the scalable Montgomery multiplier

BRAM / Registers (P0, P1, Z0, Z1)

BRAM / Register
store Montgomery

Constant c

BRAM / Register
store Constant 1

BRAM/Register
Input X

Parallel Scalable /
non-scalable
Multiplier 0

Parallel Scalable /
non-scalable
Multiplier 1

BRAM/Register
Input E

Figure 6: The architecture of the Exponentiation unit using two
parallel Montgomery multipliers and multiple Block-RAMs

we present the mapping of scalable Montgomery multipli-
cation into technology independent hardware. The technol-
ogy dependent such as FPGA and the optimisation tech-
niques are presented in the next subsection.

The scalable Montgomery algorithm MWR2MM is shown
in figure 2 for multiplying X and Y . The general idea is to
repeatedly multiply Xi, the ith bit of X , with Y . The par-
allelism of the design can be explored by applying multiple
processing elements (PEs) as the data dependency can be
resolved between different Xi values, i.e. each single bit
of X’s calculation. The datapath of the multiplier using p
PEs is shown in figure 7. First, the RAM decoder produces
the p-bits, Xi, Xi+1, . . .Xi+p−1 and feeds these bits into
p PEs. These signals are valid for j cycles and the mem-
ory decoder then extracts the next p-bits from the memory
storing X .

For the scalable version, the modular multiplier is replaced
by the one described in figure 2. Note that the num-
ber of clock cycle and the performance of the scalable
MWR2MM algorithm depends on the number of bit of
the number under test and the user-specified partition size
which is the word-length. The words extracted from Y,M
are serially put into the first PE and pipeline to the next and
other PE elements.

xi

Yj Mj

register

Sjw w w

w w

w

product
generator

product
generator

adder &
shift alignment

S(j-1)

c

1

j

register

delay one cycle

1

Figure 8: The architecture of a single Processing Element

In the cycle when j = 0, the PE element determines the
addition of M for the next j cycles within this PE element.
We can refer to line 4-10, and line 12-15 in figure 2 more
details. The exact datapath of a single PE is described in
figure 8. We use a multiplexor to select and store S(0)

0 , the
bit-0 of the lowest word in S, in a register only when j = 0.
The input Sj is latched for computing the Sj−1 in the next
cycle as shown in line 9 and 14 in figure 2.

Memory exploration in FPGA

We retarget the scalable Montgomery multiplier in FPGA
and explore the available resources such as embedded
memory. For instance, if we use shift register for n-bit data,
the hardware usage is linearly proportional to the input bit-
width. In order to save area, our design stores the n-bit
data into Block-RAMs (BRAM) which holds up to 18k-bit
data. Together with all the temporary storage, each design
takes 20 BRAMs which is half of the available BRAMs
in XC2V1000 FPGA chip. In figure 7, each data bit in
BRAM-X is decoded for a PE while in each cycle, the j th

data in BRAM-Y and BRAM-M are stored in the first PE
and propagated in the pipeline registers. The outputs of
PE1, . . . PEp−1 are stored in the intermediate registers, so
that in each cycle only the last PE, PEp, is responsible to
update the content in BRAM-S.



5 Hardware Design Generator

This section presents the GenDesign tool which we de-
velop for transforming user-constraints into Hardware De-
scription Language (HDL) format, as well as implementing
hardware designs. GenDesign is coded in C. This gen-
erator enhances designer productivity and exploits avail-
able resources from the rapid-prototyping platform. The
objective of this design generator is to accelerate the over-
all design flow from specification to final implementation.
Using this tool, designers can specify architectural-specific
description of their designs. The predefined libraries con-
sist of non-scalable Montgomery operators, scalable ver-
sion and the Rabin-Miller algorithm. The existing libraries
are developed in Handel-C, and with slightly modification,
the design generator is able to support other HDL output
format for synthesis.

GenDesign enables customisable designs such that users
can have fully control to the output HDL file. Two major
operations in the design generator are the architectural se-
lection routine and RAM decoding routine. In our design,
the width of most internal signals are dependent on the
prime number bit width. Second, user-specified word width
controls the iteration of the inner while loop in the scalable
Montgomery multiplier (the value e in figure 2). Third, be-
sides the predefined small prime numbers, users are able to
add or remove small prime numbers of the Rabin-Miller al-
gorithm in the final HDL output. GenDesign is then used
to expand the design into p parallel PEs.

6 Single IP-block results

Our single prime testing IP block can be implemented
on any FPGA-based prototyping platform. For small
size problems, we select the RC200E development
board as the testing platform which contains the Xilinx
XC2V1000-4FG456C FPGA chip. For large size prob-
lems, the RC2000 development board which has Virtex
II XC2V6000-4FF1152 FPGA has been selected for im-
plementation. We also place and route our designs on a
low cost Spartan XC3S2000-4-FG900 chip. The generated
designs are synthesized by using Celoxica DK2 and PDK
tools. This design facilitates parametrised input bit-widths.

Table 1 shows the performance and area comparisons be-
tween non-scalable and scalable Montgomery multiplica-
tion. From the collected results, the non-scalable designs
produce the fastest execution time with a linearly increase
of area penalty, while the scalable designs achieve rela-
tively small and stable increase in both resource usage and
critical delay path as the design scale grows. In the same
table, we observe that by adopting multiple PE elements,
the total number of cycle taken for the primality test has
been much reduced while there is a slight effect to the de-
lay path. Our experimental results also confirm the speed
improvement by using more parallel processing elements.
Note that for smaller problems such as the 128-bit design,
the control logic of the scalable design dominates the ma-
jor resource and causes the larger area than the non-scalable
design. The scalable design is best suitable for area-limited
embedded applications.

7 System-on-a-Chip Framework

We also investigate a general design framework for prime
number validation that makes use of an embedded micro-
processor, a fast On-Chip Peripheral Bus (OPB) or Pro-
cessor Local Bus (PLB) and programmable user-logic in
reconfigurable hardware. In this framework, a divide and
conquer technique is applied to prime number generation.
The circuit in previous sections is used to validate one long
prime number. The generated designs are first synthesized
into VHDL and connected to the PLB/OPB bus through
the predefined bus interface as programmable slave bus
modules. An embedded microprocessor such as the Pow-
erPC or the soft-processor MicroBlaze is used to generate
high quality random numbers and to interface between user
and on-chip validators. The OPB/PLB bus interface pro-
vides a high performance interface between the micropro-
cessor and the reconfigurable logic. We have chosen Xil-
inx ML300 as the prototyping platform which contains a
Virtex-II Pro FPGA. Our result shows that the design is
highly scalable and can accommodate up to 8 slave mod-
ules using non-scalable multipliers for 256-bit prime gen-
eration in an XC2VP125 device operating at 20MHz. By
using the same device, we can have 16 slave modules us-
ing scalable multipliers with 8 parallel processing elements
at 33MHz. In this SoC system, the microprocessor can be
either PowerPC which operates at 300MHz or MicroBlaze
which operates at 150MHz. The major tradeoff is that Mi-
croBlaze consumes around 450 slices and enables multi-
ple on-chip processors, while the largest Virtex-II Pro chip
comes with 4 embedded hard-processors.

FPGA

Xilinx ML300 prototyping board

User logic

Primality test IP

Primality test IP

Primality test IP

Primality test IP

Primality test IP

OPBPLB

DDR-RAM

Softcore
MicroBlaze

Hardcore
PowerPC

BRAM

Figure 9: A system overview of prime number validators in a
single FPGA

In a traditional RISC system, the clock speed of the micro-
processor system is limited by the customised instruction
block; the longer the critical path of this block, the slower
the processor speed. MicroBlaze provides a Fast Simplex
Link (FSL) channel for including customisable IP blocks
such as our prime test block. In this case, the microproces-
sor and the IP block operate at two different clock speeds
while there is no degradation to the MicroBlaze speed. The
FSL channel enables the data to be passed between hard-
ware block and processor using C-macros, with the proces-
sor able to execute other instruction while waiting for the
result. The proposed customisable MicroBlaze processor
now has the primality test ability which is very flexible and
can be used in various SoC and embedded security system.



Virtex II - XC2V1000 / XC2V6000 Spartan - XC3S2000
Prime size 128-bit 256-bit 512-bit 1,024-bit 128-bit 256-bit 512-bit 1,024-bit

Non-scalable design
Area (slices) 2,630 5,140 10,153 20,131 2,630 5,140 10,153 20,131

Clock cycle (ns) 36.75 49.51 80.72 122.34 43.67 62.35 95.01 162.24
Performance (ms) 0.64 3.34 21.49 129.28 0.76 4.21 25.29 171.45

Scalable design (8 PE, word-size:w = 8-bit)
Area (slices) 2,651 2,726 2,768 2,872 2,622 2,700 2,736 2,842

Clock cycle (ns) 31.66 30.78 31.07 32.62 40.38 34.72 39.68 37.75
Performance (ms) 20.69 109.37 734.39 5478.14 26.39 123.36 937.82 6338.95

Scalable design (32 PE, word-size:w = 8-bit)
Area (slices) 9,064 9,144 9,192 9,333 9,019 9,092 9,146 9,283

Clock cycle (ns) 30.17 29.81 29.47 31.03 40.87 40.61 38.94 39.03
Performance (ms) 12.70 56.07 286.18 1776.80 17.20 76.38 378.11 2235.08

Table 1: Primality test comparison

Instruction
Fetch

Decode Execute

Write
back

MicroBlaze

Inst.
fetch

Interface

32x32
register

Inst.
decode

ALU

FSL
interface

customised Prime 
test IP Block

BRAM /
IP Blocks

Figure 10: Connecting customised IP block to MicroBlaze

8 Conclusions

This paper presents a scalable SoC architecture for prime
number validation which targets reconfigurable hardware.
Two significant algorithms have been discussed: Rabin-
Miller and Montgomery algorithms. The Rabin-Miller
Strong Pseudoprime Test has been successfully mapped
into hardware. Several modular multipliers have been de-
veloped as libraries in the design generator, GenDesign.
In particular, the Montgomery modular multiplication is
the core of other modular operations used in the primal-
ity test. The scalability and parallelism of this design have
been explored for very large prime numbers. We systemat-
ically implement the design for different bit lengths on re-
configurable devices using both scalable and non-scalable
multipliers, and study the tradeoff amongst different de-
signs. Our architectures and tools appear to be useful for
exploring efficient designs for use in SoC and embedded
systems. We evaluate our designs as a replicable IP block
for the use in a SoC framework with both hard and soft pro-
cessors, and describe the integration with MicroBlaze using
the FSL channel. On-going and future developments in-
clude the extension of this scalable architecture across mul-
tiple reconfigurable hardware device and applying Run-
Time Reconfiguration (RTR) techniques for different pri-
mality test algorithms.

Acknowledgment

The support of Celoxica, Xilinx, the Croucher Foundation
and UK EPSRC (Grant number GR/R 31409, GR/R 55931,
GR/N 66599) is gratefully acknowledged.

References
[1] F. Arnault, Rabin-Miller Primality Test: Composite Numbers Which

Pass It, Math. Comput. 64, 355-361, 1995.

[2] M. Agrawal et al, Primes in P, ITT Kanpur, August, 2002.

[3] T. Blum and C. Paar, High Radix Montgomery Modular Exponentia-
tion on Reconfigurable Hardware, IEEE Transactions on Computers,
vol. 50, no. 7, pp.759-764, 2001.

[4] R. Cheung, A. Brown, W. Luk, and P. Cheung, A Scalable Hardware
Architecture for Prime Number Validation, to appear IEEE Confer-
ence on Field Programmable Technology, 2004.

[5] R. Cheung, A System on Chip Design Framework for Prime Number
Validation using Reconfigurable Hardware, to appear IEEE Confer-
ence on FPL (PhD Forum), 2004.

[6] R. Crandall and C. Promerance, Prime Numbers - A Computational
Perspective, Springer, 2001.

[7] S. E. Eldridge and C. D. Walter, Hardware Implementation of Mont-
gomery’s Modular Multiplication Algorithm, IEEE Transactions on
Computers, vol. 42, no. 7, pp. 693-699, July, 1993.

[8] V. Fischer and M. Drutarovsky, Scalable RSA Processor in Recon-
figurable Hardware - a SoC Building Block, in Proceedings of XVI
Conference on Design of Circuits and Integrated Systems (DCIS),
pp. 327-332, November, 2001.

[9] Internet Mersenne Prime Search: “http://www.mersenne.org/”

[10] M. Joye, P. Paillier and S. Vaudenay, Efficient Generation of Prime
Numbers, Cryptographic Hardware and Embedded Systems CHES,
pp. 340-354, 2000.

[11] C.K. Koc, T. Acar and B. S. Kaliski, Analyzing and Comparing
Montgomery Multiplication Algorithms, IEEE Micro, vol. 16, no.
3, pp. 26-33, 1996.

[12] T. K. Lee et al., Compiling policy descriptions into reconfigurable
firewall processors, IEEE Symposium on FCCM, pp. 39-48, 2003.

[13] C. Lu, A. L. M. dos Santos and F. R. Pimentel, Implementation of
fast RSA key generation on smart cards, in Proceedings of the ACM
symposium on Applied computing, pp. 214-220, 2002.

[14] P. Montgomery, Modular Multiplication without Trial Division,
Math. of Computation, vol. 44, pp. 519-521, 1985.

[15] M. O. Rabin, Probabilistic Algorithm for Primality Testing, Journal
of Number Theory, Vol. 12, pp. 128-138, 1980.

[16] H. Riesel, Prime Numbers and Computer Methods for Factorization,
Progress in Mathematics, vol. 126, Birkhauser, 1994.

[17] B. Schneier, Applied Cryptography, John Wiley and Sons, 1996.

[18] A. F. Tenca and C. K. Koc, A Scalable Architecture for Montgomery
Multiplication, CHES, pp. 94-108, 1999.

[19] A. F. Tenca and C. K. Koc, A Scalable Architecture for Modular

Multiplication Based on Montgomery’s Algorithm, IEEE Transac-
tions on Computers, Vol 52, No. 9, pp. 1215-1221, 2003.


