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Abstract—We consider the optimal design problem for arbitrary-shaped switch box, ðr1; . . . ; rkÞ-SB, in which ri terminals are located

on side i for i ¼ 1; . . . ; k and programmable switches are joining pairs of terminals from different sides. Previous investigations on

switch box designs mainly focused on regular switch boxes in which all sides have the same number of terminals. By allowing different

numbers of terminals on different sides, irregular switch boxes are more general and flexible for applications such as customized

FPGAs and reconfigurable interconnection networks. The optimal switch box design problem is to design a switch box satisfying the

given shape and routing capacity specifications with the minimum number of switches. We present a decomposition design method for

a wide range of irregular switch boxes. The main idea of our method is to model a routing requirement as a nonnegative integer vector

satisfying a system of linear equations and then derive a decomposition theory of routing requirements based on the theory of systems

of linear Diophantine equations. The decomposition theory makes it possible to construct a large irregular switch box by combining

small switch boxes of fixed sizes. Specifically, we can design a family of hyperuniversal (universal) ðwdþ cÞ-SBs with �ðwÞ switches,

where d and c are constant vectors and w is a scalar. We illustrate the design method by designing a class of optimal hyperuniversal

irregular 3-sided switch boxes and a class of optimal rectangular universal switch boxes. Experimental results on the rectangular

universal switch boxes with the VPR router show that the optimal design of irregular switch boxes does pay off.

Index Terms—FPGA, reconfigurable interconnection network, switch box, switch block, universal, hyperuniversal.

�

1 INTRODUCTION

SWITCH boxes, also called switch blocks, are fundamental
components in reconfigurable interconnection networks

such as Field Programmable Gate Arrays (FPGAs). In
general, a switch box consists of terminals (ports or pins)
and prefabricated programmable switches that connect
these terminals. A switch box is used to make physical
connections for a given routing requirement by configuring
its programmable switches. Usually, the terminals of a
switch box are located on several sides and each switch
joins a pair of terminals on different sides. A switch box is
regular if all of its sides have the same number of terminals.
A k-sided switch box with W terminals on each side is
denoted by ðk;WÞ-SB. Extensive investigations on regular
switch boxes have been carried out in recent years due to
their usage in FPGA routing networks. Rose and Brown [13]
pioneered the investigation on switch boxes, in particular,
the ð4;WÞ-SBs, which are the key switch components in
island-style two-dimensional FPGA architectures [3], [4].

They observed that the flexibility, Fs, of a switch box, i.e.,
the maximum number of switches connecting a terminal, is
an important factor for FPGA architecture design and
showed experimentally that Fs ¼ 3 or 4 is a good trade-off
between the complexity of a switch box and the routability
of the FPGAs. Chang et al. [5] proposed the concept of
Universal Switch Block (USB). A switch box is said to be
universal if it is able to accommodate any routing require-
ment consisting of 2-pin nets, where a 2-pin net is a request
of connecting two terminals. They designed the first
optimal ð4;WÞ-USB, which has 6W switches and
flexibility 3, and showed a significant improvement in
routability over the disjoint switch boxes used in Xilinx 4000
series FPGAs. The generic universal ðk;WÞ-SBs for k � 5
were further studied in [10], [8], [14]. Fan et al. [9], [11], [8]
generalized the concept of universal switch boxes to Hyper-
Universal Switch Boxes (HUSB) for multipin net routing
cases. They designed ð4;WÞ-HUSBs with at most
6:34W switches and showed a significant improvement on
routability over ð4;WÞ-USBs. The main results in [9], [11],
[8] include a decomposition theory for routing requirements
and a reduction design scheme that breaks the problem into
a problem of designing a few small switch boxes and
constructs a large switch box by combining the small ones.

Irregular switch boxes (different sides may have a

different number of terminals), on the other hand, provide

extra flexibility in designing reconfigurable interconnection

networks. We write ðr1; . . . ; rkÞ-SB for a k-sided switch box

with ri terminals on side i for i ¼ 1; . . . ; k. Fig. 1 illustrates

four irregular switch boxes, where the black solid points on
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the edges of polygons represent terminals and a dashed line
joining two points indicates a switch.

Some recent technological advances have somehow
stirred interest in developing more general irregular switch
boxes, which, for example, can allow more flexibility in the
design of customized FPGA cores in SoCs. Betz and Rose [1]
studied the directional bias and nonuniform FPGA archi-
tectures experimentally. Hallschmid and Wilton [12] further
investigated embedded FPGA cores with unequal vertical
and horizontal channel densities in which rectangular
switch boxes (i.e., ðr1; r2; r1; r2Þ-SBs) are used. Dehon [7]
used both regular and irregular 3-sided switch boxes in a
tree of mesh (fat tree) interconnection network, as shown in
Fig. 2a, where d1 : d2 : d3 gives the ratios of channel
densities of the 3-sided switch boxes. Fig. 2b depicts a
scenario where irregular switch boxes might be desirable in
a reconfigurable SoC. In the design of rearrangeable
Polygonal Switching Network (PSN) on N terminals [15],
a regular ð

ffiffiffiffiffi
N
p

;
ffiffiffiffiffi
N
p
Þ-USB is used at the center. However,

when
ffiffiffiffiffi
N
p

is not an integer, an irregular universal switch
box should be used.

Even though many results have been achieved for
regular switch box designs, there are very few results on
the design of irregular ones. The purpose of this paper is to
present a general decomposition design method for the
arbitrary-shaped switch boxes including both regular and
irregular switch boxes. Our main contributions consist of a

new algebraic model for routing requirements, a new
decomposition theory for routing requirements, and a
new reduction design scheme for switch boxes of arbitrary
shape. As a result, the design of large irregular switch boxes
can be decomposed into the designs of small switch boxes.
In other words, we can design a few small prime switch
boxes and use them to build large compound switch boxes.
Moreover, the switch boxes designed in this way have a
linear number of switches and the routing can be done
efficiently. These results are generalizations of the previous
work on regular switch boxes [5], [9], [11]. We will also
provide some conditions for obtaining optimal designs
under this scheme.

2 TERMINOLOGY AND PRELIMINARIES

Similarly to the regular switch box design problem, the
design of an arbitrary-shaped switch box is to meet 1) a
given channel density specification, i.e., the number of sides
and the number of terminals on each side, 2) a given routing
capacity specification, i.e., the type of routing requirements
to be routed in the switch box, and 3) the minimization of
the number of switches. Meanwhile, the switch boxes
designed must not be too complicated to fabricate and must
be easily routed.

A channel density specification can be simply described
by a vector ðr1; . . . ; rkÞ, referred to as a channel density vector,
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Fig. 1. Examples of irregular switch boxes. (a) (3, 2, 2)-SB. (b) (3, 2, 3, 2)-SB. (c) (2, 2, 3, 2, 3)-SB. (d) (2, 3, 2, 3, 2, 3)-SB.

Fig. 2. (a) Tree of meshes (fat tree) with 3-sided regular/irregular switch boxes. (b) Irregular switch boxes in a reconfigurable SoC.



for a k-sided switch box with ri terminals on side i for
i ¼ 1; . . . ; k. To simplify the design problem, we are
interested in designing a generic class of switch boxes with
channel density vector ðwdþ cÞ, where d and c are constant
nonnegative k-dimensional integer row vectors called the
density ratio vector and residual vector, respectively. The
corresponding switch boxes are the class of generic
ðwdþ cÞ-SBs. For example, the 1:1:2 switch boxes used in
the mesh tree structure (Fig. 2a) are generic irregular switch
boxes with density ratio vector d ¼ ð1; 1; 2Þ and residual
vector c ¼ ð0; 0; 0Þ. In particular, regular ðk; wÞ-SBs are
generic ðwdþ cÞ-SBs with d ¼ ð1; . . . ; 1Þ and c ¼ ð0; . . . ; 0Þ.

The routing capacity of a switch box can be characterized
by a set of routable routing requirements. If, in an
application, only a few types of connections can occur,
then there is no need to design a switch box capable of
realizing all kinds of connections. Under this consideration,
we will use a set of nets that are to be routed, called the net
pattern set P, to describe a routing capacity specification. A
switch box is said to be P-universal if it is routable for all
(legitimate) routing requirements consisting of nets from P.
In this way, we can unify all previous routing capacity
specifications. For instance, a universal switch box is just
P2-universal, w h e r e P2 ¼ fN : N � f1; . . . ; kg; jN j � 2g,
while a hyperuniversal switch box is Pk-universal, where
Pk ¼ fN : N � f1; . . . ; kgg.

There are three challenging subproblems in the switch
box design. The first problem is how to compute the set of
all legitimate routing requirements subject to a given
channel density specification ðr1; . . . ; rkÞ and a net pattern
set P ¼ fS1; . . . ; Stg. This problem was not fully solved,
even for regular switch box designs [11]. In this paper, we
will present a general method to solve this problem. We
represent a routing requirement as a nonnegative integer
vector X ¼ ðx1; . . . ; xtÞ satisfying the system of linear
equations AXT ¼ ðr1 . . . ; rkÞT , where A is a matrix deter-
mined by P, and ðr1; . . . ; rkÞT denotes the transpose of
ðr1; . . . ; rkÞ. With this modeling, we are able to compute all
routing requirements by solving the system, where only
nonnegative integer solutions are considered. It is known
that there are a finite number of “minimal” solutions to
such a system of equations, which can be computed by
some existing algorithms. It is also known that any solution
to AXT ¼ ðr1; . . . ; rkÞT can be expressed as a sum of a
minimal solution of AXT ¼ ðr1; . . . ; rkÞT and a nonnegative
integer linear combination of minimal solutions of
AXT ¼ 0. In other words, a routing requirement can be
decomposed into a few minimal routing requirements
which depend on k and P only.

The second problem is how to construct an optimal (with
the minimum number of switches) P-universal (arbitrary-
shaped) switch box. This is a difficult problem. This
problem was only previously solved for a few special cases,
e.g., ðk;WÞ-USBs for even W [5], [10]. Using the decom-
position property of routing requirements, we show that a
large P-universal switch box can be obtained by combining
a finite number of fixed small P-universal switch boxes
(called prime switch boxes). A switch box obtained in this
way is called a compound switch box and it can be optimal
under certain conditions. Thus, we are able to reduce the

design of large switch boxes to the design of much smaller
ones, hence reducing the design complexity. For fixed
integer vectors d and c, our compound hyperuniversal
ðwdþ cÞ-SB can have �ðwÞ switches, which is of the same
complexity as an optimal hyperuniversal ðwdþ cÞ-SB.
Compared to the trivial design of a complete ðwdþ cÞ-SB
that has �ðw2Þ switches, our approach is clearly more
useful.

The third problem is to find a feasible routing in the
designed switch box for any given routing requirement.
This problem has not been solved for general switch boxes.
But, for our compound switch boxes, a linear time routing
algorithm can be derived.

We will illustrate our decomposition design method by
designing optimal hyperuniversal ð4; 5; 6Þ-SB and ð5; 6; 7Þ-SB
through the design of optimal generic hyperuniversal
ðw;wþ 1; wþ 2Þ-SBs. We further design optimal rectangular
universal ðw; 2w;w; 2wÞ-SBs and test their routability with
large MCNC benchmark circuits using the extended VPR [2]
router. The experimental results demonstrate that the optimal
switch boxes have better performance.

The rest of this paper is organized as follows: Section 3
describes the graph modeling for arbitrary-shaped switch
boxes, an algebraic modeling for routing requirements, as
well as the general switch box design problem. In Section 4,
we show how to compute routing requirements by solving
the corresponding linear equation systems and prove two
decomposition theorems which form the bases for our
switch box design technique. In Section 5, the generalized
reduction design scheme for switch boxes of arbitrary shape
is introduced. Section 6 gives the design of a class of
rectangular switch boxes with experimental results on
routability by the VPR. Section 7 concludes the paper.

3 MODELING FOR ARBITRARY-SHAPED SWITCH

BOX DESIGN

In this section, we formally model a routing requirement as
a nonnegative integer vector satisfying a system of linear
equations and a switch box as a graph with terminals as
vertices and switches as edges and a feasible routing for a
routing requirement as a spanning forest of the switch box
graph. The graph modeling of switch boxes was introduced
in [11] and the vector representation for a routing
requirement is a generalization of the routing requirement
vector (RRV) used in [5], [14].

3.1 Graph Modeling of Switch Boxes

As in [11], we view a k-sided switch box as a k-partite
graph. For an ðr1; . . . ; rkÞ-SB, denote the jth terminal on
side i by a vertex vi;j, i ¼ 1; . . . ; k; j ¼ 1; . . . ; ri, and a
switch joining terminals vi;j and vi0;j0 by an edge vi;jvi0;j0 .
Let Vi ¼ fvi;j : j ¼ 1; . . . ; rig; i ¼ 1; . . . ; k, then ðV1; . . . ; VkÞ
forms a partition of the vertex set. A complete
ðr1; . . . ; rkÞ-SB, denoted by Kðr1;...;rkÞ, corresponds to the
complete k-partite graph with vertex set V1 [ . . . [ Vk and
edge set fvi;jvs;t : i; s ¼ 1; . . . ; k; j; t ¼ 1; . . . ;W ; i 6¼ sg.

The disjoint union of two k-sided switch boxes G1 and G2

with disjoint sets of terminals, denoted by G1 þG2, is
defined to be a k-sided switch box with the ith side being the
union of the ith side of G1 and the ith side of G2 for
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i ¼ 1; . . . ; k, and all switches of G1 and G2. The disjoint
union of h copies of G1 (the terminals of each copy are
considered to be different) is denoted by hG1. As depicted
in Fig. 3, the ð4; 5; 6Þ-SB U2 þ U0 in (d) is the disjoint union
of the ð2; 3; 4Þ-SB U2 in (c) and the ð2; 2; 2Þ-SB U0 in (a). The
ð5; 6; 7Þ-SB U1 þ 2U0 in (e) is the disjoint union of the
ð2; 3; 4Þ-SB U1 in (b) and two copies of U0.

3.2 Algebraic Modeling of Routing Requirements

A switch box is used to route signals from different
channels specified by routing requirements consisting of a
set of nets. A net specifies a group of sides which a signal
can reach and a routing of the net determines the exact
terminals and switches (setting to on) that carry the signal.
Therefore, a net, or a t-pin net, for which a k-sided switch
box specifies t different sides i1; . . . ; it from which t
terminals must be connected, can be expressed as
fi1; . . . ; itg, which is a subset of f1; . . . ; kg. Thus, a net
pattern set P can be expressed as a set of types which are
allowed to happen in a routing requirement. A routing
requirement can be expressed as a multiset of subsets from
a net pattern set because two different nets have the same
subset representation if they specify the same group of
sides. Formally, a routing requirement can be defined as
follows:

Definition 1. Given a channel density vector ðr1; . . . ; rkÞ and a
net pattern set P, where P is a set of subsets of f1; . . . ; kg. A
routing requirement for an ðr1; . . . ; rkÞ-SB with nets coming
from P, or simply a P-net ðr1; . . . ; rkÞ-RR, is a multiset
fN1; . . . ; Nmg such that

1. Nj 2 P for j ¼ 1; . . . ;m and
2. jfj : i 2 Nj; j ¼ 1; . . . ;mgj � ri; i ¼ 1; . . . ; k.

Condition 1 indicates that every net in a routing require-
ment is from P, i.e., a P-net, and Condition 2 means that a
routing requirement must be legitimate, i.e., it is subject to

the channel density constraint: The number of nets

specifying a side cannot be bigger than the channel density

of the side.
Without loss of generality, we may assume that P

contains singletons fig for i ¼ 1; . . . ; k and equalities hold in

Condition 2. That is:

2’. jfj : i 2 Nj; j ¼ 1; . . . ;mgj ¼ ri; i ¼ 1; . . . ; k.

In order to compute all P-net ðr1; . . . ; rkÞ-RRs for the

purpose of testing a switch box design, we introduce the

following algebraic modeling for routing requirements:

Definition 2. Let P ¼ fS1; . . . ; Stg be a net pattern set. For any

P-net ðr1; . . . ; rkÞ-RR, R ¼ fN1; . . . ; Nmg, let xi be the

number of occurrences of Si in R for i ¼ 1; . . . ; t. We call

vector ðx1; . . . ; xtÞ the P-net routing requirement vector of

R, and abbreviate it as P-net ðr1; . . . ; rkÞ-RRV .

Equivalently, a nonnegative integer vector X ¼
ðx1; . . . ; xtÞ is a P-net ðr1; . . . ; rkÞ-RRV iff it satisfies

AXT ¼ ðr1; . . . ; rkÞT ; ð1Þ

where A is the incidence matrix of P, i.e., A ¼ ½ai;j�k�t and for

i ¼ 1; . . . ; k; j ¼ 1; . . . ; t, ai;j ¼ 1 iff i 2 Sj.

With the above modeling, we can generate all P-net

ðr1; . . . ; rkÞ-RRs by calculating all nonnegative integer

solutions of (1).
For example, given net pattern set

P ¼ ff1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg;

the incidence matrix of P is

A ¼
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

0
@

1
A:
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Fig. 3. Demonstration for arbitrary-shaped switch boxes, disjoint unions, routing requirements, and feasible routings. (a) (2, 2, 2,)-SB. (b) (1, 2, 3)-

SB. (c) (2, 3, 4)-SB. (d) (4, 5, 6)-SB. (e) (5, 6, 7)-SB. (f) (4, 5, 6)-RR. (g) Feasible routing R in U2 þ U0. (h) Feasible routing of R1 in U2. (i) Feasible

routing of R2 in U0.



Fig. 3f depicts a P-net ð4; 5; 6Þ-RR R. The subset representa-

tion of R is

R ¼ ff1; 2g; f1; 3g; f1; 3g; f2; 3g; f2; 3g; f2; 3g; f1; 2; 3gg:

The vector representation of R is X ¼ ð0; 0; 0; 1; 2; 3; 1Þ,
which satisfies AXT ¼ ð4; 5; 6ÞT .

3.3 Feasible Routing

A feasible routing of a routing requirement in a switch box

is an ON/OFF assignment of the switches such that every

net in the routing requirement is realized by a group of

assigned terminals and ON-switches connecting the term-

inals and the realizations of different nets are not connected.

We extend the modeling of feasible routing in [11] to

arbitrary-shaped switch boxes as follows:

Definition 3. Let G be an ðr1; . . . ; rkÞ-SB with sides Vi ¼ fvi;j :

j ¼ 1; . . . ; rig; i ¼ 1; . . . ; k and let R ¼ fN1; . . . ; Nmg be an

ðr1; . . . ; rkÞ-RR. We say that R is routable in G if G contains

m vertex disjoint subtrees T1; . . . ; Tm, i.e., a forest, such that,

for each i ¼ 1; . . . ;m and j 2 Ni, jV ðTiÞ \ Vjj ¼ 1. We call

fT1; . . . ; Tmg a feasible routing for R and Ti a feasible

routing for net Ni.

An ðr1; . . . ; rkÞ-SB G is said to be P-universal if every

P-net ðr1; . . . ; rkÞ-RR is routable in G. A P-universal

ðr1; . . . ; rkÞ-SB is optimal if it has the minimum number of

switches over all P-universal ðr1; . . . ; rkÞ-SBs.
In particular, a P2-universal ðr1; . . . ; rkÞ-SB is called a

universal ðr1; . . . ; rkÞ-SB (or simply ðr1; . . . ; rkÞ-USB). A

Pk-universal ðr1; . . . ; rkÞ-SB is called a hyperuniversal

ðr1; . . . ; rkÞ-SB (or simply ðr1; . . . ; rkÞ-HUSB).

We note that, in a feasible routing of a routing

requirement, a net can be assigned to use any available

terminals on the sides specified by the net and the

connection is made by turning on the switches correspond-

ing to the subtree. We also note that a singleton net in a

routing requirement only uses a terminal, it does not use

any switch, so that adding or removing singletons does not

affect the routability of a routing requirement. Fig. 3g shows

a feasible routing of the routing requirement given in Fig. 3f

in the ð4; 5; 6Þ-SB U2 þ U0.

3.4 Switch Box Design Problems

As we mentioned in the introduction, the main switch box

design problem is to design an optimal switch box

satisfying given specifications on channel density and

routing capacity. The problem can be formally described

as follows:
General switch box design problem. Given a channel

density vector ðr1; . . . ; rkÞ and a net pattern set P, design a

P-universal ðr1; . . . ; rkÞ-SB with the least number of switches.
Switch box design problem. Given a density ratio vector d,

a residual vector c and a net pattern set P, design a P-universal

ðwdþ cÞ-SB with the least number of switches for every w � 1.
Since a design scheme for ðwdþ cÞ-SB can be used to

solve an ðr1; . . . ; rkÞ-SB design problem by choosing proper

d, c, and w0 such that w0dþ c ¼ ðr1; . . . ; rkÞ, we will focus

on the ðwdþ cÞ-SB design problem.

4 ROUTING REQUIREMENT VECTOR GENERATION

AND DECOMPOSITION THEOREMS

To design P-universal ðwdþ cÞ-SBs, we need first to

compute all P-net ðwdþ cÞ-RRs for the purpose of testing
a design. This computation can be done by solving for all
nonnegative integer solutions X satisfying the following

system of linear equations for all w � 1:

AXT ¼ ðwdþ cÞT : ð2Þ

In this section, we present a systematic method to compute
the routing requirement vectors using the Hilbert basis and
prove the main decomposition theorems which form the

basis of our reduction design scheme.

4.1 Generating RRVs by the Hilbert Basis

In the field of algebra, a system of linear equations AXT ¼
bT is referred to as a system of linear Diophantine equations

(SLDE) if the entries of A and b are integers and only
nonnegative integer solutions are considered. A system
AXT ¼ b is homogeneous if b ¼ 0. We only consider systems

of linear Diophantine equations in this paper.
Let X ¼ ðx1; . . . ; xtÞ and X0 ¼ ðx01; . . . ; x0tÞ be two non-

negative integer solutions to an SLDE. We define X0 � X if
x0i � xi for all i ¼ 1; . . . ; t and call X a minimal solution if

there is no other solution X0 such that X0 � X. It is known
that the set of all minimal solutions of an SLDE is finite. The

set of minimal solutions to a homogeneous SLDE is referred
to as the Hilbert basis of the SLDE.

We see that a solution X to AXT ¼ bT can always be
expressed as a sum of a minimal solution to AXT ¼ bT and

a nonnegative integer linear combination of the Hilbert
basis of AXT ¼ 0. In fact, the statement is obviously true if
X is minimal. Otherwise, there is a minimal solution X0

such that X0 � X, then X ¼ X0 þ Y , where Y ¼ X �X0 is a
solution to AXT ¼ 0. If Y is a minimal solution of AXT ¼ 0,

then the statement is true. Otherwise, there is a minimal
solution Y 0 such that Y 0 � Y . Then, Y ¼ Y 0 þ ðY � Y 0Þ and
Y � Y 0 is a solution to AXT ¼ 0. Continuing this process,

we conclude that Y is a sum of minimal solutions of AXT ¼
0 (repetition is allowed) so that Y can be expressed as a
nonnegative integer linear combination of the Hilbert basis

of AXT ¼ 0. Therefore, we can generate all solutions of
AXT ¼ bT from the set of minimal solutions of AXT ¼ bT

and the Hilbert basis of AXT ¼ 0.
A Hilbert basis algorithm can also be used to compute

the set of all minimal solutions to nonhomogeneous system
AXT ¼ bT . This can be done in three steps: First, compute

the Hilbert basis of ðA;�bT ÞðX; yÞT ¼ 0, then select those
solutions with component of y equal to one, and, finally,
remove the y component from the selected solutions.

The computation for the Hilbert basis has been studied

extensively in recent years. We can apply an existing
Hilbert basis algorithm, e.g., Contejean and Devie [6], to the

computation of routing requirement vectors as follows: Let
X be a P-net ðwdþ cÞ-RRV, then ðX;wÞ satisfies (2) or,
equivalently,

ðA;�dT ÞðX;wÞT ¼ cT : ð3Þ
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Therefore, ðX;wÞ can be expressed as the sum of a minimal

solution of (3) and a nonnegative integer linear combination

of the Hilbert basis of the following homogeneous equation

system:

ðA;�dT ÞðX;wÞT ¼ 0T : ð4Þ

That is,

ðX;wÞ ¼ ðX0; w0Þ þ
Xm
i¼1

aiðXi; wiÞ; ð5Þ

where ðX0; w0Þ is a minimal solution of (3) and ðXi; wiÞ; i ¼
1; . . . ;m are all minimal solutions of (4) and ais are

nonnegative integers. Relation (5) implies that w ¼ w0 þ
a1w1 þ 	 	 	 þ amwm; and X ¼ X0 þ a1X1 þ 	 	 	 þ amXm. In

summary, we have the following theorem:

Theorem 1. Let d and c be k-dimensional nonnegative integer

vectors and A be the incidence matrix of a net pattern set P.

Then, a nonnegative integer vector X is a P-net ðwdþ
cÞ-RRV iff ðX;wÞ can be expressed as the sum of a minimal

solution of ðA;�dT ÞðX;wÞT ¼ cT and a nonnegative integer

linear combination of the minimal solutions of

ðA;�dT ÞðX;wÞT ¼ 0T .

Therefore, we can obtain all P-net ðwdþ cÞ-RRVs (RRs)

by computing the set of minimal solutions of (3) and (4).

4.2 Decomposition Theorems

In this section, we prove the main decomposition theorems

that power our switch box design technique. The following

lemma was developed in [11]:

Lemma 2. Let w1; . . . ; wm be positive integers and p be

the least common multiple of w1; . . . ; wm. If

a1w1 þ 	 	 	 þ amwm � mp�mþ 1, where a1; . . . ; am are

nonnegative integers, then there are integers y1; . . . ; ym such

that 0 � yi � ai; i ¼ 1; . . . ;m and y1w1 þ 	 	 	 þ ymwm ¼ p.

We first extend Lemma 2 to a set of nonnegative integer

vectors.

Lemma 3. Let S ¼ fw1; . . . ; wmg be a set of positive integers.

Then, there exist positive integers p and q with the following

property: For any given integer w � 0, there is an integer pw
with 0 � pw � q such that if a nonnegative integer vector

ða1; . . . ; amÞ satisfies a1w1 þ 	 	 	 þ amwm ¼ w, then there

exist w�pw
p þ 1 nonnegative integer vectors ðyi;1; . . . ; yi;mÞ; i ¼

1; . . . ; w�pwp þ 1 satisfying

yi;1w1 þ 	 	 	 þ yi;mwm ¼
p; i ¼ 1; . . . ; w�pwp ;

pw; i ¼ w�pw
p þ 1;

�
ð6Þ

and

Xw�pwp þ1

i¼1

ðyi;1; . . . ; yi;mÞ ¼ ða1; . . . ; amÞ: ð7Þ

Proof. Let p be the least common multiple of w1; . . . ; wm and

let q ¼ mp�m. We show by induction on w that p and q

satisfy the property of the lemma.

When w ¼ 0, then ða1; . . . ; amÞ must be ð0; . . . ; 0Þ and
pw ¼ 0 and ðy1;1; . . . ; y1;mÞ ¼ ð0; . . . ; 0Þ satisfy the condi-
tions. We continue to prove the truth of the lemma for w
by assuming the truth for all values less than w.

If w � q ¼ mp�m, choose pw ¼ w. Then, w�pw
p ¼ 0.

For any nonnegative vector ða1; . . . ; amÞ with
a1w1 þ 	 	 	 þ amwm ¼ w, we choose

ðy1;1; . . . ; y1;mÞ ¼ ða1; . . . ; amÞ:

Then, the statement holds.
Otherwise, we have w > q ¼ mp�m, let w0 ¼ w� p.

Since w0 < w, by the induction hypothesis, there exists a
pw0 with 0 � pw0 � q satisfying the statements with
respect to w0. Let pw ¼ pw0 . We show that pw satisfies
the requirements with respect to w.

Let ða1; . . . ; amÞ be a nonnegative integer vector satisfy-
ing a1w1 þ 	 	 	 þ amwm ¼ w. Since w > q ¼ mp�m, we
have w � mp�mþ 1. By Lemma 2, there exists a vector
ðy1;1; . . . ; y1;mÞ such that ð0; . . . ; 0Þ � ðy1;1; . . . ; y1;mÞ �
ða1; . . . ; amÞ and

Pm
j¼1 y1;jwj ¼ p.

N o w , c o n s i d e r ða1 � y1;1; . . . ; am � y1;mÞ. S i n c e

ða1 � y1;1Þw1 þ . . .þ ðam � y1;mÞwm ¼ w� p ¼ w0 < w, by

the induction hypothesis, there exist vectors

ðyi;1; . . . ; yi;mÞ; i ¼ 2; . . . ; w
0�pw0
p þ 2 ¼ w�pw

p þ 1 satisfying

(6) and (7) with respect to ða1 � y1;1; . . . ; am � y1;mÞ.
Therefore, ðyi;1; . . . ; yi;mÞ; i ¼ 1; . . . ; w�pwp þ 1 satisfy (6)

and (7) with respect to ða1; . . . ; amÞ. tu
Theorem 4 (Decomposition Theorem). Let d and c be

k-dimensional nonnegative integer vectors and P be a net

pattern set. Then, there exist positive integers p and q with the

following property: For any given w � 0, there is an integer pw
with 0 � pw � q such that every P-net ðwdþ cÞ-RRV can be

expressed as the sum of one ðpwdþ cÞ-RRV and w�pw
p

ðpdÞ-RRV s.
Proof. Let B0 ¼ fðX1; w1Þ; . . . ; ðXm;wmÞg be the Hilbert basis

o f ðA;�dT ÞðX;wÞT ¼ 0T a n d , i f c 6¼ 0, l e t B ¼
fðX01; w01Þ; . . . ; ðX0l; w0lÞg be the set of all minimal solutions

to ðA;�dT ÞðX;wÞT ¼ cT ; otherwise, let B ¼ ;. Let

S ¼ fw1; . . . ; wmg. Then, there exist positive integers p0

and q0 satisfying the statements of Lemma 3. Let p ¼ p0
and q ¼ q0 þ q00, where q00 ¼ maxfw01; . . . ; w0lg. We show

that p and q have the property of the theorem.
Let X be a P-net ðwdþ cÞ-RRV. Then, ðX;wÞ is a

nonnegative integer solution to ðA;�dT ÞðX;wÞT ¼ cT . If
0 � w � q, then let pw ¼ w; otherwise, let pw ¼ w� np,
where n is the least integer such that pw ¼ w� np � q.
We show that pw and q satisfy the conditions.

By Theorem 1, we have that ðX;wÞ can be expressed
a s ðX;wÞ ¼ ðX0; w0Þ þ a1ðX1; w1Þ þ 	 	 	 þ amðXm;wmÞ,
where ðX0; w0Þ 2 B and a1; . . . ; am are nonnegative in-
tegers. Then, w ¼ w0 þ a1w1 þ 	 	 	 þ amwm. For w� w0, by
Lemma 3 and the choice of p (¼ p0) and q0, there is an
integer pw�w0 with 0 � pw�w0 � q0 and nonnegative integer
vectors ðyi;1; . . . ; yi;mÞ; i ¼ 1; . . . ; w�w

0�pw�w0
p þ 1 satisfying

(6) and (7), namely,

Xm
j¼1

yi;jwj ¼
p; i ¼ 1; . . . ; w�w

0�pw�w0
p ;

pw�w0 ; i ¼ w�w0�pw�w0
p þ 1

(
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and

Xw�w0�pw�w0
p þ1

i¼1

ðyi;1; . . . ; yi;mÞ ¼ ða1; . . . ; amÞ:

Therefore,

aj ¼
Xw�w0�p
w�w0

p þ1

i¼1

yi;j; j ¼ 1; . . . ;m:

Since 0 � w� w�w0�pw�w0
p � p ¼ w0 þ pw�w0 � q (as 0 �

w0 � q00 and 0 � pw�w0 � q0) and n is the least integer such
that 0 � w� np � q, we have n � w�w0�pw�w0

p and, hence,

ðX;wÞ ¼ ðX0; w0Þ þ
Xm
j¼1

ajðXj;wjÞ

¼ ðX0; w0Þ þ
Xm
j¼1

Xw�w0�pw�w0
p þ1

i¼1

yi;jðXj;wjÞ

¼ ðX0; w0Þ þ
Xw�w0�pw�w0
p þ1

i¼1

Xm
j¼1

yi;jðXj;wjÞ

¼ ðX0; w0Þ þ
Xw�w0�pw�w0
p þ1

i¼nþ1

Xm
j¼1

yi;jðXj;wjÞ

þ
Xn
i¼1

Xm
j¼1

yi;jðXj;wjÞ:

Then,

ðX0; w0Þ þ
Xw�w0�pw�w0
p þ1

i¼nþ1

Xm
j¼1

yi;jðXj;wjÞ

is a solution to ðA;�dT ÞðX; pwÞT ¼ cT , which corre-

sponds to a ðpwdÞ-RRV as ðA;�dT ÞðX0; w0ÞT ¼ cT and

ðA;�dT ÞðXj;wjÞT ¼ 0T for j ¼ 1; . . . ;m, and

w0 þ
Xw�w0�pw�w0
p þ1

i¼nþ1

Xm
j¼1

yi;jwj ¼ w0 þ pð
w� w0 � pw�w0

p
� nÞ

þ pw�w0 ¼ w� np ¼ pw:

And, for each i ¼ 1; . . . ; n ¼ w�pw
p ,

Pm
j¼1 yi;jðXj;wjÞ is a

solution to ðA;�dT ÞðX; pÞT ¼ 0T . Therefore,
Pm

j¼1 yi;jXj

is a ðpdÞ-RRV for i ¼ 1; . . . ; w�pwp .
This completes the proof. tu

Theorem 5 (Switch Box Construction Theorem). Let d and c

be k-dimensional nonnegative integer vectors, P be a net

pattern set, and w be any positive integer. Let pw and p be

positive integers satisfying the statements of Theorem 4.

Suppose that U0 is a P-universal ðpdÞ-SB and Upw is a

P-universal ðpwdþ cÞ-SB. Then, Upw þ w�pw
p U0 i s a

P-universal ðwdþ cÞ-SB.

Proof. By Theorem 4, every P-net ðwdþ cÞ-RR can be

decomposed into one P-net ðpwdþ cÞ-RR and w�pw
p P-net

ðpdÞ-RRs. Since U0 and Upw are P-universal, each ðpdÞ-RR

is routable in one copy of the U0 and the ðpwdþ cÞ-RR is

routable in Upw . Therefore, Upw þ w�pw
p U0 is P-universal.tu

For given vectors d, c, and a net pattern set P, by

Theorems 4 and 5, we can design a P-universal ðpdÞ-SB and

a P-universal ðrdþ cÞ-SB for every 1 � r � q and then use

them to build other P-universal ðwdþ cÞ-SBs by disjoint

union operation for any nature number w. This is the main

idea of our reduction design technique.

5 REDUCTION DESIGN SCHEME

In this section, we present a general reduction design

scheme for generic arbitrary-shaped switch boxes, followed

by an example and optimality analysis.

5.1 Reduction Design Scheme for Generic Switch
Boxes

Given k-dimensional nonnegative integer vectors d and c

and a net pattern set P.

I. Determine the Hilbert basis and the set of minimal
solutions.

Compute the Hilbert basisB0 of ðA;�dT ÞðX;wÞT ¼
0T using an existing algorithm such as the one in [6]

to obtain B0 ¼ fðX1; w1Þ; . . . ; ðXm;wmÞg.
If c 6¼ 0, compute the set B of all minimal

solutions of ðA;�dT ÞðX;wÞT ¼ cT by computing

the Hilbert basis of ðA;�d;�cT ÞðX;w; yÞT ¼ 0 and

then selecting those solutions with y ¼ 1 followed by

removing the y component. Suppose

B ¼ fðX01; w01Þ; . . . ; ðX0l ; w0lÞg:

If c ¼ 0, let B ¼ ;.
II. Determine integers p and q satisfying the statements

o f T h e o r e m 4 u s i n g S ¼ fw1; . . . ; wmg a n d
S0 ¼ fw01; . . . ; w0lg.

III. Design a P-universal ðpdÞ-SB U0 and a P-universal
ðrdþ cÞ-SB Ur for each r ¼ 1; . . . ; q. We call U0 and
Ur prime switch boxes. Set up a feasible routing table
RT ðU0Þ recording a feasible routing for each
ðpdÞ-RRs in U0, and a routing table RT ðUrÞ for every
Ur; 1 � r � q.

IV. For any w � 1, construct a P-universal ðwdþ cÞ-SB
using the prime switch boxes fUr : r ¼ 1; . . . ; qg
produced in III as follows: If w � q, use the prime
ðwdþ cÞ-SB Uw; otherwise, choose the minimum n
such that w� np � q. Then, the disjoint union of
Uw�np and n copies of U0, Uw�np þ nU0, is a
P-universal ðwdþ cÞ-SB.

A routing algorithm

Let U ¼ Upw þ nU0 be a compound P-universal ðwdþ cÞ-SB,

where pw ¼ w� np, and R be a P-net ðwdþ cÞ-RR. Then,

the following procedure finds a feasible routing for R in U :

Step 1. Transform R into a ðwdþ cÞ-RRV ðX;wÞ satisfying

ðA;�dT ÞðX;wÞT ¼ cT .

Step 2. If c 6¼ 0, find ðX0; w0Þ 2 B such that ðX0; w0Þ � ðX;wÞ;
otherwise, let ðX0; w0Þ ¼ 0.
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Step 3. If ðX;wÞ 6¼ ðX0; w0Þ, decompose Y ¼ ðX;wÞ �
ðX0; w0Þ into a nonnegative integer linear combination

of B0 by the following procedure:

Decomposition algorithm

Input Y and B0 ¼ fðX1; w1Þ; . . . ; ðXm;wmÞg
for j from 1 to m do

aj ¼ 0

while ðXj;wjÞ � Y do

aj  aj þ 1, Y  Y � ðXj;wjÞ
end while

end for

Output a1; a2; . . . ; am

Then, we have

ðX;wÞ ¼ ðX0; w0Þ þ
Xm
j¼1

ajðXj;wjÞ:

Step 4. Transform the above format to the following format

by the algorithm given in the proof of Lemma 3.

ðX;wÞ ¼ ðX0; w0Þ þ
Xw�w0�np
p þ1

i¼nþ1

Xm
j¼1

yi;jðXj;wjÞ

þ
Xn
i¼1

Xm
j¼1

yi;jðXj;wjÞ;

ð8Þ

where ðyi;1; . . . ; yi;mÞ; i ¼ 1; . . . ; w�w
0�np
p þ 1 satisfy (6) and (7).

Step 5. Using the feasible routing table RT ðUpwÞ of Upw , find

a feasible routing of

ðX0; w0Þ þ
Xw�w0�np
p þ1

i¼nþ1

Xm
j¼1

yi;jðXj;wjÞ

in the Upw . For each i ¼ 1; . . . ; n, find a feasible routing ofPm
j¼1 yi;jðXj;wjÞ in a U0 from the routing table RT ðU0Þ of U0.

The correctness of the above decomposition algorithm

follows from two facts: 1) Each intermediate Y

(¼ Y � ðXj;wjÞ) is still a nonnegative integer solution to

ðA;�dT ÞðX;wÞT ¼ 0 because the initial Y ¼ ðX;wÞ �
ðX0; w0Þ is and ðXj;wjÞ � Y ; 2) the outputs a1; a2; . . . ; am
satisfy that, for each h with 2 � h � m, Y ¼ ðX;wÞ �
ðX0; w0Þ �

Ph�1
j¼1 ajðXj;wjÞ does not contain any of ðXj;wjÞ

for j ¼ 1; . . . ; h� 1 because ah is the maximum nonnegative

integer such that

ahðXj;wjÞ � ðX;wÞ � ðX0; w0Þ �
Xh�1

j¼1

ajðXj;wjÞ:

The correctness of the above routing algorithm is

guaranteed by the decomposition theorem and the fact that

U0 and Upw are P-universal.
We see that the above feasible routing algorithm is an

exact algorithm with running time OðwÞ. It is clear that

Step 1 takes a linear time and Step 2 takes a constant time.

For Step 3, since k is fixed, both B and B0 are finite sets, so it

is processed in at most a linear time with the while loop.

Therefore, Step 3 takes a linear time. Step 4 also takes a
linear time because there is a fixed number of possible
combinations and each of them takes a linear time to check.
Since it takes a constant time to find a feasible routing by a
routing table, it takes a linear time to complete Step 5.

We note that the value of q in Step II could be smaller
than the choice in the proof of Theorem 4. For instance,
when d ¼ ð1; 1; 1; 1Þ and c ¼ ð0; 0; 0; 0Þ and hyperuniversal
ðw;w;w; wÞ-SBs are considered, it was proven in [11] that
p ¼ 6 and q ¼ 7 meet the requirements.

If we only want to construct a P-universal ðwdþ cÞ-SB for
a fixed number w, we just need to construct a P-universal
ðpdÞ-SB U0 and a P-universal ðpwdþ cÞ-SB Upw . Then, Upw þ
w�pw
p U0 is a P-universal ðwdþ cÞ-SB.

5.2 Conditions for Design Optimality

Next, we investigate when the design scheme will

produce optimal switch boxes. A full net pattern set is a

net pattern set P such that any pair fi; jg is contained in

a net of P for 1 � i; j � k. Note that both P2 and Pk are

full net pattern sets. If P is a full net pattern set, then any

P-universal ðr1; . . . ; rkÞ-SB needs at least minfri; rjg
switches to route minfri; rjg nets between sides i and j,

1 � i < j � k, so that it needs at least lbðr1; . . . ; rkÞ ¼P
1�i<j�k minfri; rjg switches. This observation is helpful for

us to obtain some sufficient conditions under which our

design scheme can produce optimal switch boxes.

Theorem 6. Let P be a full net pattern set and let d ¼
ðd1; . . . ; dkÞ and c ¼ ðc1; . . . ; ckÞ be k-dimensional non-
negative integer vectors such that di � dj implies ci � cj
for 1 � i < j � k. If an optimal P-universal ðpdÞ-SB
has lbðpdÞ ¼

P
1�i<j�k pminfdi; djg switches, and an

optimal P-universal ðpwdþ cÞ-SB has lbðpwdþ cÞ ¼P
1�i<j�k minfpwdi þ ci; pwdj þ cjg switches, then the

compound P-universal ðwdþ cÞ-SB Upw þ w�pw
p U0 is

optimal.

Proof. Let U0 be an optimal P-universal ðpdÞ-SB and Upw be

an optimal P-universal ðpwdþ cÞ-SB. Then, the numbers

of switches in U0 and Upw are
P

1�i<j�k pminfdi; djg andP
1�i<j�k minfpwdi þ ci; pwdj þ cjg, respectively. The

number of switches in Upw þ w�pw
p U0 is equal toX

1�i<j�k
minfpwdi þ ci; pwdj þ cjg

þ w� pw
p

X
1�i<j�k

pminfdi; djg

¼
X

1�i<j�k
ðminfpwdi þ ci; pwdj þ cjg

þminfðw� pwÞdi; ðw� pwÞdjgÞ
¼

X
1�i<j�k

minfwdi þ ci; wdj þ cjg

¼ lbðwdþ cÞ:

Therefore, Upw þ w�pw
p U0 is an optimal P-universal

ðwdþ cÞ-SB. tu
The above theorem says that, under certain conditions,

combining optimal prime switch boxes by the reduction
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design scheme yields optimal switch boxes. It is still

unknown if the design scheme produces optimal switch

boxes when the conditions are not met. No counterexample

is found, but there are optimal ðr1; . . . ; rkÞ-HUSBs with more

switches than lbðr1; . . . ; rkÞ. For instance, it was shown in [9]

that an optimal ð4; 4; 4; 4Þ-HUSB has 25 switches, rather than

24 (¼ lbð4; 4; 4; 4Þ) switches.

We point out that the prime P-universal ðpdÞ-SB U0 plays

a more important role as U0 is the major building block. If

U0 has lbðpdÞ switches, then we know that the compound

P-universal ðwdþ cÞ-SB Upw is nearly optimal when w is

large. If U0 has lbðpdÞ� switches (� > 1), then the compound

P-universal ðwdþ cÞ-SB Upw has at most � times the number

of switches in an optimal P-universal ðwdþ cÞ-SB. There-

fore, designing good prime switch boxes will result in a

good compound switch box which is close to optimal; the

number of switches in it is bounded by a ratio of a constant.

From our observation, this constant should be very small

and approach to one when w is large.

In the worst case, since a complete switch box is always a

P-universal for any P, so we can simply let U0 be a complete

ðpdÞ-SB KðpdÞ, and let Upw be the complete ðrdþ cÞ-SB

KðrdþcÞ, then KðrdþcÞ þ w�pw
p KðpdÞ is a P-universal ðwdþ

cÞ-SB which contains �ðwÞ switches. Therefore, we have the

following theorem:

Theorem 7. Let d and c be k-dimensional nonnegative integer

vectors and P be any net pattern set. Then, there is a

compound P-universal ðwdþ cÞ-SB with �ðwÞ switches and

a �ðwÞ time routing algorithm. In particular, the number of

switches in an optimal ðwdþ cÞ-HUSB is �ðwÞ.

5.3 Illustration of Optimal Design Examples

We apply the reduction design scheme to design an optimal

ð4; 5; 6Þ-HUSB and an optimal ð5; 6; 7Þ-HUSB. Our strategy

is to design generic optimal ðw;wþ 1; wþ 2Þ-HUSBs, then

derive a ð4; 5; 6Þ-HUSB and a ð5; 6; 7Þ-HUSB by letting

w ¼ 4; 5.

To design ðw;wþ 1; wþ 2Þ-HUSBs, we let d ¼ ð1; 1; 1Þ
and c ¼ ð0; 1; 2Þ. Since we consider 3-sided hyperuniversal

switch boxes, the net pattern set is

ff1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg:

We proceed with the reduction design scheme as follows:
I. The corresponding incidence matrix of the net pattern

set is

A ¼
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

0
@

1
A:

Computing the Hilbert basis of the following SLDE:

1 0 0 1 1 0 1 �1
0 1 0 1 0 1 1 �1
0 0 1 0 1 1 1 �1

0
@

1
A

x1

x2

x3

x4

x5

x6

w

0
BBBBBBBB@

1
CCCCCCCCA
¼

0
0
0

0
@

1
A;

we obtain

B0 ¼ fð1; 1; 1; 0; 0; 0; 0; 1Þ; ð0; 0; 0; 0; 0; 0; 1; 1Þ;
ð1; 0; 0; 0; 0; 1; 0; 1Þ; ð0; 1; 0; 0; 1; 0; 0; 1Þ;
ð0; 0; 0; 1; 1; 1; 0; 2Þ; ð0; 0; 1; 1; 0; 0; 0; 1Þg:

Furthermore, computing the set of minimal solutions of

ðA;�dT ÞðX;wÞT ¼ cT , we obtain

B ¼ fð0; 1; 2; 0; 0; 0; 0; 0Þ; ð0; 0; 1; 0; 0; 1; 0; 0Þ;
ð0; 0; 0; 0; 1; 2; 0; 1Þg:

II. We have S ¼ f1; 2g, S0 ¼ f1g. Then, p ¼ 2 and q ¼ 2

satisfy the statements of Theorem 4.
III. We need to design three prime switch boxes: a

2ð1; 1; 1Þ-HUSB U0, a ð1; 2; 3Þ-HUSB U1 and a ð2; 3; 4Þ-HUSB

U2. Fig. 3a, Fig. 3b, and Fig. 3c show the designs of the three

prime hyperuniversal switch boxes. Routing tables are

omitted. Since the 2ð1; 1; 1Þ-HUSB U0 has 6 (¼ lbð2; 2; 2Þ)
switches, U0 is an optimal ð2; 2; 2Þ-HUSB. Similarly, the

ð1; 2; 3Þ-HUSBs U1 has lbð1; 2; 3Þ ¼ 4 switches and the

ð2; 3; 4Þ-HUSB U2 has lbð2; 3; 4Þ ¼ 7 switches, both are

optimal.
IV. The compound ðw;wþ 1; wþ 2Þ-HUSBs for w � 3 are

U1 þ w�1
2 U0 when w is odd and U2 þ w�2

2 U0 when w is even.

By Theorem 6, all compound ðw;wþ 1; wþ 2Þ-HUSBs

constructed above are optimal. In particular, when w ¼ 4

or 5, we obtain an optimal ð4; 5; 6Þ-HUSB U2 þ U0, and an

optimal ð5; 6; 7Þ-HUSB U1 þ 2U0. See Fig. 3d and Fig. 3e.
Next, we illustrate the routing process by showing steps

of finding a feasible routing for the ð4; 5; 6Þ-RR R of Fig. 3f

in U2 þ U0. The corresponding ð4; 5; 6Þ-RRV is X ¼
ð0; 0; 0; 1; 2; 3; 1Þ and w ¼ 4. We have

ðX;wÞ ¼ ð0; 0; 0; 1; 2; 3; 1; 4Þ
¼ ð0; 0; 0; 0; 1; 2; 0; 1Þ þ ð0; 0; 0; 0; 0; 0; 1; 1Þ
þ ð0; 0; 0; 1; 1; 1; 0; 2Þ:

The first vector on the right-hand side is a minimal solution

to AXT � ð1; 1; 1ÞTw ¼ ð0; 1; 2ÞT ; the second and third

vectors are minimal solutions to AXT � ð1; 1; 1ÞTw ¼ 0T .

By combining the first and the second vectors, we have

ðX;wÞ ¼ ð0; 0; 0; 0; 1; 2; 1; 2Þ þ ð0; 0; 0; 1; 1; 1; 0; 2Þ. It follows

that X ¼ ð0; 0; 0; 0; 1; 2; 1Þ þ ð0; 0; 0; 1; 1; 1; 0Þ, where vector

ð0; 0; 0; 0; 1; 2; 1Þ c o r r e s p o n d s t o ð2; 3; 4Þ-RR

R1 ¼ ff1; 3g; f2; 3g; f2; 3g; f1; 2; 3gg, which can be routed

in U2, and ð0; 0; 0; 1; 1; 1; 0Þ corresponds to ð2; 2; 2Þ-RR

R2 ¼ ff1; 2g; f1; 3g; f2; 3gg, which can be routed in U0.

Therefore, R is routable in U2 þ U0. Fig. 3h shows a feasible

routing of R1 in U2 and Fig. 3i shows a feasible routing of

R2 in U0. Fig. 3g gives a feasible routing of R in U2 þ U0

which is the disjoint union of Fig. 3h and Fig. 3i.

6 RECTANGULAR SWITCH BOXES FOR CUSTOMIZED

FPGAs

In this section, we first present an optimal design for

rectangular ðw; 2w;w; 2wÞ-USB, then show the experimen-

tal results on routability in a customized FPGA architec-

ture by VPR.
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Let d ¼ ð1; 2; 1; 2Þ and c ¼ ð0; 0; 0; 0Þ. The problem is to
design optimal wd-USBs. The net pattern set is
ff1g; f2g; f3g; f4g; f1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4gg.
We proceed with the reduction design scheme as follows:

I. The incidence matrix of the net pattern set is

A ¼

1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

0
BB@

1
CCA:

Solving the Hilbert basis of ðA;�dT ÞðX;wÞT ¼ 0, we
obtain

B0 ¼ fð0; 0; 0; 2; 1; 0; 0; 1; 0; 0; 1Þ; ð0; 0; 0; 0; 1; 0; 0; 0; 1; 1; 1Þ;
ð1; 0; 0; 1; 0; 0; 0; 1; 1; 0; 1Þ; ð1; 1; 0; 0; 0; 0; 0; 0; 1; 1; 1Þ;
ð0; 2; 0; 2; 0; 1; 0; 0; 0; 0; 1Þ; ð0; 0; 0; 0; 0; 0; 1; 1; 1; 0; 1Þ;
ð0; 1; 0; 1; 0; 1; 0; 0; 1; 0; 1Þ; ð0; 2; 0; 0; 0; 0; 1; 0; 0; 1; 1Þ;
ð1; 1; 0; 2; 0; 0; 0; 1; 0; 0; 1Þ; ð0; 0; 1; 1; 1; 0; 0; 0; 1; 0; 1Þ;
ð1; 2; 0; 1; 0; 0; 0; 0; 0; 1; 1Þ; ð0; 1; 1; 0; 0; 0; 1; 0; 1; 0; 1Þ;
ð1; 1; 1; 1; 0; 0; 0; 0; 1; 0; 1Þ; ð0; 1; 1; 2; 1; 0; 0; 0; 0; 0; 1Þ;
ð1; 2; 1; 2; 0; 0; 0; 0; 0; 0; 1Þ; ð2; 0; 0; 0; 0; 0; 0; 1; 3; 1; 2Þ;
ð1; 0; 1; 0; 0; 0; 0; 0; 2; 0; 1Þ; ð0; 1; 0; 1; 1; 0; 0; 0; 0; 1; 1Þ;
ð0; 0; 2; 0; 1; 0; 1; 0; 3; 0; 2Þ; ð0; 0; 0; 0; 0; 1; 0; 0; 2; 0; 1Þ;
ð0; 2; 1; 1; 0; 0; 1; 0; 0; 0; 1Þ; ð0; 1; 0; 1; 0; 0; 1; 1; 0; 0; 1Þg:

B ¼ ;:

II. From the above solutions, we see that the w-values are
1 and 2. That implies S ¼ f1; 2g and S0 ¼ ;. Therefore, we
have p ¼ 2; q ¼ 2.

III. The prime universal wð1; 2; 1; 2Þ-SB is a ð2; 4; 2; 4Þ-SB
U0 (corresponding to both 2d-USB and ðrdþ cÞ-USB with
r ¼ 2) and a ð1; 2; 1; 2Þ-USB U1 (corresponding to ðrdþ
cÞ-USB with r ¼ 1). Fig. 4a shows a ð2; 4; 2; 4Þ-USB U0 and a
ð1; 2; 1; 2Þ-USB U1. It is easy to see that both are optimal with
lbðr1; r2; r3; r4Þ switches. The routing tables are omitted.

IV. For w � 3, let B ¼ U1 þ w�1
2 U0 when w is odd and

B ¼ w
2 U0 when w is even. By Theorem 6, B is an optimal

ðw; 2w;w; 2wÞ-USB. U1 þ U0 and 2U0 are shown in Fig. 4b
and Fig. 4c, respectively.

Next, we present the experimental results with VPR. In
this experimental work, we compare the entire-chip rout-
ability between the FPGA adopting optimal irregular switch
boxes and the FPGA using other random but basically
reasonable irregular switch boxes.

Direct experimental comparisons with other previous
work are not available since the result given in [1] concerns
global routing only and the switch density used in [12] is
quite different from ours.

We compare the optimal ðw; 2w;w; 2wÞ-USBs with a
di s j o i n t - l i k e ðw; 2w;w; 2wÞ-SBs, w h e r e a d i s j o i n t
ðw; 2w;w; 2wÞ-SB is defined by switch set:

fv1;jv3;j : j ¼ 1; . . . ; wg [ fv2;jv4;j : j ¼ 1; . . . ; 2wg
[ fv1;jv2;j : j ¼ 1; . . . ; wg [ fv4;jv1;j : j ¼ 1; . . . ; wg
[ fv2;wþjv3;w�jþ1 : j ¼ 1; . . . ; wg
[ fv4;wþjv3;w�jþ1 : j ¼ 1; . . . ; wg:

We revise the well-considered, efficient, and fair FPGA
router VPR [2] and run large MCNC benchmark circuits for
our routing experiments. The logic block structure for our
VPR runs is set to consist of one 4-input LUT and one flip-
flop. The input or output pin of the logic block is able to
connect to any track in the adjacent channels, i.e., Fc ¼ w (or
2w for wide sides). Fig. 5a shows the structure of the
disjoint-like switch box with w ¼ 4 and Fig. 5b illustrates
our proposed optimal switch box structure. As shown in
Table 1, FPGAs adopting the optimal ðw; 2w;w; 2wÞ-USBs
can save 6 percent channel resources according to this
experiment.

7 CONCLUSIONS

The major contribution of this paper is the extension of
the reduction design technique for regular switch boxes
to the most general, arbitrary-shaped switch boxes. By
introducing the concepts of a net pattern set P and
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Fig. 4. Prime and two compound optimal ðw; 2w;w; 2wÞ-USBs. (a) Prime (w, 2w, w, 2w)-USBs. (b) (3, 6, 3, 6)-USB U1 þ U0. (c) (4, 8, 4, 8)-USB 2U0.



P-universal, we are able to unify the known universal
and hyperuniversal switch boxes and also to provide the
most general platform for designing any switch boxes
(arbitrary-shaped) with any special type of routing
requirements. To achieve this, we first modeled a
routing requirement as a nonnegative integer solution
of a system of linear equations. Then, a decomposition
theory was established based on the theory of systems of
linear Diophantine equations. The decomposition theory
enabled us to develop a reduction design scheme for
arbitrary-shaped switch boxes. That is, for any fixed
nonnegative integer vectors d and c, the design of
P-universal ðwdþ cÞ-SBs is reduced to the design of a

finite number (depends on only k and P) of small prime
switch boxes such that a P-universal ðwdþ cÞ-SB can be
obtained by a disjoint union of two types of the prime
switch boxes with a linear number of switches. As any
ðr1; . . . ; rkÞ-SB can be expressed as ðwdþ cÞ-SB by a
proper selection of the vectors d and c, a powerful
design scheme for any optimal arbitrary-shaped
P-universal switch box is developed.

In addition, a switch box designed by using this scheme
can be routed efficiently and can be easily laid out. We hope
this general theory and scheme will have some impact,
theoretically and practically, on the design of switch boxes
and interconnection networks in the future.
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Fig. 5. Structures of S-boxes (w ¼ 4). (a) Disjoint-like. (b) Optimal design.

TABLE 1
Comparison of VPR Experimental Results on Channel Density w between

Disjoint-Like ðw; 2w;w; 2wÞ-SBs and Our Optimal ðw; 2w;w; 2wÞ-USBs
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