
Hardware Implementation Trade-Offs of
Polynomial Approximations and Interpolations

Dong-U Lee, Member, IEEE, Ray C.C. Cheung, Member, IEEE,
Wayne Luk, Senior Member, IEEE, and John D. Villasenor, Senior Member, IEEE

Abstract—This paper examines the hardware implementation trade-offs when evaluating functions via piecewise polynomial
approximations and interpolations for precisions of up to 24 bits. In polynomial approximations, polynomials are evaluated using stored
coefficients. Polynomial interpolations, however, require the coefficients to be computed on-the-fly by using stored function values.
Although it is known that interpolations require less memory than approximations, but at the expense of additional computations, the
trade-offs in memory, area, delay, and power consumption between the two approaches have not been examined in detail. This work
quantitatively analyzes these trade-offs for optimized approximations and interpolations across different functions and target
precisions. Hardware architectures for degree-1 and degree-2 approximations and interpolations are described. The results show that
the extent of memory savings realized by using interpolation is significantly lower than what is commonly believed. Furthermore,
experimental results on a field-programmable gate array (FPGA) show that, for high output precision, degree-1 interpolations offer
considerable area and power savings over degree-1 approximations, but similar savings are not realized when degree-2 interpolations
and approximations are compared. The availability of both interpolation-based and approximation-based designs offers a richer set of
design trade-offs than what is available using either interpolation or approximation alone.

Index Terms—Algorithms implemented in hardware, interpolation, approximation, VLSI systems.

˙

1 INTRODUCTION

THE evaluation of functions is essential to numerous
signal processing, computer graphics, and scientific

computing applications, including direct digital frequency
synthesizers [1], Phong shaders [2], geometrical transforma-
tions [3], and N-body simulations [4]. Dedicated hardware-
based function evaluation units on field-programmable gate
arrays (FPGAs) or application-specific integrated circuits
(ASICs) are often desired over their software-based counter-
parts due to their huge speed advantages.

Direct lookup tables are sometimes used due to their ease
of design and fast execution times. However, the table size
grows exponentially with the number of bits at the input and
can become impractically large for high input precisions.
Iterative techniques such as CORDIC [5] have been popular,
but they are less suitable for high throughput applications
due to their multicycle execution delays. Function approx-
imation via weighted sum of bit products was recently
proposed, which was shown to lead to improved throughput
and area characteristics over CORDIC [6]. Polynomial-only
approximations have the advantage of being ROM-less, but

they can impose large computational complexities and
delays [7]. Table addition methods [8] provide a good
balance between computation and memory, without the
need for multipliers, but their memory requirements can
become large for precisions beyond 16 bits.

Our research covers table-based methods using piece-
wise polynomials, which are generally considered to be
suitable for low-precision arithmetic of up to 32 bits.
Furthermore, they offer flexible design trade-offs involving
computation, memory, and precision. The input interval is
partitioned into multiple segments and a (typically) low-
degree polynomial is used to evaluate each segment. The
evaluation accuracy can be controlled by varying the
number of segments and/or the polynomial degree. With
piecewise polynomials, one can opt for either “approxima-
tion” or “interpolation.” Approximation is “the evaluation
of a function with simpler functions,” whereas interpolation
is “the evaluation of a function from certain known values
of the function” [9]. Hence, in this paper, in piecewise
polynomial approximations, each segment is associated
with a set of table entries, giving the coefficients for the
appropriate approximating polynomial. In contrast, in
piecewise polynomial interpolation, the function values at
the segment end points are stored and the coefficients of
approximating polynomials are computed at runtime [10].
Thus, in a broad sense, interpolations can be regarded as
approximations as well, but, as is customary in the
literature, we shall use the terms “approximation” and
“interpolation” to distinguish the first and second ap-
proaches described above.

Both methods have their advantages and disadvantages.
To achieve a given precision, interpolations potentially
require smaller tables than approximations since a single

686 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

. D. Lee is with Mojix, Inc., 11075 Santa Monica Blvd., Suite 350, Los
Angeles, CA 90025. E-mail: dongu@mojix.com.

. R.C.C. Cheung is with Solomon Systech Limited, No. 3 Science Park East
Avenue, Hong Kong Science Park, Hong Kong. E-mail: cccheung@ieee.org.

. W. Luk is with the Department of Computing, Imperial College London,
London, UK. E-mail: w.luk@imperial.ac.uk.

. J.D. Villasenor is with the Electrical Engineering Department, University
of California, Los Angeles, 420 Westwood Blvd., Los Angeles, CA 90095-
1594. E-mail: villa@icsl.ucla.edu.

Manuscript received 20 Dec. 2006; revised 27 July 2007; accepted 23 Oct.
2007; published online 29 Oct. 2007.
Recommended for acceptance by M. Gokhale.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0478-1206.
Digital Object Identifier no. 10.1109/TC.2007.70847.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 15, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

function value, rather than a set of coefficients, is stored for
each segment. However, interpolations impose higher
computational burdens due to the coefficient computation
step. Although there is a significant body of literature
addressing implementation methods and associated trade-
offs, either for approximation or interpolation alone, the
detailed memory, area, delay, and power trade-offs between
the two methods have not been investigated.

In this paper, we quantitatively examine such trade-offs
for degree-1 and degree-2 designs across various functions,
segmentation methods, and target precisions. Among the
more notable findings are that, for degree-2 designs, the
average memory savings obtainable by using interpolation,
instead of approximation, is under 10 percent, which is
significantly lower than the commonly believed savings of
20 percent to 40 percent [11], [12]. This is primarily due to
the effect of the memory location bit widths, which was not
taken into account in previous work. Another interesting
result is that, for degree-1 interpolations, the increase in
circuit area due to the additional computations is more than
compensated for by the decrease in area due to lower
memory requirements. This leads to significant area and
power advantages over degree-1 approximations.

To summarize, the main contributions of this paper are:

. propose a common framework for capturing the
design flow and error analysis of both approxima-
tion and interpolation designs,

. examine the application of uniform and hierarchical
segmentations,

. review and compare hardware architectures for both
approximation and interpolation methods,

. apply techniques based on analytical bit width
optimization and resource estimation for improving
speed, area, and power consumption, and

. present experimental results targeting Xilinx FPGAs
to illustrate and evaluate our approach.

In what follows, precision is quantified in terms of the
unit in the last place (ulp). The ulp of a fixed-point number
with n fractional bits (FBs) would be 2�n. We target
“faithful” rounding in which results are rounded to either
the nearest or the next nearest fraction expressible using the
available bits and are thus accurate to within 1 ulp.

This paper focuses on degree-1 and degree-2 designs for
the following reasons: First, degree-1 and degree-2 poly-
nomials are generally regarded as the most efficient for the
target precisions of 10 to 24 bits considered in this work
[13]. Second, the evaluation of coefficients from function
values for degree-1 and degree-2 interpolations involves
multiplications that are powers of two, thus significantly
reducing the implementation cost. That said, higher degree
approximations are commonly used in situations where
memory requirements must be minimized at the expense of
increased computation or when precisions beyond 24 bits
are required [13], [14].

2 RELATED WORK

Between the two methods, polynomial approximation has
received more attention in the literature. Noetzel [15]
examined piecewise polynomial approximations involving

uniformly sized segments with Lagrange coefficients. It was
demonstrated that, by adjusting the polynomial degree for a
given target precision, the function can be approximated
with a variety of trade-offs involving computation and
memory. Takagi [16] presented a degree-1 approximation
architecture for performing powering operations. The
multiplication and addition involved in degree-1 approx-
imation were replaced with a larger multiplication and
operand modification. Single multiplication degree-2 archi-
tectures were proposed in [17], [18]. A multiplier was
eliminated through precomputing partial polynomial terms
at the expense of higher memory requirements. Piñeiro
et al. [19] proposed a highly optimized degree-2 architec-
ture with a dedicated squarer and a fused accumulation
tree. Their implementations result in significant reductions
in table size, with a slight increase in execution time
compared to other methods. Lee et al. [13] explored the
design space of different-degree piecewise approximations
in terms of area, latency, and throughput on FPGAs. It was
demonstrated that polynomials with certain degrees were
better than others for a given metric and target precision.
Schulte and Swartzlander [20] studied the impact of
achieving an exact rounding (1/2 ulp of accuracy) on the
area and delay with polynomial approximations. Their
results indicated that the exact rounding typically imposed
33 percent to 77 percent of hardware area penalty over the
faithful rounding. Walters and Schulte [21] described
degree-1 and degree-2 architectures with truncated multi-
pliers and squarers. Their approach required up to
31 percent fewer partial product computations compared
to approximations with standard multipliers/squarers.

One of the earliest examinations of digital interpolation
was performed by Aus and Korn [22] in the 1960s, who
examined software routines for degree-1 interpolations for
sine and cosine functions on the DEC PDP-9 platform.
Lewis [11] described an interleaved memory architecture
for interpolation and its application to evaluating the
addition/subtraction functions in logarithmic number
systems. It was estimated that, compared to approxima-
tions, interpolations used 30 percent to 50 percent less
memory for degree-1 designs and 20 percent to 40 percent
less memory for degree-2 designs. Cao et al. [12] examined
degree-2 interpolation circuits for the evaluation of elemen-
tary functions. Several variants of degree-2 interpolation
that trade off computation and memory were investigated.
Cao et al. state that degree-2 interpolations use 33 percent
less memory than approximations, a result that is consistent
with the range provided in [11]. Paliouras et al. [23]
explored degree-2 interpolation hardware for evaluating
sine and cosine functions. The interval was partitioned
nonuniformly to minimize the number of function values
required. McCollum et al. [24] employed degree-1 inter-
polations for the evaluation of the inverse Gaussian
cumulative distribution functions. Lamarche and Savaria
[25] studied the mapping of degree-1 interpolations on
FPGAs. Synthesis results for the interpolation of the error
function on a Xilinx Virtex XCV300 FPGA were presented.
As noted earlier, the contributions cited above address
approximations and interpolations separately, whereas this

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 687

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 15, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

present work investigates the hardware implementation
trade-offs of the two approaches.

3 FRAMEWORK

Consider an elementary function fðxÞ, where x is to be
evaluated over a range ‰a; b� and to a given target precision
requirement. The evaluation of fðxÞ typically consists of the
following steps [7]:

1. range reduction: reducing the input interval ‰a; b� to
a smaller interval ‰a0; b0�;

2. function approximation/interpolation over the re-
duced interval;

3. range reconstruction: expanding the result back to
the original result range.

Since range reductions and reconstructions are well-studied
topics, we focus on the approximation/interpolation of a
function over the reduced interval.

Fig. 1 depicts the design flow for polynomial approx-
imation and interpolation hardware design. The following
input parameters are required:

1. target function (for example, lnð1 þ xÞ),
2. evaluation interval (for example, x … ‰0; 1Þ),
3. segmentation method (uniform or nonuniform),
4. target output precision (for example, 20 FBs), and
5. evaluation method (approximation or interpolation)

and degree of polynomials (for example, degree-2
interpolation).

The target function can be any continuous differentiable
function, including elementary functions and compound
functions. Arbitrary evaluation intervals of interest can be
specified. A “segment” refers to the subinterval over which
a set of precomputed coefficients are used for the case of
approximation and for which the starting and ending
function values are stored for the case of interpolation. The
two segmentation options are 1) uniform segmentation, in
which the segment widths are equal, and 2) nonuniform
segmentation, in which the segment widths can be variable.
The desired target precision is specified in terms of the
number of FBs. Since faithful rounding is used, specifying

20 FBs, for instance, would lead to a worst-case error bound
of less than or equal to 2�20 at the output.

The first step of the design flow in Fig. 1 is segmentation.
For a given segmentation method, this step finds the
minimal number of segments while respecting the error
constraint of the target precision. Once segmentation is
completed, a table containing the polynomial coefficients
(in case of approximation) or the set of function values (in
case of interpolation) is generated. In addition, if nonuni-
form segmentation is selected, an additional table holding
the segmentation information is also produced. The second
step, that is, bit width optimization, identifies the required
bit width for each fixed-point operand in the data path. The
last step is hardware generation, which uses the table(s) and
the operand bit widths to generate synthesizable VHDL
code. In this flow, certain portions of the total error budget
are preallocated to the segmentation step (for inherent
approximation/interpolation errors) and the bit width
optimization step (for finite-precision effects). This avoids
the need to include feedback from the hardware generation
step to the segmentation step, which would greatly
complicate the design process with little or no benefit to
the resulting design.

Fig. 2 shows an overview of the computational steps
involved in polynomial approximation and interpolation.
Given the input x, its corresponding segment address
Seg_Addr and the input argument ~x for the polynomial
evaluation is computed. ~x is given by ~x … ðx � xiÞ=h, where
xi is the x-coordinate of the beginning of the current
segment, and h is the segment width. For approximation,
Seg_Addr simply serves as the index to the polynomial
coefficient ROM. For interpolation, Seg_Addr indexes the
ROM(s) from which the function values need to be fetched
and the polynomial coefficients are then computed on-the-
fly from the function values. In both methods, polynomial
evaluation is performed via the coefficients and the
polynomial input ~x to produce the approximated/inter-
polated output f̂ðxÞ. The resulting approximation/inter-
polation designs can then be implemented in a variety of

688 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

Fig. 1. Design flow for polynomial approximation and interpolation
hardware design.

Fig. 2. Overview of the steps involved in polynomial approximation and
interpolation.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 15, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

technologies. Section 7 covers speed, area, and power
consumption variations for the FPGA technology.

3.1 Polynomial Approximation
Approximation involves the evaluation of functions via
simpler functions. In this work, the simpler functions are
realized via piecewise polynomials. Different types of
polynomial approximations exist with respect to the error
objective, including least square approximations, which
minimize the root mean square error, and least maximum
approximations, which minimize the maximum absolute
error [7]. When considering designs that meet constraints
on the maximum error, least maximum approximations are
of interest. The most commonly used least maximum
approximations include the Chebyshev and minimax
polynomials. The Chebyshev polynomials provide approx-
imations close to the optimal least maximum approximation
and can be constructed analytically. Minimax polynomials
provide slightly better approximations than Chebyshev but
must be computed iteratively via the Remez algorithm [26].
Since minimax polynomials have been widely studied in
the literature (for example [13], [18], [19]) and offer better
approximation performance, they are adopted for our work
here. The Horner rule is employed for the evaluation of
polynomials in the following form:

f̂ðxÞ … ððCd ~x þ Cd�1Þ~x þ . . .Þ~x þ C0; ð1Þ

where ~x is the polynomial input, d is the degree, and C0::d
are the polynomial coefficients.

3.2 Polynomial Interpolation
Interpolation is a method of constructing new data points
from a discrete set of known data points. In contrast with
polynomial approximation-based hardware function eva-
luation, interpolation has received somewhat less attention
in the research community. In this section, we address
degree-1 and degree-2 interpolations.

3.2.1 Degree-1 Interpolation
Degree-1 interpolation uses a straight line that passes
through two known points ðxi; fðxiÞÞ and ðxiþ1; fðxiþ1ÞÞ,
where xi < xiþ1, as illustrated by the dashed line in Fig. 3.
At a point x … ‰xi; xiþ1Þ, the point-slope formula can be used
for the interpolation of f̂ðxÞ:

f̂ðxÞ … ðfðxiþ1Þ � fðxiÞÞ
x � xi

xiþ1 � xi
þ fðxiÞ: ð2Þ

The standard degree-1 polynomial is given by
f̂ðxÞ … C1 ~x þ C0. Examining (2), we find that

C1 … fðxiþ1Þ � fðxiÞ; ð3Þ

C0 … fðxiÞ; ð4Þ

~x …
x � xi

h
; ð5Þ

where h … xiþ1 � xi. The computation of the coefficients
requires two lookup tables and one subtraction. The worst-
case approximation error is bounded by [27]

�max …
h2

8
maxðjf 00ðxÞjÞ; where x … ‰xi; xiþ1Þ: ð6Þ

Fig. 4a shows the error plot when evaluating lnð1 þ xÞ
over x … ‰0; 1Þ with degree-1 interpolations using nine
equally spaced function value points corresponding to
eight segments. The average interpolation error generally
decreases with an increasing x because the magnitude of
the second derivative of lnð1 þ xÞ decreases with x (6). The
maximum error occurs in the interpolation between the first
two function values over x … ‰0; 0:125Þ (first segment).
Using (6), this error is bounded at 1:95 � 10�3. However,
(6) is a loose bound and, in fact, the actual interpolation
error is 1:73 � 10�3. The knowledge of the exact interpola-
tion error is essential for producing optimized hardware, as
will be discussed in Section 6. In order to compute the exact
interpolation error for each segment, we first find the root of
the derivative of fðxÞ � f̂ðxÞ, where fðxÞ is the true function
and f̂ðxÞ is the interpolating polynomial of the segment.
The root is the x value at which the maximum interpolation
error occurs. Finally, this x value is substituted into fðxÞ �
f̂ðxÞ to give the exact interpolation error of the segment.

In Fig. 4a, it is observed that the errors have the same sign
throughout the interval. This will always be the case for
functions whose derivative is monotonically increasing or

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 689

Fig. 3. Illustration of degree-1 interpolation.

Fig. 4. Interpolation error when evaluating lnð1 þ xÞ over x … ‰0; 1Þ with
degree-1 interpolations using nine equally spaced function values.
(a) Original. (b) Adjusted.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 15, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

decreasing over the interpolation interval. As noted by Lewis
[11], it is possible to reduce the errors in such situations by
adjusting the function values. The specific-adjustment
method [11] assumes that the maximum error occurs
precisely at the midpoint of the segment. However,
although the maximum error position is typically near the
midpoint, it is not typically exactly at the midpoint. By
using an alternate adjustment methodology described as
follows, a slight improvement in the postadjustment error
can be obtained:

Let seg errj denote the maximum interpolation error of
the jth segment and M denote the number of segments. The
first and last function values fðx0Þ and fðxMÞ are reduced
by seg err0=2 and seg errM�1=2, respectively. Each inter-
mediate function value fðxiÞ, however, affects seg erri�1
and seg erri. To balance the errors of the consecutive
segments, ðseg erri�1 þ seg erriÞ=4 is subtracted from the
intermediate function values. Fig. 4b shows the error plot of
the adjusted function values. Unlike the error plot of the
original function values (Fig. 4a), the error behaves in a
symmetric manner around fðxÞ … 0, reducing the max-
imum absolute error by a factor of two to 8:67 � 10�4. The
adjusted function values are illustrated in Fig. 3. For
segments on the boundaries, each of such segments has a
function value not shared by any other segments. This
adjustment process leads to a degree-1 interpolating line
that has the same maximum-error properties as the
minimax degree-1 approximation. For interior segments,
however, the degree-1 interpolation and degree-1 approx-
imations will differ.

3.2.2 Degree-2 Interpolation
The degree-2 Lagrange interpolating polynomial through the
three points ðxi�1; fðxi�1ÞÞ, ðxi; fðxiÞÞ, and ðxiþ1; fðxiþ1ÞÞ,
where xi�1 < xi < xiþ1, is [27]

f̂ðxÞ … fðxi�1Þ
ðx � xiÞðx � xiþ1Þ

ðxi�1 � xiÞðxi�1 � xiþ1Þ

þ fðxiÞ
ðx � xi�1Þðx � xiþ1Þ

ðxi � xi�1Þðxi � xiþ1Þ

þ fðxiþ1Þ
ðx � xi�1Þðx � xiÞ

ðxiþ1 � xi�1Þðxiþ1 � xiÞ
:

ð7Þ

Assuming that the function values are equally spaced,
substituting h … xi � xi�1 … xiþ1 � xi and ~x … ðx � xiÞ=h
into (7) gives

f̂ðxÞ …
fðxiþ1Þ þ fðxi�1Þ

2
� fðxiÞ

� �
~x2

þ
fðxiþ1Þ � fðxi�1Þ

2
~x þ fðxiÞ:

ð8Þ

Since the degree-2 polynomial in the Horner form is given
by f̂ðxÞ … ðC2 ~x þ C1Þ~x þ C0, from (8), the coefficients are
given by

C2 …
fðxiþ1Þ þ fðxi�1Þ

2
� fðxiÞ; ð9Þ

C1 …
fðxiþ1Þ � fðxi�1Þ

2
; ð10Þ

C0 … fðxiÞ; ð11Þ

which require three lookup tables, three additions and
subtractions, and constant shifts. The worst-case approx-
imation error is bounded by [27]

�max …
h3

9
���
3

p maxðjf 000ðxÞjÞ; where x … ‰xi�1; xiþ1Þ: ð12Þ

In degree-2 interpolation, the following strategies are
possible:

. Method 1. Use fðxi�1Þ, fðxiÞ, and fðxiþ1Þ for the
interpolation over x … ‰xi�1; xiþ1Þ.

. Method 2. Use fðxi�1Þ, fðxiÞ, and fðxiþ1Þ for the
interpolation over x … ‰xi�1; xiÞ or x … ‰xi; xiþ1Þ only.

Method 1 is employed by Paliouras et al. [23] and Cao et al.
[12], whereas method 2 is employed by Lewis [11].
Although method 1 is simpler to implement from the
hardware perspective (Section 5), method 2 can result in
lower interpolation errors and allows the function values to
be adjusted as discussed in Section 3.2.1 to reduce the
maximum absolute error. For instance, consider the inter-
polation of a function over the range x … ‰xi; xiþ1Þ with a
decreasing third derivative. With method 1, function values
fðxi�1Þ, fðxiÞ, and fðxiþ1Þ will be used and the error will be
bounded by h3=9

���
3

p
jf 000ðxi�1Þj and its sign alternates. With

method 2, however, function values fðxiÞ, fðxiþ1Þ, and
fðxiþ2Þ will be used, resulting in a reduced error bound of
h3=9

���
3

p
jf 000ðxiÞj and the error has constant sign, making it

suitable for function value adjustments. Although method 2
lowers the interpolation error, it requires an extra function
value. As will be discussed in Section 4, it imposes higher
hardware complexity.

Fig. 5 shows the interpolation error when evaluating
lnð1 þ xÞ over x … ‰0; 1Þ with degree-2 method-1 interpola-
tions using nine equally spaced function values. To
determine the interpolation error, instead of using the
bound in (12), we use the exact error computation technique
discussed in Section 3.2.1. Method 1 results in a maximum
absolute error of 1:86 � 10�3 and the sign of the error
alternates between successive segments.

Fig. 6a shows the same error plot when method 2 is used.
For this particular example, the maximum absolute error is
identical to method 1 since the error is dominated by the
first segment and the set of function values used for the first
segment is identical for both methods. However, the sign of
the error in method 2 is constant throughout the interval,
allowing the function value adjustment method described
in Section 3.2.1 to be applied. The error plot of method 2
with adjusted function values is shown in Fig. 6b. Note that

690 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

Fig. 5. Interpolation error when evaluating lnð1 þ xÞ over x … ‰0; 1Þ with
degree-2 method 1 interpolations using nine equally spaced function
values.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 15, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

an extra function value is required for interpolating the last
segment. The interpolation error is 9:75 � 10�5, which is
about half the unadjusted interpolation error and an order
of magnitude lower than the adjusted degree-1 interpola-
tion error (Fig. 4b). When degree-2 minimax approxima-
tions are applied to the example above, the maximum
absolute error is 1:70 � 10�5, which is considerably lower
than any of the degree-2 interpolation methods discussed
above. In general, the degree-2 polynomials obtained
through interpolation (whether adjusted or not) can deviate
significantly from the optimal minimax polynomials. As
noted earlier, in the case of degree 1, the differences
between the interpolation polynomial (that is, a straight
line) and the minimax line are much smaller.

4 SEGMENTATION

The most common segmentation approach is uniform
segmentation, in which all segment widths are equal,
with the number of segments typically limited to powers
of two. This leads to a simple and fast segment indexing.
However, a uniform segmentation does not allow the
segment widths to be customized according to local
function characteristics. This constraint can impose high
memory requirements for nonlinear functions whose first-
order or higher order derivatives have high absolute
values since a large number of segments are required to
meet a given error requirement [28].

A more sophisticated approach is to use nonuniform
segmentation, which allows the segment widths to vary.
Allowing completely unconstrained segment widths would
lead to a number of practical issues. Thus, we use
hierarchical segmentation [28], which utilizes a two-level
hierarchy consisting of an outer segmentation and an inner
segmentation. The outer segmentation employs uniform
segments or segments whose sizes vary by powers of two,
whereas the inner segmentation always uses uniform
segmentation. Compared to uniform segmentation,
hierarchical segmentation requires significantly fewer seg-
ments for highly nonlinear functions such as the entropy

computation �x lnðxÞ over x … ‰0; 1Þ. For relatively linear
functions such as lnð1 þ xÞ over x … ‰0; 1Þ, moderate savings
can still be achieved due to the constraint of uniform
segmentation, in which the total number of segments must
be a power of two. However, due to its nonuniformity,
hierarchical segmentation requires extra circuitry for seg-
ment indexing.

Fig. 7 illustrates the hierarchical segmentations for
functions lnð1 þ xÞ and �x lnðxÞ using degree-2 method-1
interpolations for an error requirement of 2�14. Uniform
segments are used for the outer segmentation of lnð1 þ xÞ,
whereas segments that increase by powers of two are used
for the outer segmentation of �x lnðxÞ. lnð1 þ xÞ and
�x lnðxÞ require a total of 12 and 48 segments, respectively.
lnð1 þ xÞ uses four outer segments, whereas �x lnðxÞ uses
10 outer segments. Note that the number of uniform
segments within each outer segment is variable. The figure
demonstrates that the segment widths adapt to the non-
linear characteristics of the functions. If uniform segmenta-
tions are used instead, lnð1 þ xÞ requires 16 segments and
�x lnðxÞ requires 2,048 segments.

Table 1 compares the number of segments and the number
of function values that need to be stored for degree-1 and
degree-2 interpolations with hierarchical segmentation.
Degree-2 method-2 results use adjusted function values.
Both degree-1 methods and degree-2 method 1 require
storage of M þ 1 function values, where M is the number of
segments, as noted in Section 3.2. However, an additional
function value is required just before or after each outer
segment for degree-2 method 2. The table shows that, as
expected, the number of segments increases with the error
requirement and degree-2 interpolations require signifi-
cantly fewer segments than degree-1 interpolations. In
degree-1 interpolations, adjusted function values reduce the
required number of function values by up to 30 percent. For
degree 2, little reduction is obtained by adopting method 2
over method 1. This is due to the overhead of the extra
function value for each outer segment.

LEE ET AL.: HARDWARE IMPLEMENTATION TRADE-OFFS OF POLYNOMIAL APPROXIMATIONS AND INTERPOLATIONS 691

Fig. 6. Interpolation error when evaluating lnð1 þ xÞ over x … ‰0; 1Þ with
degree-2 method 2 interpolations using 10 equally spaced function
values. (a) Original. (b) Adjusted.

Fig. 7. Hierarchical segmentations to lnð1 þ xÞ and �x lnðxÞ using
degree-2 method 1 interpolations at an error requirement of 2�14. lnð1 þ
xÞ requires four outer segments, resulting in a total of 12 segments,
whereas �x lnðxÞ requires 10 outer segments, resulting in a total of
48 segments. The black and gray vertical lines indicate the boundaries
for the outer segmentation and inner segmentation, respectively.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 15, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

Similar experiments are conducted for uniform segmen-
tations. Results indicate that the degree-1 adjusted method
and degree-2 method 2 can occasionally reduce the number
of function values by half compared to the degree-1 original
method and degree-2 method 1, respectively. In most cases
though, the number of function values is identical. This is
due to the fact that, with uniform segmentations, the
number of segments always varies by powers of two.
Hence, in certain boundary cases, a slight reduction in error
can avoid the jump to the next power of two.

5 HARDWARE ARCHITECTURES

As illustrated in Fig. 2 in Section 3, the first step is to
compute the segment address Seg_Addr for a given input x.
Let Bz denote the bit width of an operand z. With a uniform

segmentation, segment address computation is nearly free
since the leading Bxaddr bits of the input x are simply used to
address 2Bxaddr segments. A hierarchical segmentation has
the benefit of adaptive segment widths but at the price of
extra hardware for segment address computation. If uni-
form segments are used for an outer segmentation (for
example, lnð1 þ xÞ in Fig. 7), a barrel shifter is needed. If
segments that vary by powers of two are selected for outer
segmentation (for example, �x lnðxÞ in Fig. 7), a leading
zero detector and two barrel shifters are required. In both
cases, a small ROM for storing the segmentation informa-
tion is necessary [28].

With approximations, the segment address is used to
index the coefficient ROM. The coefficient ROM has
M rows, where M is the number of segments. As illustrated
in Fig. 9, each row is a concatenation of the polynomial
coefficients to each segment.

With interpolations, the segment address indexes the
ROMs that hold the function values. Fig. 8 shows degree-1
and degree-2 method 1 single-port ROM architectures for
extracting the corresponding function values to each
segment. These architectures work for both uniform and
hierarchical segmentations. The degree-1 single-port design
in Fig. 8a uses ROM0 and ROM1 as the interleaved
memories. As illustrated in Fig. 10, ROM0 stores function
values with even indices, whereas ROM1 stores function
values with odd indices. The incrementer and the two
shifters ensure that the correct function values are extracted.
The least significant bit (LSB) of Seg_Addr is used as the
select signal of the two multiplexers to correctly order the
two function values read from the ROMs. The degree-2
single-port design in Fig. 8b works in the same way as the
degree-1 case, except that it has an extra ROM (ROM2).
ROM2 is used to store the midpoint fðxiÞ between the
function values fðxi�1Þ and fðxiþ1Þ of ROM0 and ROM1.
However, due to this midpoint approach, Seg_Addr is used
to address two consecutive segments.

Fig. 11 depicts the corresponding degree-1 and degree-2
architectures utilizing dual-point ROMs. In the degree-1
case (Fig. 11a), the ROM simply stores the function values in
order. Since the index of fðxiÞ is identical to Seg_Addr,
fðxiþ1Þ is simply the next location in the ROM. Analogously

692 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 5, MAY 2008

TABLE 1
Comparisons of the Number of Segments and Function Values

for Interpolations with Hierarchical Segmentation

Degree-2 method 2 results use adjusted function values. �REQ refers to
the error requirement.

Fig. 8. Single-port ROM architectures for extracting function values for degree-1 and degree-2 method 1 interpolations. ROM0 and ROM1 are
interleaved memories. (a) Degree-1. (b) Degree-2.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 15, 2008 at 06:00 from IEEE Xplore. Restrictions apply.

