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Abstract—This paper explores theories on designing optimal
multipoint interconnection structures, and proposes a simple
switch box design scheme which can be directly applied to
field programmable gate arrays (FPGAs), switch box designs,
and communication switching network designs. We present a
new hyperuniversal switch box designs with four sides and
terminals on each side, which is routable for every multipin
net-routing requirement. This new design is proved to be optimum
for = 1 . . . 5 and close to optimum for 6 with
6 �3 switches. We also give a formal analysis and extensive
benchmark experiments on routability comparisons between
today’s most well-known FPGA switch boxes like disjoint switch
blocks (Xilinx XC4000 Type), Wilton’s switch blocks, Universal
switch blocks, and our Hyperuniversal switch boxes. We apply
the design scheme to rearrangeable switching network designs
targeting for applications of connecting multiple terminals (e.g.,
teleconferencing). Simply using a -sided hyperuniversal switch
block with a crossbar attached to each side, one can
build a three-stage one-sided polygonal switching network capable
of realizing every multipoint connection requirement on
terminals. Besides, due to the fine-grained decomposition prop-
erty of our design scheme, the new switch box designs are highly
scalable and simple on physical layout and routing algorithm
implementations.

Index Terms—Field programmable gate arrays (FPGA), hyper-
rearrangeable, hyperuniversal, routings, switch box, switching
network.

I. INTRODUCTION

SWITCH BOXES, also called switch modules, or switch
blocks, or switching networks in other literatures, are

basic components in reconfigurable interconnection networks.
A switch box basically consists of terminals (ports) and
prefabricated programmable switches for connecting these
terminals. The functionality of switch box is to implement a
given routing requirement using its programmable switches. In
field programmable gate arrays (FPGAs), switch boxes are key
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Fig. 1. Switch boxes in 2-D FPGA.

components, which determine the routability and the area effi-
ciency of an FPGA chip [6], [11]. In a circuit-switching-based
communication network, such as a traditional telephone net-
work [1], [2], switch boxes are used to set up physical connec-
tions for communication parties.

A switch box with sides and terminals on each side,
denoted by -SB, consists of bidirectional programmable
switches connecting terminals on different sides. (4,)-SBs
are the key-switch modules in the island-style two-dimensional
(2-D) FPGA architectures [5], [6], [9], [15], [17]. Fig. 1 shows
such an FPGA architecture using (4, 4)-SBs.

Routability and area efficiency are two important issues in
switch box designs. Routability of a switch box is the capability
in realizing all kinds of routing requirements, while the area ef-
ficiency can be measured by the number of switches employed.
There are two conflicting issues. It can be seen that acomplete

-SB, (i.e., having a switch between every pair of termi-
nals of different sides) will have the highest routability. How-
ever, it has the lowest area efficiency and high cost in fabrica-
tion, and is impractical in layout whenand are large. One
of the design goals is to design an optimum switch box, which
is routable for all given routing requirements, has a minimum
number of switches fabricated, but does not cause much layout
complication.

To address the tradeoff between chip-level routability and
area efficiency, Rose and Brown [5] introduced a useful mea-
sure calledflexibility, denoted by , which is the maximum
number of switches connected to a terminal in the switch
box. They investigated the relationship between flexibility and
routability, and observed that (4, )-SBs with yield
a good tradeoff between the number of switches and routability.

0278-0070/03$17.00 © 2003 IEEE
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Fig. 2. Routing requirements and feasible routings for various (4, 3)-SBs.

However, as there are many different designs for switch boxes
with the same flexibility, it is clearly important to analyze the
routability differences among them and to find out the optimum
designs.

Fig. 2(a)–(d) provides four representative FPGA switch box
structures. A Disjoint (4, )-SB [Fig. 2(a)] consisting of a dis-
joint union of complete (4, 1)-SBs is used in Xilinx XC4000
Type FPGAs. Fig. 2(b) gives the so-called Wilton’s (4, 3)-SB
[26] which is a nondecomposable switch box. It has been shown
experimentally that nondecomposable switch-box design may
cause some layout complications. Changet al. [9] proposed a
decomposable design, called universal switch modules [9], and
better routability was achieved both theoretically and experi-
mentally. A ( , )-SB is said to beuniversal[or a ( , )-USB]
if it is routable for every set of 2-pin net routing requirement sat-
isfying the routing constraints, i.e., the number of nets incidents
with each side is at most . In [9], the so-called symmetric (4,

)-USBs, denoted by , were proposed and proved to be
universal. It is also proved that is an optimal (4, )-USB
with switches. Fig. 2(c) shows a (4, 3)-USB which is iso-
morphic to .

To remove the 2-pin nets routing limitation, Fanet al.
[19]–[21] generalized the notion of universal tohyperuniversal
by allowing multipin nets. A (, )-SB is said to be hyperuni-
versal if it is routable for every set of multipin nets satisfying
the routing constraints. A hyperuniversal (, )-SB is denoted
by ( , )-HUSB. Fig. 2(d) presents our new (4, 3)-HUSB
design.

Fig. 2(e)–(l) shows feasible routings of some routing re-
quirements in the corresponding switch boxes, respectively. It
is interesting to note that all of the four (4, 3)-SBs shown in
Fig. 2 contain eighteen switches, but their routing capacities
are not the same. In this paper, we will formally prove their
unequal routabilities. We will show in Section II-E that (4,

)-USB has higher routability than the Disjoint-(4, )-SB,
the routabilities of Disjoint-(4, )-SB, (4, )-USB, and

Wilton’s (4, )-SB are not comparable, but (4, )-HUSB
has the highest routability which, thus, has better routability
than any of the other (4, )-SBs. These results clearly suggest
that besides the number of fabricated switches, the connection
topology of a switch box plays an important role in deciding
the routability of a switch box.

Levering both the objectives of routability and simplicity
for designs and fabrication, a systematic reduction design
scheme for general (, )-HUSBs was proposed in [19]–[21].
In this design scheme, for any given, we need only design
( , )-HUSBs for a few values ofs, called prime -HUSBs.
Then we use the prime-HUSBs to build all of the other (,

)-HUSBs by disjoint-union operation. This scheme guaran-
tees the hyperuniversality for any , while still maintaining
good scalability and a small number of switches. As a result,
the complicated HUSB design problem is reduced to the
problem of designing a few numbers of prime-HUSBs—each
of the prime -HUSBs is small in size. This constructive
design scheme not only provides a set of well-structured and
scalable HUSBs, but also makes the implementation of routing
algorithm and chip layout easy [20]. In the case of , the
prime 4-HUSBs are (4,)-HUSBs for , 2, 3, 4, 5, 6, 7.
That is, there are seven prime 4-HUSBs. In [19]–[21], a set
of prime 4-HUSBs was given, and a class of (4,)-HUSBs
with switches composed by these prime 4-HUSBs was
constructed.

In this paper, we further explore that although the number of
possible routing cases increases dramatically from 2-pin nets to
multipin nets, it is possible to build (4, )-HUSBs using only a
few more switches than that of (4, )-USBs [23]. For example,
an optimum (4, 4)-USB has 24 switches, while an optimum (4,
4)-HUSB is shown to have 25 switches.

By definition, it is obvious that a (, )-HUSB must be a
( , )-USB, but the reverse is not true. As it can be shown that

, the number of switches used in an optimum (4,)-USB,
is not sufficient for general (4, )-HUSBs (e.g., an optimum
(4, 4)-HUSB requires switches), can only
be considered as a trivialloose lower boundfor optimum (4,

)-HUSBs.
In this paper, we present a new set of prime (4,)-HUSBs,

which is optimum for , and has switches
for and switches for . Using this new
set of prime 4-HUSBs to build other larger (4,)-HUSB, the
switch count of the new design is improved to , which is
quite close to the loose bound . Moreover, it is interesting
to note that, for practical range of values, only a few more
switches are needed to make the currently known nonhyperuni-
versal switch boxes become hyperuniversal by using our design
scheme.

We will give a complete proof on the hyperuniversality of
the new prime 4-HUSB designs, followed by extensive FPGA
routing experiments to demonstrate their routability improve-
ment, even when an entire chip routing is exercised. To make
this complicated formal proof manageable, we use the decom-
position theory developed in previous works [19]–[21] and some
new simplification techniques. To have a fair experimental com-
parison, we run the VPR [27] on benchmarks for Disjoint (4,

)-SBs, Wilton’s (4, )-SBs, (4, )-USBs, and our new (4,
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Fig. 3. Three-stage one-sided rearrangeable switching network
(k = 4, W = 3) capable of realizing all possible multipoint
interconnection requirements and a realization for the connection requirement
ff1; 4; 5g; f2; 6; 7; 11;12g;f3;8g;f9; 10gg.

)-HUSBs (with switches trimmed down to be the same for
fair comparisons). The improvement for the entire chip routing
is also demonstrated.

Dynamic (Reconfigurable) switching networks have been
widely used for many applications including parallel processing
of multiprocessors, telecommunications, etc. To reduce the
number of switches, a multistage structure is needed with the
cost of more switching delays. A two-sided (input, output)
switching network is rearrangeable if it is able to realize arbi-
trary permutation between input and output terminals, however
terminals of the same side may not be connectable. To avail
any set of simultaneous point-to-point (2-point) connections
between all terminals, a three-stage one-sided rearrangeable
polygonal switching network (PSN), which makes use of the
2-point universal connectivity of USBs, has been recently
proposed [18]. Similarly, we can design ahyperuniversal
rearrangeable switch box(HRSB) with the ability of allowing
simultaneous multipoint connections. Using a (, )-HUSB as
the central component and a crossbar attached to each
side, we build a three-stage one-sided (, )-HRSB capable
of realizing any multipoint connection requirement for the
terminals.

Fig. 4. Examples of a track-free routing requirement and a completed routing.

In Fig. 3, we show a (4, 3)-HRSB and the realiza-
tion for a multipoint connection requirement

. If we attach crossbar boxes
to of the sides, then we obtain a so-called (, , )-HRSB,
which can be used for building improvedgreedy routing
architectures(GRAs) [10].

Besides the guaranteed hyperuniversality, the simplicity
and decomposable construction nature of our proposed design
scheme should be of equal significance. In our design scheme,
a (4, )-HUSB of large is built from fine-grained prime
4-HUSBs, which makes the physical layout and routing algo-
rithm designs as simple as that of a Disjoint (4,)-SB and a
(4, )-USB.

The rest of the paper is organized as follows. In Section II,
we, first, formally define the track-free routing requirement
and hyperuniversal switch boxes. Then, we briefly describe
the reduction design method followed by showing the new
prime 4-HUSBs. In Section III, we address track-fixed routing
requirements and present our designs for (4,)-HRSBs and
applications for improved GRAs. We show our experiments in
Section IV and give conclusions in Section V. The formal proof
of the prime 4-HUSBs is presented in the Appendix. Feasible
routing tables for the prime 4-HUSBs can be derived directly
from the proof.

II. HYPERUNIVERSAL SWITCH BOXES

A net is a set of terminals (pins) that need to be intercon-
nected. Arouting requirementaround a switch box is a set of
nets, which is also termed as aglobal routingin some literatures.
A feasible routing(or detailed routing) for a routing requirement
is a realization of all of the nets in the routing requirement. A
proper mathematical modeling for routing requirements is im-
portant in solving the optimal switch box designing problems. In
this paper, we will consider two kinds of routing requirements,
track-freeandtrack-fixedrouting requirements. In this section,
we investigate the track-free routing requirements and the asso-
ciated hyperuniversal switch box design problem, and present
our new set of prime 4-HUSB design for (4,)-HUSBs.

A. Track-Free Routing Requirements

In a (track-free) routing requirement for a (, )-SB, only
the sides of the terminals are specified, while the actual tracks
used in a feasible routing will be decided by routers.

Fig. 4(a) shows a (4, 4)-SB, where each of the four sides has
four terminals (tracks), each terminal is assigned to a unique
track IDs (1–4).
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A net is called a-pin net if it is requested to connecttermi-
nals on different sides. For instance, the net in Fig. 4(b) is
a 3-pin net; it requires connecting three terminals on sides 1, 2,
and 4. It is up to the router to decide which terminals are actually
assigned in a track-free routing requirement. Fig. 4(c) gives a
feasible routing example for the routing requirement with seven
track-free nets as shown in Fig. 4(b). In the following text, un-
less stated otherwise, track-free will be the default condition
for routing requirements and the word track-free is omitted for
brevity.

In general, a (track-free) routing requirement for a (, )-SB
is a set of nets satisfying the channel-density constraint, i.e.,
the number of nets incident to every side is no more than.
Our first step in switch box design is to model a track-free
routing requirement as a collection of subsets of
[19], [21]. We label the sides of the (, )-SB by ,
respectively. A -pin net, which requests connectingtermi-
nals on different sides labeled , is represented by

. Thus, a routing requirement for a (, )-SB
is a collection of subsets of such that for each

, it appears in at most nets. A one-pin net (a
net of size 1) corresponds to a singleton, which does not
need any switch for realization. For simplicity, we simply add
some singletons to a routing requirement to make sure that every

appears in exactly nets of the resulting
routing requirement.

A ( , )-SB can be viewed as a graphsuch that terminals
are vertices and switches are edges. The stage of a switch box is
the maximum number of edges in the shortest path joining two
terminals on different sides. If we denote theth terminal on
side by and let , ,
then a one-stage (, )-SB corresponds to a-partite graph,
with parts , and edges , if there is a switch
connecting and . Next, we formally define a routing
requirement and a feasible routing of a routing requirement in a
switch box.

Definition 1: A collection of subsets of
is said to be a -way routing requirement of den-

sity , written as ( , )-RR, if each appears in
exactly subsets of the collection.

A ( , )-RR is said to be a primitive (, )-RR, written as (,
)-PRR, if it does not contain two singletons and , such

that .
A ( , )-RR is said to be a subrouting requirement of a

( , )-RR if is a subcollection of , and proper is in
addition . A ( , )-RR is said to be a minimal (, )-RR,
written ( , )-MRR, if it does not contain a proper subrouting
requirement. We denote-RR ( -PRR, -MRR, -MPRR)
as the -way (primitive, minimal, minimal primitive) routing
requirement.

For example,
is (4,4)-RR. It can be converted to a

(4,4)-PRR by replacing , by , and we obtain
.

Then, it can be decomposed into three 4-MPRRs:
, ,

.

Definition 2: A feasible routing of a (, )-RR
in a ( , )-SB is a set of mutually

vertex disjoint subgraphs of satisfying:
1) is a tree of vertices and 2) ,
if , for . Where is called a net, or a

-pin net, (or a multipin net if ). is called a
routing of in .

Wesay that is routable for if hasa feasible routing in.
By the above definitions, the (4, 4)-RR shown in Fig. 4(b)

is ,
. Fig. 4(a) shows a one-stage (4, 4)-SB. A

corresponding feasible routing in this switch box is shown in
Fig. 4(c).

B. Hyperuniversal Switch Box and Design Method

A ( , )-SB is said to behyperuniversalif it has a feasible
routing for every ( , )-RR. The HUSB design problem is: for
a fixed , to design an optimum (, )-HUSB for every ,
where optimum design refers to the design of minimum number
of switches of all ( , )-HUSBs.

The model of universal switch block was first proposed in [9]
and was extensively studied in [12] for generalized designs. The
problem is further investigated in [22] and [24]. A (, )-SB is
universal(or a ( , )-USB), if it is routable for every track-free
2-pin net ( , )-RR. The difference between HUSB and USB
is obvious by definition, the former is routable for multipin
nets, while the latter is only routable for 2-pin nets. Thus, a (,

)-HUSB must be a (, )-USB, but the converse is not true
in general.

In [19]–[21], a decomposition theory and a reduction design
technique were proposed for designing (, )-HUSBs. The de-
composition theory stated that, for a fixed, the number of
minimal -RRs is finite, and a (, )-RR can always be de-
composed into a union of minimal-RRs. As a result, a (,

)-HUSB can be constructed by a finite number of-HUSBs
of small size. In other words, we can design a few number (de-
pends on only) of prime -HUSBs and then use them to build
any -sided HUSBs by applying disjoint union. For , there
are seven prime 4-HUSBs (4,)-HUSBs for .

C. New Prime HUSB Designs

Fig. 5 shows our new set of prime 4-sided HUSBs.
Theorem 1: The following statements are true for .

1) is an optimum (4,)-HUSB, for , 2, 3, 4, 5.
2) is hyperuniversal with 38 switches. is close to

optimum by, at most, two switches.
3) is hyperuniversal with 43 switches. is close to

optimum by, at most, one switch.

The proof of this theorem is relatively technical and lengthy,
therefore, the complete proof has been put in the Appendix.

Among these proposed prime HUSBs, is a particularly
perfectexample in terms of its hyperuniversal property. Also,
it has exactly the same number of switches as that of the Dis-
joint (4, 3)-SB, Symmetric (4, 3)-USB [9], and Wilton’s
(4, 3)-SB [26]. However, none of these designs exceptis
hyperuniversal.
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Fig. 5. Prime 4-HUSB designs, which are constructed from fine-grainedH

toH and are highly scalable. Compared to those none hyperuniversal designs,
at most an extra 1 or 2 switches are used in a prime 4-HUSB.

is a disjoint union of two plus one extra switch. It
has 25 switches, only one switch more than the optimum (4,
4)-USB. This clearly indicates that the lower bound of needed
switches for (4, )-HUSBs cannot be only and a USB is
not an HUSB in general.

Similarly, is a union of one and one , and is a
union of two plus two bridge switches. has 38 switches,
only two switches more than the loose lower bound of (36).

is a union of one and one . has 43 switches, only
one switch more than that of the corresponding (4, 7)-USB (42).
It is quite hard to formally prove if and are both op-
timum HUSBs. However, their switch counts are so close to any
possible lower bound, we conjecture that both and are
optimum.

D. General (4, )-HUSBs

By the reduction design method [19]–[21], using, ,2,
3, 4, 5, 6, 7 as prime building blocks, we construct general (4,

)-HUSBs as the following:

TABLE I
ROUTABLE AND NON-ROUTABLE CASES. PLEASE REFER TOTABLE III

FOR THEDEFINITION OFGR

where means a disjoint union of copies of and
one . The number of switches of is equal to

To summarize, we have the following theorem.
Theorem 2: is hyperuniversal with the number of

switches between and .

E. Routing Analysis of Various Switch Boxes

We compare the routabilities of Disjoint (4, )-SBs, (4,
)-USB, Wilton’s (4, )-SB, and (4, )-HUSB. Table I

below shows the exceptions of (4, 3)-PRRs for the four different
switch boxes. In general, a (4, )-RR, which is routable in the
Disjoint (4, )-SB, must be decomposable to (4, 1)-PRRs;
thus, it is also routable in the (4, )-USB. A minimal nonde-
composable (4, 3)-PRR is not routable in (4,)-USB. We note
from Table I that Wilton’s (4, )-SB cannot route some PRRs,
which are routable in Disjoint SBs, but Wilton’s (4, )-SB
can route some (4, )-PRRs, which are not routable in both
Disjoint (4, )-SB and (4, )-USB. Let denote the
set of (4, )-RRs, which are routable in switch box. We
have the following general relations when :

Disjoint

Wilton's

But Wilton's has no inclusive relationship
with Disjoint or . This
implies that HUSB is of the highest routing capacity. Another
advantage of our design of HUSBs is that a large (4,)-HUSB
is a disjoint union of some smaller HUSBs. This makes our de-
sign scalable and easy to implement, though the HUSB design
requires a few extra switches.

III. H YPERREARRANGEABLESWITCH BOXES

In this section, we investigate track-fixed routing require-
ments and the associated switch box design problems. We will
use the (4, )-HUSBs presented in last section to build switch
boxes for the targeted applications.



1642 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 12, DECEMBER 2003

Fig. 6. Example of track-fixed routing requirement and its feasible routing.

A. Track-Fixed Routing Requirements

The routing requirements that we have discussed previously
are track-free, which means there is no prescribed terminal
(track) assignment for routers to follow. On the other hand,
a nontrack-free (track-fixed) routing requirement specifies
both the sides and terminals for certain nets. Fig. 6(a) shows
a track-fixed routing requirement, where the numbers at the
net ends indicate the terminal (track) IDs preassigned for the
routings. Fig. 6(c) shows a feasible routing on the switch box
shown in Fig. 6(b).

Track-fixed routing requirements were used in the design of
-side track-fixed (predetermined) switch boxes for GRAs [13],

where tracks on given sides are fixed in the routing require-
ments. Track-fixed routing requirements can also be used to
model interconnect requirement in communication networks.
Here, we assume that the routing requirements are valid, i.e.,
channel-density constraints are met and there is no conflicting
track assignments.

Similarly, an -sided-track-fixed (, )-SB design problem
[10] is a problem of designing a (, )-SB which is routable
for all ( , )-routing requirements with track-fixed on agiven
sides and track-free on the rest sides.

B. Designs of Hyperrearrangeable Switch Boxes

Dynamic (Reconfigurable) switching networks have been
widely used for many applications including parallel processing
of multiprocessors, telecommunications, etc. [18]. To reduce
the number of switches, a multistage structure is needed with
the cost of more switching delays. A two-sided switching
network is rearrangeable if it is able to realize any arbitrary
permutation between terminals of the two sides [1], [2],
[18]. In [18], a three-stage one-sided rearrangeable polygonal
switching network is proposed, which can
route any all-track-fixed 2-pin net routing requirements. The

consists of an (, )-USB as the second stage
and crossbars (as the first and third stages)
attached to each side. Compared to a (one-stage)-sided fixed
( , )-SB, a takes a fewer number of switches,
with the cost of more switching delays. However, because all
of these designs are for point-to-point connection models, they
are limited for the multipoint connection requirements (e.g.,
teleconference applications).

Using the results of HUSBs we have developed, we can de-
sign an HRSB with the ability of allowing simultaneous multi-
point connections.

Fig. 7. (h, 4, 4)-HRSB designs forh = 0; . . . ; 4.

The basic idea of our design for an-sided-track-fixed (, ,
)-HRSB is to use a (, )-HUSB as the central component,

and attach crossbars to the specified sides. Fig. 7
shows the structure of the design.

Let be an -sided-track-fixed (, )-routing requirement.
We can find a feasible routing of in two steps.

1) Let be the track-free (, )-RR induced by , that is,
changing all the specifications on track numbers todon’t
care. Since the center component is a (, )-HUSB,
has a feasible routing in the (, )-HUSB.

2) For each track-fixed side, permute the terminals through
the CB(W, W) such that the input terminal tracks meet
the track-fixed specification. It shows that a three-stage
switch box constructed in this way is routable for all
routing requirements with track-fixed on thespecified
sides.

Based on Theorem 1 and the complete permutation capability
of CB(W, W), we have the following theorem.

Theorem 3: The ( , 4, )-HRSBs proposed can be routable
for any -side-track-fixed (4, )-routing requirement.

In particular, using a (, )-HUSB as the central component,
with a crossbar attached to each side, we can build
an efficient three-stage one-sided (, , )-HRSB being able
to realize any all-track-fixed multipoint connection requirement
for the terminals.

Fig. 8(a) and (c) show a (4, 4)-track-fixed routing requirement
and its routing in a three-stage (4, 4, 4)-HRSB, where the central
component is an and the peripherals are crossbars(4, 4).

C. Designs of Multistage Switch Boxes for Improved GRAs

In [10], Wu et al.have investigated the problem of designing
-side-track-fixed ( , )-SBs, where terminals on certain

sides have been preassigned. These-side-track-fixed switch
boxes were originally addressed for a kind of hypothetical
FPGA structures called GRAs, which possesses a unique
property that a local (around an SB) detailed routing can be
greedily extended into an entire chip routing [10], [13], [17].
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Fig. 8. Example of a (4, 4, 4)-HRSB and its realization for a track-fixed routing
requirement of 7 nets.

Since it has been shown that there is no polynomial algorithm
for realizing the entire chip routing for a given global routing
[16], the GRAs routing property is useful for this purpose.
Fig. 9 shows the H-tree GRA and Snake-like GRA. In this
scheme, a routing process starts from a prespecified switch box
and follows a specified order (e.g., either spiral or snake-like
[13]). Upon the completion of the last local routing, without
changing any routing done previously, an entire chip routing is
completed. Consequently, a routing problem for the entire chip
can be greedily decomposed into a sequence of localized op-
timum -side-track-fixed routing problems, where the optimum

-side-track-fixed switch boxes are designed for this purpose.
This raised the -side-track-fixed -sided switch box design
problems . References [10] and [13] solved the
cases for . However, as the number of switches required
for such switch boxes is high, the GRAs do not seem practical
for today’s FPGA applications. Nonetheless, allowing such

-side-track-fixed switch boxes be implemented in multiple
stages, the number of switches can be further reduced. For
example, a (4, 4, )-HRSB under the new design scheme can
be implemented in switches, compared to the

switches required in a single-stage design.
The following table compares, the switch counts and flexibil-

ities of the -side-track-fixed switch boxes built in three-stage
(( , 4, )-HRSB) and single stage ((, 4, )-SB) from [10].

We note that, as most applications use 4-way switch boxes,
our -side-track-fixed multistage (, 4, )-HRSBs have pro-
vided a family of switch boxes for solving the-side-track-fixed
routing problems using less number of switches. Moreover, as
our design scheme is constructive, we only need to useand
at most one for , 3, 4, 5, 7. Besides, we can also design
an efficient routing algorithm for switch boxes produced using
this scheme [25].

Fig. 9. Two GRAs, which can greedily extend a locally optimum routing to an
optimum entire chip routing following the shown extending sequence.

IV. EXPERIMENTAL RESULTS

It is always arguable whether a switch box, being a local
optimum, will also be a global optimum, when a routing
requirement involving the entire chip is rendered. Formal
routability analysis covering the entire chip has rarely been
done, partly because of its nontractable complexity and partly
because of some variable factors: there are very long nets
and very short nets and the distribution can be application
dependent. It seems that a quick way to get some references
is to resort to the benchmark experiments, although the results
could still be router dependent.

Besides the theoretical analysis, in order to get some experi-
mental comparisons, we choose to adopt the current best known
FPGA router VPR [27], which is available on the Web, for our
experiment. The logic block structure for our VPR runs is set to
consist of one four-input LUT and one flip-flop. The input or
output pin of the logic block can connect to any track in the ad-
jacent channels, i.e., . Inside a switch box, each input
wire segment can connect to three other output wire segments
of other channels, i.e., .

In order to have a fair comparison (partially also due to the
limitation set by VPR router) with the well-known
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Fig. 10. Routing result of e64 by using H’USB S-Box,W = 7.

Disjoint structure, we deliberately eliminate those “additional”
bridge switches of our HUSBs to make our H’USBs have den-
sity of , which is the same as Disjoint S-boxes. Fig. 10 shows
the structure of a hyperuniversal S-box and a routing result of
our experiments.

In Table II, we show the compared results of the number of
tracks required to route some larger Microelectronics Center of
North Carolina benchmark circuits [28] by Disjoint (4,)-SBs,
Wilton’s (4, )-SBs, (4, )-USBs, and our (4, )-H’USBs.
It is observed that, except for the most decomposable Disjoint
SBs, all the other threes achieve similar improved (10% less
tracks) results for 35 router iterations, and achieve about 5% less
tracks for 100 router iterations. The difference between them is
probably not significant statistically since the factor of router
design is still influencing. (Meanwhile, since the VPR is a sim-
ulated annealing-based nondeterministic router, the results we
produced could be a bit different to other VPR reported results.)
It seems that improving the routability of local switching boxes
can also help the entire chip routing, and seeking a good balance
between layout simplicity, design scalability, where Disjoint (4,

)-SBs could be the best, and routability might be an engi-
neering issue worth involved justification.

V. CONCLUSION

From the combinatorial analysis shown above, we obtain
an important result that any multipin routing requirement can
be decomposed into minimal subrouting requirements for any
given number of sides. Therefore, the complicated optimum
hyperuniversal switch box design problem can be treated
constructively.

We found that for some Ws, there exist 4-sided HUSBs with
switch number of only (what used in Disjoint (4, )-SBs,

Wilton’s (4, )-SBs, and (4, )-USBs), however, only the (4,
)-HUSBs can route all routing requirements. It seems encour-

aging to find that only very few more switches are needed to
make the today’s known nonhyperuniversal switch boxes be-
come hyperuniversal for the practical range of W values.

Nonetheless, as observed in the construction of some op-
timum (4, )-HUSBs, the generation of general optimum (4,

)-HUSBs still seem to hardly possess strict regularity or very
high scalability observed in 4-sided Disjoint or Universal switch
boxes. To maintain high scalability for layout simplicity while
still achieve excellent optimality, in this paper, we present a
new class of (4, )-HUSBs, which improves the previous de-
signs in [19]–[21] by reducing the number of switches from

to . We proved that this new design is optimum for
and near the optimum for .

Hyperrearrangeable switching networks for multiple terminal
connections are useful for today’s many practical applications
(e.g., teleconferences). By simply using a-side HUSB as the
center component and attaching a crossbar to each side,
we build a three-stage one-sided polygonal switching network,
which can realize simultaneous connection for any partition of
the terminals.

Like many other problems, there still exists tough open ques-
tions. Although we can show that, in the case of a four-sided
switch module, the number of switches used for this HRSB is

, where is the total number of
terminals, the optimum number of switches with respect to any
given number of terminals is still under investigation. We will
also explore potential applications for other similar problems
using the techniques developed in this paper.

APPENDIX

PROOF OFTHEOREM 1

In order to make the proof easy to verify, we redraw in a
way that a feasible routing can be checked easily on the diagram.
Fig. 11 below has shown the new drawing of .

A. Transformation, Simplification, and Decomposition

If a (4, )-RR is not primitive, then we can combine the
unequal nets of size 1 into nets of size 2 to obtain a (4,)-PRR

. Any feasible routing of will induce a feasible routing for
by simply deleting the edges of those one edge trees repre-

senting the nets of size two in , which are obtained by com-
bining the unequal nets of size 1 in. Therefore, to verify a (4,
)-SB is hyperuniversal, we only need to show that it is routable

for all (4, )-PRR.
We generate all (4, )-PRRs through disjoint union of

minimal 4-PRRs. This method could generate all (4,)-PRRs,
without missing any case, but it may repeat some (4,)-PRRs
because the decomposition of a (4,)-PRR into minimal
4-PRRs is not unique in general. Table III gives all minimal
4-PRRs [19]–[21], where denotes the th PRR of type
of density .

It has been proven that and are optimum HUSBs
[19]–[21]. Since every (4, 5)-PRR can be decomposed into a
union of 4-MPRRs of channel densities 1, 2, and 3, a (4, 5)-PRR
can be regrouped into one (4, 2)-PRR and one (4, 3)-PRR.
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TABLE II
CHANNEL WIDTHS REQUIRED (BY VPR ROUTER) FOR DIFFERENTBENCHMARK CIRCUITSF = W , F = 3

Fig. 11. Alternative representation of prime 4-sided HUSBs.

is hyperuniversal provided that and are both
hyperuniversal. Similarly, since a (4, 7)-PRR can always be
decomposed into one (4, 3)-PRR and one (4, 4)-PRR,

is hyperuniversal provided that and are both
hyperuniversal. Therefore, we only need to prove, , and

are all hyperuniversal.

B. is an Optimal (4, 3)-HUSB

It is sufficient to show that has a feasible routing for every
(4, 3)-PRR obtained by combining 4-MPRRs in Table III. Let

be such a (4, 3)-PRR.
It is obvious to see that the side permutation

induces an automorphism of (symmetric against the central
vertical line). This indicates that if is routable in , then the
(4, 3)-PRR is also routable in . Therefore, we only need
to consider (4, 3)-PRRs, which are not equivalent under.

Case 1) is one of .

Since and ( and ) are
equivalent under , it is sufficient to consider ,

, and . Feasible routings of them are
given in Fig. 12, in which the numbers represent the
side labels associated vertices.

Case 2) consists of three (4, 1)-MPRRs.
Subcase 2.1. does not contain a .

In this case, we consider the three subgraphs
, , and of . consists of the lower

level, consists of the left half of the upper two
levels, and consists of the right half of the
upper two levels [see Fig. 13(i)]. We note that
each subgraph can route any one in

. Therefore, has a feasible routing in
.

Subcase 2.2. .
A feasible routing is given in Fig. 13(a).

Subcase 2.3 contains only one .
If contains a which is one of

, , ,
and , then we can route
as shown in Fig. 13(b)–(e). We note that
the unused part in can route any one of

. This
proves that is routable in . Let contain

. We may assume that
is not in . Then, we route as
shown in Fig. 13(f). The unused part in can
route any except .
Subcase 2.4. contains two .

If we route as shown in Fig. 13(g),
then, the unused top level can route any of ,

, , . For ,
a feasible routing is given by Fig. 13(h).
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TABLE III
ALL MINIMAL PRIMITIVE 4-WAY ROUTING REQUIREMENTS

Case 3) contains a
It is sufficient to consider the following

which are not equivalent under:

If does not contain , then we route in
as in Fig. 14, in which each diagram shows a

feasible routing of the above in top two levels,
and the lower level is used to route any of
except . If contains a , then we route

as in Fig. 15.

Finally, we conclude that is routable for all (4, 3)-PRRs.
Hence, is a (4, 3)-HUSB. has 18 switches, which is equal
to the lower bound 6 3 on the number of switches of a (4,
3)-HUSB. Therefore, is an optimum (4, 3)-HUSB.

Fig. 12. Feasible routings ofGR in H .

Fig. 13. Feasible routings of threeGR s in H .

Fig. 14. Feasible routings ofGR +GR in H .



FAN et al.: OPTIMAL HYPERUNIVERSAL AND REARRANGEABLE SWITCH BOX DESIGNS 1647

Fig. 15. Feasible routings ofGR +GR in H .

C. is an Optimum (4, 4)-HUSB

has 25 switches. We first show that is hyperuniversal,
then show that there is no (4, 4)-HUSB with 24 switches. Let
be any (4, 4)-PRR which is a union of minimal 4-PRRs. Since

is a union of two plus one extra switch, is routable in
when it is a union of two (4, 2)-PRRs. Therefore, we only

need to consider the case whenis a union of a and a .
If does not contain , we can first route the five

first as shown in Fig. 16(a). Note that the unused part inis a
cycle 1, 2, 4, 3, 1 which can be used to route any of except

. If contains a , then a feasible routing of in
is given in Fig. 16(b). This proves that is hyperuniversal.

Next, we show that no (4, 4)-SB with 24 switches is an HUSB.
Suppose on the contrary that is a (4,
4)-HUSB with 24 switches.

In an HUSB, every pair of sides must induce a (2, 4)-HUSB
with at least 4 switches. Moreover, every three sides ofin-
duces an optimal (3, 4)-HUSB, which is either a cycle of length
12 or a union of two cycles of length 6 [19]–[21].

If is not connected, then it must be a union of two (4, 2)-SBs
by the above arguments. But such a switch box is not routable
for a . Therefore, must be connected.

The idea of the proof is that we enumerate every possible
graph with the above properties and obtain a contradiction by
finding a nonroutable (4, 4)-PRR for. Next, we only present
graphs such that every three sides of induces a cycle of
length 12. The cases that some three sides ofinduce two cy-
cles of length 6 can be proved similarly.

Suppose there is a 4-matching between each pair of,
for and the induced subgraph ofon each set

is a cycle.
It is obvious (by relabeling if necessary) thatcontains the

graph as shown in Fig. 17(a). Starting from , we have to
select a matching between and so that the induced sub-
graph on is a cycle. We note that ,

, and are forbidden edges; otherwise,

Fig. 16. Feasible routings of (4, 4)-PRRs inH .

the induced subgraph on sides 1, 2, and 3 contains cycles of
length 3. There are only six possible cases ofsuch that the
subgraph is a cycle.

, which gives
the graph shown in Fig. 17(b).

, which gives a
graph shown in Fig. 17(c).

, which gives a
graph shown in Fig. 17(d).

, which gives a
graph shown in Fig. 17(e).

, which gives a
graph shown in Fig. 17(f).

, which gives a
graph shown in Fig. 17(g).

For each of these choices [the graphs in Fig. 17(b)–(g)], we
need to select a matching betweenand to obtain so that
the induced subgraphs ofon and on
are Hamiltonian cycles. If we take the case of Fig. 17(d)
as an example, the forbidden edges are , ,

, , , , and . Therefore,
the matchings between and that can make the induced
subgraphs of on and on become
Hamiltonian cycles ,

, and
. The corresponding three graphs are listed to

the right of Fig. 17(d), and each is labeled by a 4-PRR which
has no feasible routing in the switch box.

There are totally 21 graphs and each of them is labeled by
a 4-PRR, which has no feasible routing in. This proves that
any switch box with 24 switches is not a HUSB and thus
is an optimum (4, 4)-HUSB.
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Fig. 17. Nonroutable (4, 3)-PRRs in all (4, 4)-SBs of 24 switches.

D. is Hyperuniversal

To prove that is hyperuniversal, we need to show con-
tains a feasible routing for every (4, 6)-PRR.

Let be a (4, 6)-PRR, then can be decomposed into either
two (4,3)-PRRs or three minimal (4,2)-PRRs. In the first case,

Fig. 18. Feasible routings of threeGR s in H .

is clearly routable in as contains two disjoint . In
the second case, we then show thatis also routable in .

Let , where each is a minimal (4,2)-PRR
from Table III.

Let be the subgraph of , which consists of the
levels and . We have three disjoint subgraphs ,

, and of . From Fig. 14, we observe that
and can route any minimal (4, 2)-PRR from

Table III. Next, we show that is routable for any .
Again, we note that the permutation is an au-
tomorphism of , so that it is sufficient to check those
which are different in . Fig. 18 lists the feasible routings of
these in . Therefore, , , are routable in

, , , respectively. Hence, is routable in
.

This completes the proof of Theorem 1.
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