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A switch block of k sides W terminals on each side is said to be universal (a (k, W )-USB) if it is
routable for every set of 2-pin nets of channel density at most W . The generic optimum universal
switch block design problem is to design a (k, W )-USB with the minimum number of switches for
every pair of (k, W ). This problem was first proposed and solved for k = 4 in Chang et al. [1996],
and then solved for even W or for k ≤ 6 in Shyu et al. [2000] and Fan et al. [2002b]. No optimum
(k, W )-USB is known for k ≥ 7 and odd W ≥ 3. But it is already known that when W is a large odd
number, a near-optimum (k, W )-USB can be obtained by a disjoint union of (W − f2(k))/2 copies of
the optimum (k, 2)-USB and a noncompound (k, f2(k))-USB, where the value of f2(k) is unknown
for k ≥ 8. In this article, we show that f2(k) = k+3−i

3 , where 1 ≤ i ≤ 6 and i ≡ k (mod 6), and
present an explicit design for the noncompound (k, f2(k))-USB. Combining these two results we
obtain the exact designs of (k, W )-USBs for all k ≥ 7 and odd W ≥ 3. The new (k, W )-USB designs
also yield an efficient detailed routing algorithm.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Switching theory; B.7.2
[Integrated Circuits]: Design Aids— Placement and routing

General Terms: Theory, Design

Dr. J. Liu passed away recently. This Research was partially supported by the NSERC of Canada for
H. Fan, and a Hong Kong Government RGC Earmarked Grant Ref. No. 417106 and Direct Grant
CUHK2050320/2050351 for Y.-L. Wu.
Authors’ addresses: H. Fan, Department of Physics and Computer Science, Wilfrid Laurier Univer-
sity, Waterloo, ON, Canada N2L 3C5; email: hfan@wlu.ca; J. Liu, Department of Mathematics and
Computer Science, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4; Y.-L. Wu, Depart-
ment of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, NT,
Hong Kong; email: ylw@cse.cuhk.edu.hk; and C.-C, Cheung, Department of Computing, Imperial
College London, London, UK; email: rcheung@doc.ic.ac.uk.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-4309/2007/04-ART19 $5.00 DOI 10.1145/1230800.1230811 http://doi.acm.org/
10.1145/1230800.1230811

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 19, Publication date: April 2007.



2 • H. Fan et al.

Additional Key Words and Phrases: FPGA architecture, routing algorithm, universal switch block

ACM Reference Format:
Fan, H., Liu, J., Wu, Y.-L., and Cheung, C.-C. 2007. The exact channel density and compound design
for generic universal switch blocks. ACM Trans. Des. Autom. Electron. Syst. 12, 2, Article 19 (April
2007), 12 pages. DOI = 10.1145/1230800.1230811 http://10.1145/1230800.1230811

1. INTRODUCTION

Switch blocks (also called switch boxes) are critical reconfigurable components
in field programmable gate arrays (FPGAs); they have great effects on the area,
time efficiency, and routability of FPGA chips. Many kinds of switch blocks have
been designed and used in various FPGA architectures [Betz et al. 1999; Brown
et al. 1992]. We consider a generic (k, W ) switch block ((k, W )-SB for short) in
which terminals are grouped into k sides, each side having W terminals, and
configurable switches connecting pairs of terminals on different sides. Generic
switch blocks have been investigated in Fan et al. [2002a] and Shyu et al. [2000],
and the case for k = 4 was studied previously in Brown et al. [1992], Chang
et al. [1996], Pan et al. [1998], Rose and Brown [1991], and Wu et al. [1996] for
island-style FPGAs.

Routability and area efficiency are the two foremost issues in switch block
design. However, high routability and high area efficiency are two conflict-
ing goals. It is obvious that an FPGA with complete switch blocks (having a
switch between every pair of terminals from different sides) has the highest
routability, but also the lowest area efficiency and is impractical to use when
the channel density is high. To balance these two goals, Rose and Brown [1991]
introduced the concept of flexibility, denoted by Fs, which is the maximum num-
ber of switches connecting a terminal in a switch block. They investigated the
effects of flexibility on the entire-chip (global) routability, and observed that
(4, W )-SBs with Fs = 3 results in a sufficiently high global routability, which is
an acceptable tradeoff between global routability and area efficiency. However,
there are various designs with the same flexibility. This increases the benefits of
designing an optimal switch block with a high routing capacity, small flexibility,
and the minimum number of switches.

A (k, W )-SB is said to be universal (or (k, W )-USB) if it is routable for every
set of 2-pin nets satisfying the routing constraint, that is, the number of nets
on each side is at most W . The generic optimum USB design problem can be
described as follows.

USB Design Problem. For any given pair of positive integers k and W , de-
sign an optimum (k, W )-USB, that is, a (k, W )-USB with the minimum number
of switches.

Chang et al. [1996] first proposed the concept of universal switch blocks and
gave the first optimum (4, W )-USB, called a symmetric switch module, which
has 6W switches and Fs = 3. The concept of a universal switch block, as well as
the symmetric switch module, was generalized to general k ≥ 5 in Shyu et al.
[2000]. It was strictly proved in Fan et al. [2002a, 2002b] that the symmetric
(k, W )-SB is an optimum (k, W )-USB when W = 1, W is even, or k ≤ 6, and
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Fig. 1. Examples of (k, 3)-SBs,(k, 3)-RRs, and the corresponding detailed routings.

that the symmetric (k, W )-SB is not universal when k ≥ 7 and W (≥3) is odd.
It was also proved that when W is a large odd integer, there exists a near-
optimum (k, W )-USB which is a disjoint union of a nondecomposable (k, f2(k))-
USB and (W − f2(k))/2 copies of the optimum (k, 2)-USB, where f2(k) is the
maximum channel density of a nondecomposable k-way routing requirement.
But the exact value of f2(k) was unknown, and there was no explicit method to
design an efficient noncompound (k, f2(k))-USB. In this article, we solve these
two problems. We give the exact value of f2(k) and provide a simple design for
(k, f2(k))-USB.

For completeness and also in order to avoid ambiguity, we specify some ter-
minologies used in this article although they can be found in Fan et al. [2002a].
A net (i.e., a 2-pin net) is an indication of two sides of a switch block in which
two terminals should be connected by a switch. A detailed routing of a net is
an assignment of a switch whose two ends are on the sides indicated by the
net. A (k, W )-routing requirement ((k, W )-RR for short) is a set of nets such
that the number of nets that connect each side is at most W . A detailed rout-
ing of a (k, W )-RR in a (k, W )-SB is an assignment of switches in the switch
block such that each net in the routing requirement corresponds to a switch,
and the switches corresponding to different nets are not incident. For example,
Figure 1(a), (b), and (c) depict a (6, 3)-SB, a (6, 3)-RR, and a detailed routing of
(b) in (a), respectively. Thus a (k, W )-SB is universal if it has a detailed routing
for every (k, W )-RR.

The decomposition property of (k, W )-RR plays an important role in the de-
sign of (k, W )-USBs. The decomposition property was first given in Chang et al.
[1996] for k = 4. It was then applied to general k ≥ 5 in Shyu et al. [2000]. The
decomposition theorem for general k was formally proved in Fan et al. [2002a].
For even W , the decomposition property can be stated as follows.

THEOREM 1.1. Any (k, 2m)-RR can be decomposed into m (k, 2)-RRs. A dis-
joint union of m copies of the optimum (k, 2)-USB forms an optimum (k, 2m)-
USB.

For odd W , it was shown in Fan et al. [2002a] that any (k, W )-RR can be
decomposed into a (k, f2(k))-RR and W− f2(k)

2 (k, 2)-RRs when W ≥ f2(k), where
f2(k) is the maximum integer w such that there is a nondecomposable (k, w)-
RR. This implies that when W is odd and W ≤ f2(k), a (k, W )-USB can not
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be compound, that is, it must be connected. When W is odd and W > f2(k),
a (k, W )-USB can be obtained by combining W− f2(k)

2 copies of optimum (k, 2)-
USB and one noncompound (k, f2(k))-USB. It remained to determine the exact
value of f2(k) and to design an efficient noncompound (k, W )-USB for odd W
with 3 ≤ W ≤ f2(k).

In Section 2, we show that f2(k) = k+3−i
3 , where i = k (mod 6) and 1 ≤ i ≤ 6

by applying a factor theorem developed recently in graph theory. In Section 3,
we present a new (k, W )-USB design for odd W with 3 ≤ W ≤ f2(k), which
uses much lesser number of switches than does a complete (k, W )-USB, but
still keeps a high routing capacity. Moreover, we provide an efficient routing
algorithm for the new USBs, though the existence of an efficient detailed routing
algorithm for an arbitrarily given switch block is unknown.

To see the impact of local routing capacity of switch blocks on the global
routability, we performed an experiment using VPR [Betz and Rose 1997] with
the widely-used benchmark circuits and disjoint switch blocks, symmetric uni-
versal switch blocks [Chang et al. 1996], Wilton’s switch blocks [Wilton 1997],
alternative universal switch blocks [Fan et al. 2002a], our new USBs, and the
complete switch blocks. The experimental results are presented in Section 4.
Conclusions are given in Section 5.

2. DECOMPOSITION THEOREM

The graph modeling for 2-pin routing requirements, switch blocks, and detailed
routings have been given in Fan et al. [2000, 2001]. We briefly describe the
modeling as follows.

We label the sides of a (k, W )-SB by 1, 2, . . . , k, respectively, and then a 2-pin
net can be represented as a size-two subset of {1, 2, . . . , k}. For example, a net
that connects two terminals on sides 1 and 2 can be represented by {1, 2}. A
(k, W )-RR is a collection (multiple set) of size-two subsets (also called nets) of
{1, 2, . . . , k} such that each i ∈ {1, 2, . . . , k} is contained in at most W subsets in
the collection. A (k, W )-SB can be modeled as a graph: Denote the j th terminal
on side i by a vertex vi, j , and a switch connecting vi, j , and vi′, j ′ by an edge vi, j vi′, j ′ .
Thus, a (k, W )-SB corresponds to a k-partite graph G with vertex partition
(V1, . . . , Vk), where Vi = {vi, j | j = 1, . . . , W }, i = 1, . . . , k. We also call such
a graph a (k, W )-SB. A detailed routing of a net {i, j } can be represented by
an edge connecting a vertex in part Vi and a vertex in part Vj . A detailed
routing of a (k, W )-RR in a switch block corresponds to a subgraph consisting
of independent edges.

The verification of universal switch blocks can be simplified by using for-
malized routing requirements. First of all, when we add some singletons (nets
of size one)1 to a (k, W )-RR such that each element appears exactly W times,
the resulting (k, W )-RR is called a balanced routing requirement ((k, W )-BRR),
or a k-way BRR (k-BRR) with density W . Second, we pair up the nonequal
singletons until no two different singletons are left; such a BRR is called a

1The net of size one has no use in practice. But it brings a lot of convenience in our analysis because
we can model a routing requirement as a regular hypergraph instead of a graph, so that theories
for regular graphs can be applied.
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primitive BRR (PBRR). We note that a (k, r)-PBRR is an r-regular hypergraph
on k vertices such that each edge has size one or two. It is a graph if all edges
have size two. For convenience, we call such hypergraphs 2-graphs. It is obvious
that a (k, W )-SB is universal if and only if it has a detailed routing for every
(k, W )-PBRR. A (k, W )-BRR is minimal, denoted by (k, W )-MBRR, if it does not
contain a (k, W ′)-BRR with W ′ < W . Thus,

f2(k) = max{W |there exists a (k, W ) − MBRR}.
In terms of graph theory, a (k, W )-MBRR is a factor-free W -regular 2-graph on
k vertices, and f2(k) is the maximum degree over all nondecomposable (i.e.,
without a proper factor) regular 2-graphs on k vertices.

The following theorem from graph theory plays an important role in the
determination of f2(k), since a (k, W )-BRR R (which is a 2-graph in general)
can be transformed into a W -regular graph G, and R is not minimal if and
only if G has a proper factor. This is equivalent to the fact that G has a
2-factor because W is odd and the well-known fact that any even, regular graph
is 2-factorable.

THEOREM 2.1 [FAN ET AL. 2006]. A (2r + 1)-regular G has no proper regular
factor if and only if G has a 2-factor free block which is incident to at least (2r+1)
cut edges.

Theorem 2.1 leads to the determination of the function f2(k).

THEOREM 2.2. Let k ≥ 7 be an integer. Then f2(k) = k+3−i
3 , where 1 ≤ i ≤ 6

and i ≡ k (mod 6).

PROOF. By Fan et al. [2002a], we only need show that f2(k) ≤ k+3−i
3 , where

1 ≤ i ≤ 6 and i ≡ k (mod 6). Since a nondecomposable f2(k)-regular 2-graph on
k vertices plus an extra vertex contained in f2(k) singletons gives a nondecom-
posable f2(k)-regular 2-graph on k + 1 vertices, we have 3 ≤ f2(k) ≤ f2(k + 1)
when k ≥ 7. Moreover, for k ≥ 7, f2(k) must be odd.

Let G be a nondecomposable f2(k)-regular 2-graph on k vertices. We may
assume that G has at most one vertex incident with singletons. We construct
a nondecomposable f2(k)-regular graph G ′ as follows. If G does not have a
singleton, then let G ′ = G. Otherwise let x be the vertex incident with the
singleton {x}. Let p be the multiplicity of {x} in E(G). Then 1 ≤ p ≤ f2(k), and
we construct G ′ according to the following cases.

Case 1. p = f2(k). Then x is an isolated vertex. Let G ′ = G − x.
Case 2. p = 2m. We remove p copies of {x}, add in new vertices y and z,

add m copies of x y , m copies of xz, and f2(k) − m copies of yz. Let G ′ be the
resulting graph.

Case 3. p = 2m + 1 < f2(k). We remove p copies of {x}, add new vertices y ,
z, and w, add 2m + 1 copies of the edge x y , f2(k)−2m−1

2 copies of yz and yw, and
f2(k)+2m+1

2 copies of zw. Let G ′ be the resulting graph.
It is readily seen that in each of the preceding cases, the resulting graph G ′

is f2(k)-regular. Since G is nondecomposable, we know that G ′ is nondecom-
posable and G ′ has at most k + 3 vertices.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 19, Publication date: April 2007.



6 • H. Fan et al.

By Theorem 2.1, G ′ has a 2-factor-free component C which is incident with
at least f2(k) cut edges. Each of these cut edges joins C with a component of G ′

with at least three vertices. Then we have 3 f2(k) + |V (C)| ≤ |V (G ′)| and hence

f2(k) ≤ |V (G ′)| − |V (C)|
3

≤ k + 3 − 1
3

= k + 2
3

. (1)

Let k = 6r + i, where r ≥ 1, 1 ≤ i ≤ 6, and i ≡ k (mod 6). By Eq. (1) we have
f2(k) ≤ k+2

3 = 6r+i+2
3 = 2r + 1 + i−1

3 . Since � i−1
3 	 ≤ 1 and f2(k) is odd, it follows

that f2(k) ≤ 2r + 1 = k+3−i
3 .

As an immediate consequence of Theorem 2.2, we have the following exact
decomposition theorem for (k, W )-BRRs with odd W .

THEOREM 2.3. Let k ≥ 7 and 1 ≤ i ≤ 6 with i ≡ k (mod 6), and let W be
odd. Then the following statements hold.

1. There exists a (k, W )-MBRR if 1 ≤ W ≤ k+3−i
3 .

2. If W ≥ k+3−i
3 , then every (k, W )-BRR can be decomposed into a (k, k+3−i

3 )-
BRR and 3W−k−3+i

6 (k, 2)-BRRs.

3. NEW (k, W )-USBs

By the previous decomposition theorem, we see that when W is odd and W >
k+3−i

3 , the disjoint union of one (k, k+3−i
3 )-USB and 3W−k−3+i

6 copies of (k, 2)-
USB gives a (k, W )-USB. When W is odd and W ≤ k+3−i

3 , no (k, W )-USB is the
disjoint union of smaller universal switch blocks. Therefore, for any fixed k, we
only need to design prime (k, r)-USBs for r = 3, 5, . . . , k+3−i

3 . But for a fixed
W , we only need to design a (k, W )-USB if W < k+3−i

3 , and a (k, k+3−i
3 )-USB if

W ≥ k+3−i
3 .

Let U (k, 1) be the complete graph of k vertices. Clearly, U (k, 1) is routable
for all (k, 1)-RRs. It is known that U (k, 1) is an optimum (k, 1)-USB with k(k−1)

2
switches.

Let U (k, 2) be the k-partite graph with vertex set (V1, . . . , Vk), Vi = {vi,1, vi,2},
i = 1, . . . , k, and the edge set

∪1≤i< j≤k{vi, pvj , p+( j−i)−1|p = 1, 2},
where the second index of the subscript is evaluated to 1 when it is odd, and 2
otherwise. U (k, 2) has k(k − 1) switches and it has been known that U (k, 2) is
an optimum (k, 2)-USB for every k ≥ 2 [Fan et al. 2002a].

For k ≥ 7 and odd r (3 ≤ r ≤ k+3−i
3 ), no optimum (k, r)-USB is known. The

complete (k, r)-USB Kk;r has been used as the prime (k, r)-USB in Fan et al.
[2002a], which results in a (k, W )-USB with O(W ) switches when k is fixed.
In the following, we design a new (k, r)-USB which uses much lesser switches
than does the complete (k, r)-USB.

Let Uk,r be the k-partite graph with vertex set V = V1 ∪ V2 ∪ · · · ∪ Vk , where
Vi = {vi, j | j = 1, 2, . . . , r}, and the edge set

∪1≤i �= j≤k{vi, j vi′, j ′ | | j − j ′| ≤ 1}.
ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 19, Publication date: April 2007.
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THEOREM 3.1. Uk,r is a (k, r)-USB for any pair of (k, r) with k > 1, r > 1.

PROOF. Uk,r is universal when r is even because it contains a disjoint union
of r/2 copies of Kk,2. Therefore we assume that r is odd. Let R be any (k, r)-BRR.
We show that R is routable in Uk,r . Let R ′ be the (k, r + 1)-RR obtained from
R by adding singletons {1}, . . . , {k}. Since r + 1 is even, by Theorem 1.1, R ′ can
be decomposed into a disjoint union of m (k, 2)-RRs R ′ = R ′

1 ∪ R ′
2 ∪ · · · ∪ R ′

m,
where r + 1 = 2m. By removing the k singletons {1}, . . . , {k} from R ′

1, . . . , R ′
m,

we obtain R1, . . . , Rm, respectively. Then R is a disjoint union of R1, . . . , Rm.
Next we show that the elements of R can be ordered as e1, e2, . . . , es with the
following property: For each 1 ≤ h ≤ s−1 and Gh = ({1, . . . , k}, {e1, . . . , eh}) and
eh+1 = {p, q}, |dGh(p)−dGh(q)| ≤ 1, where dGh(p) denotes the degree of p in Gh.
We prove this by showing that R1 ∪ R2 ∪ · · · ∪ Rn has the property, by induction
on n.

It is clear that any ordering of the elements of R1 satisfies the property.
Assume that the elements of R1 ∪ R2 ∪ · · · ∪ Rn−1 has an ordering e1, e2, . . . , et

satisfying the conditions. We show that the elements of Rn can be added to the
back of e1, e2, . . . , et so that the resulting sequence has the property. Note that
Gt = ({1, . . . , k}, R1 ∪ R2 ∪ · · · ∪ Rn−1). Then degrees of vertices of Gt are either
2(n − 1) or 2(n − 1) − 1. The degrees of vertices of the 2-graph ({1, . . . , k}, Rn)
are either 1 or 2 because all vertices of the 2-graph ({1, . . . , k}, R ′

n) have degree
2 and Rn is obtained from R ′

n by removing the singletons {1}, . . . , {k}. For each
component of Rn we order the edges as follows. First, we list all edges with
two end-vertices of degree 2(n − 1) − 1 in Gt . Second, for a maximal path of
edges l1, l2, . . . l p such that both ends have different degrees in Gt , we order the
edges as l1, l3, . . . , l2, l4, . . .. Third, we list rest edges arbitrarily. Finally, list the
singletons in Rn if there are any. By the construction, we see that the ordering
of edges of ({1, . . . , k}, R1 ∪ R2 ∪ · · · ∪ Rn) satisfies the property. It follows from
the induction hypothesis that the elements of R1 ∪ R2 ∪ · · ·∪ Rm can be ordered
to satisfy the property.

Now we can obtain a detailed routing of R in Uk,r by routing the nets of
R in ordering e1, e2, . . . , es using the first available switches. Therefore, Uk,r is
universal.

We note that the number of switches in Uk,r is k(k−1)
2 (3r − 2), while the num-

ber of switches in the complete Kk,r is k(k−1)
2 r2. It is known [Shyu et al. 2000]

that an optimum (k, r)-USB has at least k(k−1)
2 r switches. Therefore, the num-

ber of switches in Uk,r is at most three times the number of switches in an
optimum (k, r)-USB. The good property is that the detailed routing in Uk,r can
be done efficiently. As shown in the proof of the theorem, we can order the
nets in a routing requirement and then route them using the first available
switches.

Next we use Uk,r as a prime (k, r)-USB to construct large compound
(k, W )-USBs. For odd W (W > 3) and 1 ≤ i ≤ 6 with i ≡ k (mod 6), define

U (k, W ) =
{

Uk,W , W ≤ k+3−i
3

Uk, k+3−i
3

+ W− k+3−i
3

2 U (k, 2), W > k+3−i
3 .
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THEOREM 3.2. The U (k, W ) is a (k, W )-USB. The number of switches in
U (k, W ) over the number of switches in an optimum (k, W )-USB is at most
1 + k+1−i

W , which goes to 1 as W goes to ∞.

PROOF. Since any (k, W )-PBRR R can be decomposed into a (k, k+3−i
3 )-PBRR

and W− k+3−i
3

2 (k, 2)-PBRRs, any (k, k+3−i
3 )-PBRR is detail-routable in a Uk, k+3−i

3
,

and any (k, 2)-PBRR is detail-routable in a (k, 2)-USB, R is routable in U (k, W ).
Thus U (k, W ) is a (k, W )-USB. Since the number of switches in an optimum
(k, W )-USB is at least k(k−1)

2 W , we have

The number of switches in U (k, W )
The number of switches in an optimum (k, W ) − U SB

≤
k(k−1)

2 [W + 3( k+3−i
3 ) − 2]

k(k−1)
2 W

= 1 + k + 1 − i
W

.

Clearly, this ratio approaches 1 when W is large.

The Routing Algorithm for U (k, W ) with W ≥ k+3−i
3 .

Input: A (k, W )-RR R.

Step 1 Add singletons to R to obtain a (k, W )-BRR, still denoted by R. Let
d = W and F2 = ∅.

Step 2 Repeat the following steps until d ≤ k+3−i
3 .

2.1 Applying the algorithm in Lovasz and Pummer [1986] to find a 2-factor
F of R and set F2 = F2 ∪ {F }.

2.2 Set R = R − F and d = d − 2.
Step 3 Detailed routing:

3.1 If R �= ∅, rout R in Uk, k+3−i
3

according to the method used in the proof of
Theorem 3.1 to obtain a detailed routing d R of R in U (k, W ).

3.2 Repeat until F2 = ∅.
For F ∈ F2, rout F in an unused U (k, 2) in U (k, W ) obtaining a detailed
routing d F in U (k, W ).
Set F2 = F2 − F .

Step 4 d R ∪ (∪F∈F2d F ) is a detailed routing of R in U (k, W ).

The correctness of this algorithm follows from Theorems 2.3 and 3.2. The
running time of the algorithm is polynomially bounded in terms of k and W
because finding a 2-factor in the graph can be done in polynomial time.

4. EXPERIMENTAL RESULTS FOR (4, W )-SBs

From a practical point of view, it is more important to evaluate the quality of a
switch block design in terms of entire-chip routability. Since there is no known
theoretical model for the entire-chip routing of FPGAs, most justification was
usually done through extensive routing experiments based on the original idea
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of Rose and Brown [1991]. Lemieux and Lewis [2003] proposed an analytical
framework for entire-chip routings which uses the probabilistic model [Brown
et al. 1992] and experiments to justify the entire-chip routability for FPGA
routing structures.

We adopt the well-known FPGA router VPR [Betz and Rose 1997] in our ex-
periments. The purpose of our experiment is to see the performances of different
types of switch blocks in terms of channel usage under the same placement and
routing algorithm. We use the disjoint switch block and the complete switch
block as references for the maximum channel usage and minimum channel us-
age. The logic block structure for our VPR runs is set to contain one four-input
LUT and one flip-flop. All input and output pins of the logic block are able to
connect to any track in their adjacent channels (Fc = W ).

We conduct our experiments on 21 large benchmark circuits with 4-sided
disjoint switch blocks (a disjoint union of U (4, 1)s) [Brown et al. 1992], 4-sided
symmetric universal switch blocks [Chang et al. 1996], Wilton’s switch blocks
[Wilton 1997], alternative universal switch blocks (AUSBs) [Fan et al. 2002a],
the U4,W , and the complete (4, W )-SB. We note that the first four types of
(4, W )-SB have different connection topology, but the same number of switches
6W . The alternative (4, W )-USB is isomorphic to the symmetric (4, W )-USB
but has a different connection style. The U4,W has 18W − 12 switches and
the complete (4, W )-SB has 6W 2 switches. Table I shows our experimental re-
sults. Figure 2 shows a final layout with the alternative (4, W )-USB for the
benchmark circuit e64, which justified the correctness and completion of the
scheme.

We observe that compared with disjoint SBs, the three architectures based
on the USB (F3 = 3) achieve approximately 6% less tracks for the routing test
runs under 35 router iterations, and achieve about 3–5% less tracks for runs
under 100 router iterations. The U4,W (Fs = 9)-based architectures achieve
17.51% less tracks on 35 router iterations, and 14.41% less tracks on 100 router
iterations. By contrast, the complete switch block has 22.12% less tracks on 35
router iterations and 18.18% less tracks on 100 router iterations, which are
the best results possible. This provides evidence that USB-based FPGA chip
design can lead to a better entire-chip routing result due to the optimal local
routability. The result for U4,W and the complete switch blocks tells us that
increasing the routing capacity (the number of switches) of switch blocks can
significantly improve the global routability.

5. CONCLUSIONS

It was previously known that the best compound (k, W )-USB for k ≥ 7 and
large odd W can be constructed as a disjoint union of a noncompound (k, f2(k))-
USB and (W − f2(k))/2 copies of the optimum (k, 2)-USB. In this article, we
solved the exact value of f2(k), namely, f2(k) = k+3−i

3 where 1 ≤ i ≤ 6 and i ≡ k
(mod 6), and gave an efficient noncompound (k, r)-USB Uk,r design, where r is
odd and r ≤ f2(k). Consequently, we obtained an exact near-optimum (k, W )-
USB for all k ≥ 7 and odd W ≥ 3, which basically solved the generic USB design
problem.
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Table I. Channel Widths Required (by VPR router) for Different Benchmark
Circuits and Switch Block Designs

VPR with 35 iterations
Disjoint USB Wilton AUSB U4,W Complete

alu4 10 10 10 10 9 8
apex2 12 11 11 11 10 9
apex4 12 12 12 12 10 9
bigkey 7 6 7 6 6 6
clma 12 11 11 12 10 10
des 8 7 7 7 6 6
diffeq 8 7 7 8 6 6
dsip 7 7 7 7 6 6
elliptic 10 10 10 10 8 8
ex1010 11 10 10 10 9 8
ex5p 14 14 13 14 12 11
frisc 13 12 11 12 10 10
misex3 12 10 10 10 9 9
pdc 17 16 16 16 14 13
s298 7 7 7 7 6 6
s38417 8 7 7 7 7 6
s38584.1 9 8 8 8 7 7
seq 12 11 11 11 10 9
spla 13 13 13 13 11 10
tseng 7 6 6 6 6 5
e64 8 8 8 8 7 7
Total 217 203 202 205 179 169
Reduction −6.45% −6.91% −5.53% −17.51% −22.12%

VPR with 100 iterations
Disjoint USB Wilton AUSB U4,W Complete

alu4 9 9 9 9 8 8
apex2 11 10 10 10 9 9
apex4 11 11 11 11 10 9
bigkey 6 6 6 6 6 5
clma 11 11 11 10 10 9
des 7 6 7 6 6 6
diffeq 7 7 7 7 6 6
dsip 7 6 7 6 6 6
elliptic 10 9 9 10 8 8
ex1010 10 9 10 9 8 8
ex5p 12 12 13 12 11 10
frisc 12 11 11 11 10 9
misex3 10 10 10 10 9 8
pdc 16 15 15 16 13 12
s298 7 6 7 6 6 6
s38417 7 7 7 7 6 6
s38584.1 8 7 7 8 7 7
seq 11 10 10 10 9 9
spla 12 12 12 12 10 10
tseng 6 6 6 6 5 5
e64 8 7 7 8 7 6
Total 198 187 192 190 170 162

−5.5% −3.0% −4.0% −14.41% −18.18%
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Fig. 2. Routing result of e64 by using alternative USB S-box, W = 8.

Our noncompound (k, r)-USB design Uk,r has k(k−1)
2 (3r − 2) switches. Even

though it has more switches, it has better routing properties. The detailed
routing can be done by first ordering the nets and then using the first available
switch for each net. We expect that this new type of (k, W )-SB design and routing
scheme will have applications in the design of customized on-chip networks and
customized FPGAs when a high routing capacity is required.

The decomposition Theorems 1.1 and 2.3 showed the difference between even
and odd density routing requirements. Odd density cases turn out to be much
more complicated which seems a bit counterintuitive. This suggests that in
practice we should avoid a design with an odd number of tracks.
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