
474 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

[11] A. J. Viterbi, “An intuitive justification of the MAP decoder for con-
volutional codes,” IEEE J. Sel. Areas Commun., vol. 16, pp. 260–264,
Feb. 1998.

[12] T. C. Denk and K. K. Parhi, “Exhaustive scheduling and retiming of
digital signal processing systems,” IEEE Trans. Circuits Syst., Part II:
Analog Dig. Signal Process., vol. 45, no. 7, pp. 821–838, Jul. 1998.

[13] W. Gross and P. G. Gulak, “Simplified MAP algorithm suitable for
implementation of turbo decoders,” Electron. Lett., vol. 34, no. 16, pp.
1577–1578, Aug. 1998.

[14] Y. Wu, B. D. Woerner, and T. K. Blankenship, “Data width requirement
in SISO decoding with module normalization,” IEEE Trans. Commun.,
vol. 49, no. 11, pp. 1861–1868, Nov. 2001.

A Flexible Architecture for Precise Gamma Correction

Dong-U Lee, Ray C. C. Cheung, and John D. Villasenor

Abstract—We present a flexible hardware architecture for precise
gamma correction via piece-wise linear polynomial approximations.
Arbitrary gamma values, input bit widths, and output bit widths are
supported. The gamma correction curve is segmented via a combination of
uniform segments and segments whose sizes vary by powers of two. This
segmentation method minimizes the number of segments required, while
providing an efficient way for indexing the polynomial coefficients. The
outputs are guaranteed to be accurate to one unit in the last place through
an analytical bit-width analysis methodology. Hardware realizations of
various gamma correction designs are demonstrated on a Xilinx Virtex-4
field-programmable gate array (FPGA). A pipelined 12-bit input/8-bit
output design on an XC4VLX100-12 FPGA occupies 146 slices and one
digital signal processing slice. It is capable of performing 378 million
gamma correction operations per second.

Index Terms—Displays, field programmable gate arrays (FPGAs), fixed-
point arithmetic, video signal processing.

I. INTRODUCTION

The term “gamma” originates from the nonlinear responses of
cathode ray tubes (CRTs) caused by electrostatic effects in the electron
gun. The luminance produced by CRTs is not linearly proportional to
the input voltage. Instead, the produced luminance L is proportional
to the input voltage V raised by a power gamma

L = V
 (1)

where V is normalized over zero and one. In order to compensate
this nonlinearity, gamma correction is performed on the input signal to
achieve correct production of the luminance on the display [1]. Fig. 1
illustrates the signal flow in a typical display system. The most com-
monly used value for gamma correction is
 = 1=0:45 which is the
basis of various standards including the ITU Rec. 709 specification [1].

Manuscript received April 27, 2006; revised November 21, 2006. This work
was supported in part by the National Science Foundation under Grant CCR-
0120778 and Grant CCF-0541453, by the Office of Naval Research under Con-
tract N00014-06-1-0253, and by the Croucher Foundation.

D. Lee and J. D. Villasenor are with the Electrical Engineering Department,
University of California, Los Angeles, CA 90095 USA (e-mail: dongu@icsl.
ucla.edu; villa@icsl.ucla.edu).

R. C. C. Cheung is with the Department of Computing, Imperial College
London, London, SW7 2BZ U.K. (e-mail: r.cheung@imperial.ac.uk).

Digital Object Identifier 10.1109/TVLSI.2007.893671

Fig. 1. Signal flow in a typical display system.

Fig. 2. Quantization effects of gamma correction in low luminance regions for
different input x bit widths with the output fixed at eight bits. A gamma of 1/0.45
is assumed.

Although modern display devices such as liquid crystal displays
(LCDs) and plasma display panels (PDPs) are inherently linear,
gamma correction is still performed for perceptual coding purposes
[2]. This is related to the fact that inverse of the CRT’s transfer function
is remarkably similar to the perceptual uniformity of human vision
given by the Weber–Fechner law [3].

The most straightforward realization of gamma correction involves
direct table lookups [4], [5]. For a typical display system that supports
8 bits per component, an 8-bit input/8-bit output table is often placed
before or after the frame buffer. This approach is simple to implement
and requires a table size of just 28 � 8 = 2048 bits. However, using
eight bits to select the table entry can cause significant banding (or con-
touring) in the low luminance regions. This is because in these regions
the gamma correction curve has a slope greater than one, and thus maps
quantization step sizes at the input to larger step sizes at the output.
When these transformed step sizes are overlayed on the inherent step
sizes available at the output, the ability to generate certain luminance
levels at the output can be lost. To fully exploit the output resolution in
the presence of gamma correction, a higher input resolution is needed.
This is illustrated in Fig. 2 which shows gamma correction in the low
luminance regions of 8-, 10-, and 12-bit inputs with the output fixed at
eight bits. The lower input resolutions create large luminance jumps in
the low luminance regions at the display device, causing banding arti-
facts.

While the severity of these artifacts can be lessened by using more
bits at the input, this leads to an exponential increase in storage if a
direct lookup table is used. For instance, a 12-bit input/8-bit output
table has a memory requirement of 32 768 bits, which can be problem-
atic for resource constrained platforms. For example, many medical
imaging displays support 12 bits per component and a recent paper by
Kim et al. [6] describes an LCD display with ten bits per component.
Such high-end displays impose even more stringent requirements on

1063-8210/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007 475

input resolution, making direct table lookup costly even for systems
with better memory resources.

The use of multiple tables for different parts of the input interval
has been considered in [7]. This leads to reduction in overall table
size relative to a single table approach, but still suffers relatively large
memory requirements. In order to overcome the large memory space
drawbacks of traditional lookup table-only-based approaches, several
implementations involving piece-wise linear polynomial approxima-
tions and interpolations have been proposed [8], [9]. Under this ap-
proach, the input interval is partitioned into nonuniform segments and
linear approximation or interpolation is performed for each segment.
Although the memory burden is significantly reduced, the precision of
the gamma corrected samples is significantly lower than that available
through direct table lookup methods. Such loss of precision can poten-
tially lead to misrepresented luminance values on the display. More-
over, the nonuniform segmentation strategies, while quite effective in
reducing memory, have typically been performed manually and are not
guaranteed to be optimal.

In contrast to previous piece-wise linear methods, the approach de-
scribed in this paper partitions the input interval in an automated sys-
tematic manner that results in the minimal number of segments for a
given precision requirement. In addition, the gamma corrected sam-
ples are analytically guaranteed to be accurate to one unit in the last
place (ulp). This means that if the gamma corrected samples are eight
bits over [0,1), the error is at most 2�8 compared to infinitely precise
gamma samples.

II. SEGMENTATION

For hardware-based piece-wise polynomial approximations, uni-
form segmentation in which all segments are of equal size has been
commonly employed. The most significant bits of the input serve as the
index to the coefficient table. Although uniform segmentation has the
advantage of being simple, for functions with high absolute first-order
or higher order derivatives (referred to as nonlinear functions in the
following), the number of segments can be impractically large [10]. To
minimize segment count, the sizes of the segments should be adapted
to the local nonlinearities of the functions.

We utilize hierarchical segmentation described in [10], which con-
sists of a two-level hierarchy of uniform segments and segments whose
sizes vary by powers of two. Since the gamma correction curve has a
high and rapidly changing first derivative at the beginning of the in-
terval, the segmentation scheme denoted P2SL and having segment
sizes that increase by powers of two is chosen for the outer segmenta-
tion. Uniform segmentation US is used for the inner segmentation.

The Bx bits of the input x are split into three partitions: x0, x1, and
x2. x0 and x1 are used to index the outer and inner segmentation, re-
spectively, while x2 is used for the polynomial arithmetic. The number
of addressable segments si of the partition i is constrained as follows:

si =2B ; if �i = US (2)

si �Bx + 1; if �i = P2SL (3)

where Bx denotes the bit width and �i denotes the segmentation of
the partition i.

For the P2SL case, it is not intuitive why up to Bx + 1 segments
can be formed. Consider the case when Bx = 12, the outer segmen-
tation is P2SL, and Bx = 8. As illustrated in Table I, it is possible
to construct a maximum of nine segments. With the exception of the
initial segments, the segment lengths increase by powers of two.

The P2SL segment address for a given x0 can be computed by

P2SL addr =
Bx � LZD(x0); if MSB(x0) = 0

Bx ; if MSB(x0) = 1
(4)

TABLE I
SEGMENT RANGES IN BINARY REPRESENTATION FOR B = 12, P2S OUTER

SEGMENTATION, AND B = 8. THE EIGHT BITS CORRESPONDING TO x ARE

HIGHLIGHTED IN BOLD. THE BITS TO THE LEFT OF THE VERTICAL

PARTITION LINES CORRESPOND TO �x . THE ITALIC BITS

CORRESPOND TO x IF B IS KEPT CONSTANT AT TWO

Fig. 3. Segmentation of the y = x gamma correction curve for piece-wise
linear approximations to 12-bit inputx and 8-bit output y. The error requirement
is set to 0.3�2 . The black and grey vertical lines indicate the boundaries for
the outer and inner segmentations, respectively.

where LZD(x0) and MSB(x0) return the number of leading zeros and
the most significant bit of x0, respectively.

Let �xi denote the set of bits that remains constant within an outer
segment (bits left to the vertical partition lines in Table I). For instance
in Table I, when j = 3, then �x0 = 000001. The inner segmentation
uses Bx bits immediately right of �x0 (italic bits in Table I). For the
case when the outer segmentation is P2SL, the number of bits corre-
sponding to �x0, B�x can be computed as follows:

B�x =
Bx ; if P2SL addr = 0

Bx � P2SL addr + 1; otherwise.
(5)

The original hierarchical segmentation method allows variable num-
bers of uniform segments to each outer segment, i.e., Bx can be vari-
able. Two barrel shifters are required due to the variable natures of
B�x and Bx . Barrel shifters are rather costly in hardware in terms
of both area and delay. Since display devices require fast response
times, stringent requirements are placed on the gamma correction cir-
cuity. InP2SL,B�x is inherently variable, hence, the first barrel shifter
is mandatory. The second barrel shifter, however, can be omitted by
keeping Bx constant, meaning that the number uniform segments to
all outer segments are kept to be the same. We found that for the de-
signs considered in this work, eliminating the second barrel shifter lead
to approximately 30% increase in segment count and coefficient table
size, but reduced the overall area and latency by approximately 5% and
10%, respectively.

Fig. 3 illustrates the segmentation of the y = x0:45 gamma correc-
tion curve for piece-wise linear approximations for the case of a 12-bit
input x and an 8-bit output y. The polynomial error requirement is set
to 0.3�2�8 in order to reserve a minimum of 0.7�2�8 for finite pre-
cision effects (since the total error budget is 2�8). The automated seg-
mentation tool then computes Bx = 8 and Bx = 2, which results

476 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

Fig. 4. Proposed gamma correction architecture. The grey “Q” squares perform
quantization.

in the minimal number of segments. These parameters mean that there
are a total of 9 P2SL outer segments with four US segments in each,
resulting in a total of 36 segments. Chebyshev coefficients are used for
the polynomials. Although the results discussed in this paper are based
on
 = 1=0:45 and linear approximations, arbitrary
 functions (such
as the ITU Rec. 709 specification [1]) and polynomial degrees are sup-
ported by the framework.

III. ARCHITECTURE AND BIT-WIDTH DETERMINATION

A. Architecture

Fig. 4 depicts the hardware architecture for piece-wise linear approx-
imation-based gamma correction. The P2SL unit performs the P2SL
address and B�x computation [(4) and (5)]. The bit selection unit se-
lects the appropriate bits for x0, x1, and x2 from the input x in the
following manner:

x0 =x [Bx � 1 : Bx �Bx] (6)

x1 =x [Bx �B�x � 1 : Bx �B�x �Bx] (7)

x2 =x [Bx �B�x �Bx � 1 : 0] : (8)

A barrel shifter is present inside this unit due to the variable nature of
B�x .

The appropriate coefficient table address for a given x is generated
by shifting the P2SL address by Bx bits to the left and adding x1
to it. Since x0 and x1 are implicitly known for a given segment, x2
is used instead of x for the polynomial arithmetic to reduce the size
of the operators. x2 is scaled to occupy the range [0,1), which in turn
requires appropriate transformations on the Chebyshev coefficients. x2
is quantized to B~x bits before it is fed to the multiplier.

Some contemporary gamma correction hardware, such as that found
in recent ATI Radeon graphics cards [11], support “programmable
gamma correction,” where the gamma value can be altered on-the-fly
by the user. This feature can be added to the architecture in Fig. 4 by
employing a writable polynomial coefficient table, i.e., a RAM. The
coefficients corresponding to a set of predefined gamma values can be
stored in a separate ROM or in software. Alternatively, full control can
be given to the user to supply custom coefficients.

TABLE II
BIT WIDTHS OBTAINED AFTER BIT-WIDTH OPTIMIZATION

FOR THE 12-bit x/8-bit y EXAMPLE

B. Bit-Width Determination

In the multiply-and-add step of Fig. 4, signals are quantized between
each operation to reduce the size of the operators and coefficients. For
the subsequent discussions, the integer bit-width (IB) and the frac-
tional bit-width (FB) of a signal z are denoted by IBz and FBz , re-
spectively, i.e., Bz = IBz + FBz . IB governs the range, while FB
governs the precision of a signal. Two’s complement fixed-point arith-
metic is assumed.

A technique based on computing the roots of the derivative of the
signal is used to determine the required IBs for each signal. This range
analysis approach allows the computation of the exact range for every
signal. For FB determination, an improved version of the MiniBit ap-
proach [12] is used to determine the bit widths. For the quantization
of a signal z into FBz fractional bits, the original MiniBit approach
assumed a fixed worse case error bound of 2�FB for truncation and
2�FB �1 for round-to-nearest.

By contrast, here, we obtain tighter error bounds by comparing the
full precision of the original value against the desired precision of its
quantized version. The following modified quantization errors "z can
be established for truncation and round-to-nearest for a signal z:

Truncation : "z

= max(0; 2�FB � 2�FB) (9)

Round-to-nearest : "z

=
0; if FBz � FBz

2�FB �1; otherwise
(10)

where FBz is the full precision of the unquantized z. For the addition
z = x+y and the multiplication z = x�y,FBz is defined as follows:

z =x+ y : FBz = max(FBx;FBy) (11)

z =x� y : FBz = FBx + FBy: (12)

Using the previous equations, an analytical error expression that is a
function of the internal signal bit widths can be constructed at the output
y in Fig. 4. Simulated annealing is applied to the error expression in
conjunction with a hardware area estimation function to determine the
optimal FBs [12] to each signal.

Table II shows the bit widths determined for the 12-bit x/8-bit y
example in Section II. Truncation is assumed for ~x2 and D0, while
round-to-nearest is assumed for C1, C0, and y. Note that IB can be
negative as in the third column of Table II. In this example, IB = �2
means that the first two fractional bits of C1 will always be zero. This
fact can be exploited in the hardware implementation. The width of
the two coefficients is 9 + 13 = 22 bits. Since there are a total of 36
segments, the polynomial coefficient table size is 22� 36 = 792 bits,
which is a factor of 41.4 reduction compared to the 32 768 bits required
for direct table lookup.

Fig. 5 shows an error plot for all possible input values for the 12-bit
x/8-bit y case with the bit-widths in Table II incorporated. Values com-
puted in IEEE double-precision floating point are used as the reference
for error computation. As anticipated, the ulp error of all values are
found to be less than 1 ulp. In addition, 94% of the values have an
error of less than 1/2 ulp (i.e., exactly rounded) meaning that in most

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007 477

Fig. 5. Error plot for all possible input values for the 12-bit x/8-bit y case.
The black curve indicates the inherent approximation error, while the grey curve
indicates the error with finite precision effects. 94% of the samples have an error
of less than 1/2 ulp.

Fig. 6. Emulating fixed-point multiplication and addition using integer arith-
metic. The grey “Q” squares perform quantization.

cases the precision obtained is equivalent to a direct table lookup. The
mean-squared error is found to be 1.38�10�6, which is marginally
higher than the 1.27�10�6 of a direct table lookup. Similar trends are
observed for other input and output bit-width combinations.

Although hardware design tools facilitate fixed-point arithmetic,
support for negative IBs are not provided. This can be addressed by
performing integer arithmetic with an implicit binary point. Fig. 6
illustrates how the fixed-point multiplication z = x � y and the
fixed-point addition z = x + y are performed via integer arithmetic.
The multiplier generates the result z0 which is Bx + By bits wide,
where IBz = IBx + IBy and FBz = FBx + FBy . The most
significant bits (MSBs) and least significant bits (LSBs) of z0 that are
not to be used in z need now to be eliminated. A bit selector is used to
trim off the unwanted IBz � IBz MSBs. A quantizer is then applied
to the resulting signal to eliminate the FBz � FBz LSBs. The final
signal is the desired z that is Bz bits wide.

In addition, it is important to ensure that the implicit binary point of
the operands are aligned. If FBx > FBy , � in Fig. 6 is set to 0 and
� = FBx � FBy . Similarly, if FBx < FBy , then � = FBy � FBx

and � = 0. For the case when FBx = FBy , both � and � are set
to zero. Note that these are constant shifts, requiring just wires and no
extra hardware resources. The adder generates the result z0 which is
max(Bx; By) + 1 bits wide, where IBz = max(IBx; IBy) + 1 and
FBz = (FBx;FBy). As in multiplication, the bit selector and the
quantizer are used to generate the desired output z.

IV. IMPLEMENTATION RESULTS

For hardware implementation, a Xilinx Virtex-4 XC4VLX100-12
field-programmable gate array (FPGA) was used. Designs were written
in VHDL, synthesized with Synplicity Synplify Pro 8.4, and placed and
routed using Xilinx ISE 8.1.02i.

Table III compares the memory and hardware area requirements for
direct table lookup against the proposed piece-wise linear approach
with input bit widths ranging from 12 to 14 bits at various output
bit widths. Though current graphics formats are typically limited to

TABLE III
MEMORY AND AREA COMPARISONS FOR DIRECT TABLE LOOKUP

VERSUS THE PIECEWISE LINEAR APPROACH

12 bits per color, high dynamic range (HDR) graphics which are
receiving increasing attention, often require depths beyond 12 bits.
For instance, the Leaf Aptus cameras by Kodak capture HDR images
with 16 bits per color [13]. For comparison purposes, the designs
in Table III use slices (logic elements inside Xilinx FPGAs) only
and are fully combinatorial. Embedded RAMs and multiply-and-add
units are not used. The table shows that while the memory size
of direct table lookup increases exponentially with Bx, only a
small linear increase is observed in the piece-wise linear approach.
Depending on Bx and By , table size reduction factors ranging
from approximately 20 to approximately 140 are obtained. Another
observation of interest is the rapid increase in table size with By of
the proposed approach. This is because a single increment in By

causes the error tolerance to be halved, resulting in significantly
more segments. With respect to the area comparisons, hardware area
reduction factors ranging from approximately 5 to approximately
20 are obtained using the proposed over direct table lookup. The
area reduction is less pronounced memory reduction due to the
extra computational hardware involved in the proposed piece-wise
linear approach.

The combinatorial delay averages 5 ns for the direct table lookup
designs and 38 ns for the proposed designs. Though 38 ns may
seem rather large, since we are dealing with feed-forward systems,
pipelining can be applied in a straightforward manner to reduce
the critical path. We have implemented a heavily pipelined design
for 12-bit x/8-bit y on the Virtex-4 XC4VLX100-12 FPGA and
found that it occupies 146 slices and one DSP slice (which can do
an 18-bit by 18-bit multiplication followed by a 48-bit addition).
Embedded 18-Kb RAMs are not utilized since the coefficient
table size of this design is only 792 bits. The pipelined design
runs at 378 MHz (critical path of 2.6 ns) and has a latency
of 13 clock cycles (�34 ns). The same design has also been
mapped onto a low-cost Spartan-3 XC3S5000-5 FPGA, in which
the pipelined design is able to run at 180 MHz. Similar clock
speeds are obtained for pipelined direct table lookup designs
(with registered inputs and outputs), which have a latency of
two clock cycles. Although the piecewise linear designs exhibit
initial delays of 11 cycles (�29 ns) more than the direct table
lookups, which is a small compromise given the considerable
area advantage of the piece-wise linear approach.

We have also performed comparison with respect to the 10-bit
x/10-bit y design described by Lin et al. [8], which performs linear
interpolation with the gamma correction curve partitioned nonlinearly

478 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 4, APRIL 2007

into eight segments. When mapped onto the Virtex-4 XC4VLX100-12
FPGA combinatorially using slices only, the design in [8] occupies 72
slices and has a delay of 11 ns. A 10-bit x/10-bit y implementation
using our approach leads to an area of 221 slices and a delay of 33 ns,
which is larger by a factor of three in both area and delay. However,
the Lin et al. design exhibits a maximum error of 85 ulp and a mean
squared error of 2.33�10�4 which is two orders of magnitude larger
than the maximum errors of 0.68 ulp and three orders of magnitude
larger than the mean-squared error of 8.50�10�8 provided by the
design methodology we describe.

V. CONCLUSION

A flexible and highly efficient hardware architecture for precise
gamma correction via piece-wise linear polynomial approximations
has been presented. The flexibility of the architecture allows the sup-
port of arbitrary gamma values, input bit widths, and output bit widths.
The gamma correction curve is segmented in a nonuniform manner,
resulting in low segment count while also allowing hardware-efficient
polynomial coefficient indexing. Analytical bit-width analysis has
been described for deriving the minimal integer and fractional bit
widths to each signal in the data path. The analysis allows the outputs to
exhibit comparable precision to that of a direct table lookup approach.
Experimental results for combinatorial and pipelined implementations
on a Xilinx Virtex-4 FPGA have been presented showing significant
reductions in memory sizes over direct table lookups.

REFERENCES

[1] C. Poynton, “Gamma and its disguises: The nonlinear mappings of in-
tensity in perception, CRTs, film and video,” SMPTE J., vol. 102, no.
12, pp. 1099–1108, Dec. 1993.

[2] S. Kang, H. Do, B. Cho, S. Chien, and H. Tae, “Improvement of
low gray-level linearity using perceived luminance of human visual
system in PDP-TV,” IEEE Trans. Consum. Electron., vol. 51, no. 1,
pp. 204–209, Feb. 2005.

[3] S. Hecht, “A theory of visual intensity discrimination,” J. General
Physiol., vol. 18, no. 5, pp. 767–789, 1935.

[4] K. Akeley, “Reality engine graphics,” in Proc. ACM Int. Conf. Comput.
Graph. Interactive Techn., 1993, pp. 109–116.

[5] B. Lucas, “Method and apparatus for converting floating-point pixel
values to byte pixel values by table lookup,” U.S. Patent 5 528 741, Jun.
18, 1996.

[6] J. Kim, B. Choi, and O. Kwon, “1-billion-color TFT-LCD TV with
full HD format,” IEEE Trans. Consum. Electron., vol. 51, no. 4, pp.
1042–1050, Nov. 2005.

[7] D. Warren, A. Bowen, and D. Dignam, “Floating point gamma correc-
tion method and system,” U.S. Patent 6 304 300, Oct. 16, 2001.

[8] T. Lin, H. Cheng, and C. Kung, “Adaptive piece-wise approximation
method for gamma correction,” U.S. Patent 6 292 165, Sep. 18,
2001.

[9] E. Kim, S. Jang, S. Lee, T. Jung, and K. Sohng, “Optimal piece
linear segments of gamma correction for CMOS image sensors,”
IEICE Trans. Electron., vol. E88-C, no. 11, pp. 2090–2093, Nov.
2005.

[10] D. Lee, W. Luk, J. Villasenor, and P. Cheung, “Hierarchical segmenta-
tion schemes for function evaluation,” in Proc. IEEE Int. Conf. Field-
Program. Technol., 2003, pp. 92–99.

[11] ATI Technologies Inc., Markham, ON, Canada, “Radeon X1900
graphics technology—GPU specifications,” (2006). [Online]. Avail-
able: http://www.ati.com/products/RadeonX1900/specs.html

[12] D. Lee, A. Abdul Gaffar, R. Cheung, O. Mencer, W. Luk, and G.
Constantinides, “Accuracy-guaranteed bit-width optimization,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 10, pp.
1990–2000, Oct. 2006.

[13] Kodak, Rochester, NY, “Leaf Aptus 75 specifications,” (2005). [On-
line]. Available: http://www.leaf-photography.com

A Processor-In-Memory Architecture for
Multimedia Compression

Brandon J. Jasionowski, Michelle K. Lay, and Martin Margala

Abstract—This paper presents the design and development of a novel,
low-complexity processor-in-memory (PIM) architecture for image and
video compression. By integrating a novel-processing element with SRAM,
bandwidth is improved and latency is greatly reduced. This paper also
presents PIM design techniques for reduced power, area, and complexity
for rapid deployment and reduced cost. A design methodology is presented
and followed by an analysis of the processing element performance and
capabilities. The proposed datapath solution delivers between 2 to 40
times higher performance compared to other presented solutions. The
architecture executes a discrete cosine and wavelet transforms achieving
up to 40% higher throughput per watt and occupying as little as 0.9%
area compared to a commercial digital signal processing and other ap-
plication-specified integrated circuit implementations while maintaining
precision. A comprehensive comparative analysis is also provided. The
proposed processor-in-memory is implemented in 1.8-V 0.18- m CMOS
technology and operates with a 300-MHz clock.

Index Terms—DCT, DWT, image and video compression, low-power ar-
chitecture, processor-in-memory (PIM), VLSI.

I. INTRODUCTION

There is a growing demand for mobile communication and portable
computing with cellular technology and digital photography per-
meating the mainstream. Therefore, the need for high-speed and
low-power signal processing is apparent, especially concerning
portable devices, which require extended operation, high speed, and
small area.

The proposed architecture utilizes a multiplier-based application-
specific processor (ASP). Specifically, the ASP is constructed to com-
pute key algorithms and operations essential to image and video pro-
cessing in order to minimize the complexity and the power consump-
tion, delivering high throughput at very low cost. The focus in this paper
is mainly on the datapath design. The system level design has been pre-
viously described in [1] and the memory architecture has been previ-
ously described in [2].

This paper is organized as follows. Section II presents the design
tradeoffs, optimizations, and the proposed processor-in-memory (PIM)
architecture along with simulation and synthesis results in Section III.
Section IV describes the comparative study and the discussion of the
results. Concluding remarks are made in Section V.

II. PIM ARCHITECTURE

In order to fully take advantage of the bandwidth available in a PIM
design, it is vital to maximize parallelism. Cavalli et al. performed an
analysis on various MPEG-4 algorithms and found that motion esti-
mation/compensation and DCT coding require the largest amount of

Manuscript received January 7, 2005; revised September 6, 2005 and July 14,
2006.

B. J. Jasionowski is with the SET Corporation, Vienna, VA 22180 USA.
M. K. Lay is with the U.S. Patent and Trademark Office, Alexandria, VA

22314 USA.
M. Margala is with theDepartment of Electrical and Computer Engineering,

University of Massachusetts at Lowell, Lowell, MA 01854 USA (e-mail:
martin_margala@uml.edu).

Digital Object Identifier 10.1109/TVLSI.2007.893672

1063-8210/$25.00 © 2007 IEEE

