
1

Structured Programming

A VERY important Philosophy for Writing Programs

This is supposed to be a refresher only. You are
expected to hone your skills by writing programs and
reading books on structured programming if you have
not mastered structured programming

Shiu Yin YUEN

2

Bad Programming Habits

 Foggy idea about what is to be done
 Write program with no planning; Start from the

beginning and write to the end
 No systematic debugging; Considered it finished if it

works on one example

 Undesirable Results !
 Do not know how to program
 Programs with numerous bugs that take extremely long

time to debug, or even failure to complete
 Any change of requirement invites rewriting of the entire

program again

3

Benefits of Structured Programming

 Programs that meet the needs of the
customer

 Though initially take longer time to generate
code, often result in code with runs with no
bugs the first time it’s run

 Easy to handle change in program
specifications in the future

4

Structured Programming

 A tool that becomes popular since the 70’s
 Should have been learnt by student that have

taken any programming course
 Absolutely essential for handling large

programs that involve a team of programmers
and huge number of man hours.

 The other popular philosophy is “object
oriented programming”, but many
programmers prefers structured programming

5

Seven Important Concepts of Structured
Programming: 1. Structured Walkthrough

 Before writing any program, the programming team
must sit down with the customer and find out the
requirement

 Extremely important
 Customer’s requirement is often imprecise
 Iterative: several rounds of talks
 Must result in a specifications that is

 very precise
 Understandable by programmer in programming terms

6

2. Stepwise Refinement

 A “DIVIDE and CONQUER” strategy
 When given a large job, divide it into smaller jobs.
 Given any job, it is useful to divide it into

 Input
 Process
 Output

 Draw a tree
 Refine each job level by level (Breadth first)
 Use pseudo code to describe each job
 Decision on data structure is delayed as much as

possible

7

Extremely
Complex
Job

Input Process Output Level 1

Input from
user Initialize

… …

Level 2

Initialize security
settings

…

Level 3

8

3. Modular Design

 Each ellipse is a module
 A module is a self contained block:

 It only receives inputs from its immediate ancestor
 It only outputs to its immediate ancestor
 Its computation should only require calling functions that

are its immediate children and them only
 The input variables and output variables of each

module should be specified when defining the
module

 Each module must be “programmable” – no majic
block should exist

9

4. Bottom Up Coding

 When the refinement has reached a simple
function, code the simple function

 You can test the simple function
independently of the rest of the program

 This gives you achievement and satisfaction,
sustaining you through the long project

 Project Manager exercises division of labour
here, ask a member to be responsible solely
for that function

10

5. Testing Using Stubs

 A structured Programming project can be
field tested before everything finishes

 Stubs - for unfinished modules, use a human
being to emulate it, act on the test inputs, she
fits in the correct output data by hand

 then other programmers can test their work
 Meanwhile she continues to program her own

module (according to Project timelines)

11

6. White Box and Black Box Testing

 For each module and whole program

 White Box
 Input something for which you know the desired

result, it should give your expected output
 Black Box
 Treat it as a black box, input some data, is the

result reasonable?

12

7. Structured Programming Documents

 A structured programming document is
generated along with the program

 When requirement of customer changes, go
to the document

 Does not need to rewrite the whole program,
just find which modules need to rewrite and
rewrite the module and the sub-tree under it

 Programmer usually forgets their code in 2
months; the structured document helps her to
refresh her work quickly

13

Advice

 YOU MUST TRY IT TO LEARN IT

14

References

 General Philosophy
 Numerous books about Structured Programming in the

library
 A very good structured programming example

 W. Findlay and D.A. Watt, Pascal: An Introduction to
Methodical Programming 1987, Ch. 7 illustrates how to use
stepwise refinement to program a complicated task. Try it
YOURSELF once, then you would get it

	Structured Programming
	Bad Programming Habits
	Benefits of Structured Programming
	Structured Programming
	Seven Important Concepts of Structured Programming: 1. Structured Walkthrough
	2. Stepwise Refinement
	Slide Number 7
	3. Modular Design
	4. Bottom Up Coding
	5. Testing Using Stubs
	6. White Box and Black Box Testing
	7. Structured Programming Documents
	Advice
	References

