
1

Structured Programming

A VERY important Philosophy for Writing Programs

This is supposed to be a refresher only. You are
expected to hone your skills by writing programs and
reading books on structured programming if you have
not mastered structured programming

Shiu Yin YUEN

2

Bad Programming Habits

 Foggy idea about what is to be done
 Write program with no planning; Start from the

beginning and write to the end
 No systematic debugging; Considered it finished if it

works on one example

 Undesirable Results !
 Do not know how to program
 Programs with numerous bugs that take extremely long

time to debug, or even failure to complete
 Any change of requirement invites rewriting of the entire

program again

3

Benefits of Structured Programming

 Programs that meet the needs of the
customer

 Though initially take longer time to generate
code, often result in code with runs with no
bugs the first time it’s run

 Easy to handle change in program
specifications in the future

4

Structured Programming

 A tool that becomes popular since the 70’s
 Should have been learnt by student that have

taken any programming course
 Absolutely essential for handling large

programs that involve a team of programmers
and huge number of man hours.

 The other popular philosophy is “object
oriented programming”, but many
programmers prefers structured programming

5

Seven Important Concepts of Structured
Programming: 1. Structured Walkthrough

 Before writing any program, the programming team
must sit down with the customer and find out the
requirement

 Extremely important
 Customer’s requirement is often imprecise
 Iterative: several rounds of talks
 Must result in a specifications that is

 very precise
 Understandable by programmer in programming terms

6

2. Stepwise Refinement

 A “DIVIDE and CONQUER” strategy
 When given a large job, divide it into smaller jobs.
 Given any job, it is useful to divide it into

 Input
 Process
 Output

 Draw a tree
 Refine each job level by level (Breadth first)
 Use pseudo code to describe each job
 Decision on data structure is delayed as much as

possible

7

Extremely
Complex
Job

Input Process Output Level 1

Input from
user Initialize

… …

Level 2

Initialize security
settings

…

Level 3

8

3. Modular Design

 Each ellipse is a module
 A module is a self contained block:

 It only receives inputs from its immediate ancestor
 It only outputs to its immediate ancestor
 Its computation should only require calling functions that

are its immediate children and them only
 The input variables and output variables of each

module should be specified when defining the
module

 Each module must be “programmable” – no majic
block should exist

9

4. Bottom Up Coding

 When the refinement has reached a simple
function, code the simple function

 You can test the simple function
independently of the rest of the program

 This gives you achievement and satisfaction,
sustaining you through the long project

 Project Manager exercises division of labour
here, ask a member to be responsible solely
for that function

10

5. Testing Using Stubs

 A structured Programming project can be
field tested before everything finishes

 Stubs - for unfinished modules, use a human
being to emulate it, act on the test inputs, she
fits in the correct output data by hand

 then other programmers can test their work
 Meanwhile she continues to program her own

module (according to Project timelines)

11

6. White Box and Black Box Testing

 For each module and whole program

 White Box
 Input something for which you know the desired

result, it should give your expected output
 Black Box
 Treat it as a black box, input some data, is the

result reasonable?

12

7. Structured Programming Documents

 A structured programming document is
generated along with the program

 When requirement of customer changes, go
to the document

 Does not need to rewrite the whole program,
just find which modules need to rewrite and
rewrite the module and the sub-tree under it

 Programmer usually forgets their code in 2
months; the structured document helps her to
refresh her work quickly

13

Advice

 YOU MUST TRY IT TO LEARN IT

14

References

 General Philosophy
 Numerous books about Structured Programming in the

library
 A very good structured programming example

 W. Findlay and D.A. Watt, Pascal: An Introduction to
Methodical Programming 1987, Ch. 7 illustrates how to use
stepwise refinement to program a complicated task. Try it
YOURSELF once, then you would get it

	Structured Programming
	Bad Programming Habits
	Benefits of Structured Programming
	Structured Programming
	Seven Important Concepts of Structured Programming: 1. Structured Walkthrough
	2. Stepwise Refinement
	Slide Number 7
	3. Modular Design
	4. Bottom Up Coding
	5. Testing Using Stubs
	6. White Box and Black Box Testing
	7. Structured Programming Documents
	Advice
	References

